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ABSTRACT
Motivation: The solvent accessibility of amino acid residues plays
an important role in tertiary structure prediction, especially in the
absence of significant sequence similarity of a query protein to those
with known structures. The prediction of solvent accessibility is less
accurate than secondary structure prediction in spite of improvements
in recent researches. The k -nearest neighbor method, a simple but
powerful classification algorithm, has never been applied to the pre-
diction of solvent accessibility, although it has been used frequently
for the classification of biological and medical data.
Results: We applied the fuzzy k -nearest neighbor method to the
solvent accessibility prediction, using PSI-BLAST profiles as feature
vectors, and achieved high prediction accuracies. With leave-one-out
cross-validation on the ASTRAL SCOP reference dataset construc-
ted by sequence clustering, our method achieved 64.1% accuracy for
a 3-state (buried/intermediate/exposed) prediction (thresholds of 9%
for buried/intermediate and 36% for intermediate/exposed) and 86.7,
82.0, 79.0 and 78.5% accuracies for 2-state (buried/exposed) pre-
dictions (thresholds of each 0, 5, 16 and 25% for buried/exposed),
respectively. Our method also showed slightly better accuracies
than other methods by about 2–5% on the RS126 dataset and a
benchmarking dataset with 229 proteins.
Availability: Program and datasets are available at http://biocom1.
ssu.ac.kr/FKNNacc/
Contact: jul@ssu.ac.kr

INTRODUCTION
Predicting the three-dimensional (3D) structure of a protein from
its sequence is an important issue because the gap between the
enormous number of protein sequences and the number of exper-
imentally determined structures has increased (Rost and Sander,
1994; Thompson and Goldstein, 1996). However, the prediction
of the complete 3D structure of a protein is still a big challenge,
especially in the case where there is no significant sequence similar-
ity of a query protein to those with known structures (Ginalski and
Rychlewski, 2003; John and Sali, 2004; Moult et al., 2003; Sander
and Schneider, 1991). The prediction of solvent accessibility and
secondary structure has been studied as an intermediate step for
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predicting the tertiary structure of proteins, and the development
of knowledge-based approaches has helped to solve these problems
(Cuff and Barton, 2000; Frishman and Argos, 1997; Jones, 1999;
Przybylski and Rost, 2002; Wohlfahrt et al., 2002).

Secondary structures and solvent accessibilities of amino acid
residues give a useful insight into the structure and function of a pro-
tein (Eyal et al., 2004; Russell et al., 2003; Totrov, 2004; Wohlfahrt
et al., 2002). In particular, the knowledge of solvent accessibility has
assisted alignments in regions of remote sequence identity for thread-
ing (Rost and Sander, 1994; Rost et al., 1997). However, in contrast
to the secondary structure, there is no widely accepted criterion for
classifying the experimentally determined solvent accessibility into
a finite number of discrete states such as buried, intermediate and
exposed states. Also, the prediction accuracies of solvent accessibil-
ities are lower than those for secondary structure prediction, since the
solvent accessibility is less conserved than secondary structure (Rost
and Sander, 1994), although there has been some progress recently.

The prediction of solvent accessibility, as well as that of the sec-
ondary structure, is a typical pattern classification problem. The first
step for solving such a problem is the feature extraction, where the
important features of the data are extracted and expressed as a set
of numbers, called feature vectors. The performance of the pattern
classifier depends crucially on the judicious choice of the feature
vectors. In the case of the solvent accessibility prediction, using
evolutionary information such as multiple sequence alignment and
position-specific scoring matrix generally has given good prediction
results (Gianese et al., 2003; Pei and Grishin, 2004). Once an appro-
priate feature vector has been chosen, a classification algorithm is
used to partition the feature space into disjoint regions with decision
boundaries. The decision boundaries are determined using feature
vectors of a reference sample with known classes, which are also
called the reference dataset or training set. The class of a query data
is then assigned depending on the region it belongs to.

Various classification algorithms have been developed. Bayesian
statistics is a parametric method where the functional form of the
probability density is assumed for each class, and its parameters are
estimated from the reference data.

In nonparametric methods, no specific functional form for the
probability density is assumed. There are various nonparametric
methods such as, for example, neural networks, support vector
machines and nearest neighbor methods. In the neural network
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methods, the decision boundaries are set up before the prediction
using a training set. Support vector machines are similar to neural
networks in that the decision boundaries are determined before the
prediction, but in contrast to neural network methods where the over-
all error function between the predicted and observed class for the
training set is minimized, the margin in the boundary is maximized.

In the k-nearest neighbor method, the decision boundaries are
determined implicitly during the prediction, where the prediction is
performed by assigning the query data the class most frequently rep-
resented among the k-nearest reference data. The standard k-nearest
neighbor rule is to place equal weights on the k-nearest reference
data for determining the class of the query, but a more general rule is
to use weights proportional to a certain power of distance. Also, by
assigning the fuzzy membership to the query data instead of a def-
inite class, one can estimate the confidence level of the prediction.
The method employing these more general rules is called the fuzzy
k-nearest neighbor method (Keller et al., 1985; see Methods section
for details).

Neural network methods are very popular and have been widely
used for solvent accessibility prediction (Adamczak et al., 2004;
Ahmad and Gromiha, 2002; Ahmad et al., 2003; Cuff and Barton,
2000; Pollastri et al., 2002; Rost and Sander, 1994), and support
vector machines, a recently developed method, shows comparable
results to neural network methods (Kim and Park, 2004; Yuan et al.,
2002; Yuan and Huang, 2004). Bayesian statistics has also been used
by Thompson and Goldstein (1996).

The k-nearest neighbor method has been frequently used for the
classification of biological and medical data, and despite its sim-
plicity, the performances are competitive compared to many other
methods. However, the k-nearest neighbor method has never been
applied for predicting solvent accessibility, although it has been used
to predict protein secondary structure (Salamov and Solovyev, 1995,
1997; Salzberg and Cost, 1992; Yi and Lander, 1993).

In this work, we apply the fuzzy k-nearest neighbor method to the
prediction of solvent accessibility where PSI-BLAST (Altschul et al.,
1997) profiles are used as the feature vectors. We obtain relatively
high accuracy on various benchmark tests.

MATERIALS AND METHODS

Definition and thresholds of solvent accessibility
Amino acid solvent accessibility is the degree to which a residue in a pro-
tein is accessible to a solvent molecule. The relative solvent accessibility
can be calculated by dividing the DSSP accessibility (Kabsch and Sander,
1983) by the maximum accessibility of amino acid residues (Rost and Sander,
1994) corresponding to the accessibility for a Gly-X-Gly extended tripeptide
conformation.

Various thresholds have been used to classify residues as buried (B)
and exposed (E) (2-state prediction) or buried (B), intermediate (I) and
exposed (E) (3-state prediction) in previously published results. In this paper,
thresholds of 9% for B/I and 36% for I/E (9%; 36% thresholds) in the 3-state
prediction and thresholds of 0, 5, 16 and 25% for B/E in the 2-state predictions
are used.

Feature vector and distance measure
PSI-BLAST (Altschul et al., 1997) generates the profile of a protein in
the form of a 20 × N position-specific scoring matrix, where N is the
length of the sequence. PSI-BLAST is run with default options (−j 3
−h 0.001 −e 10.0) and the non-redundant protein sequence database
(ftp://ncbi.nlm.nih.gov/blast/db) filtered by PFILT (Jones, 1999) to mask out

regions of low complexity sequence, the coiled coil regions and transmem-
brane spans. The BLOSUM62 (Henikoff and Henikoff, 1992) substitution
matrix is used for PSI-BLAST.

We construct a window of size 15 centered on a target residue (Jones, 1999;
Kim and Park, 2004; Yuan et al., 2002), and use the profile that falls within
this window, a 15×20 matrix, as a feature vector. Then, the distance between
two feature vectors A and B is defined as

DAB =
∑

i,j

Wi |P (A)
ij − P

(B)
ij |

where P
(A)
ij (i = 1, 2, . . . , 15; j = 1, 2, . . . , 20) is a component of the feature

vector A, and Wi is a weight parameter. Since we expect the profile elements
for residues nearer to the target residue to be more important in determining
the local environment of the target residue, we use weights Wi = (8−|8−i|)2.

Reference dataset for predictions
A reference dataset was constructed by clustering the protein chains in
ASTRAL SCOP (version 1.63) chain-select-90 subset (Brenner et al., 2000).
Since ASTRAL SCOP provides only three kinds of chain sequence sets
(100, 95 and 90% sequence identity), we used BLASTCLUST (NCBI
BLAST 2.2.5, http://www.ncbi.nlm.nih.gov/BLAST/) for sequence cluster-
ing to make a non-redundant dataset. BLASTCLUST was run with 25%
sequence identity option (−S 25) over an area covering 90% of the length
(−L 0.9). We also removed the proteins equal or shorter than 50 residues,
and excluded unusual residues or those corresponding to chain breaks. The
first protein was selected from each cluster and placed in the reference data-
set. Therefore no two proteins have more than 25% sequence identity in the
dataset. The dataset clustered with the −L 0.9 option is a more stringent non-
redundant set than datasets constructed by normal pairwise sequence identity.
The sequence clustering with the option of −L 1.0 in BLASTCLUST is sim-
ilar to that based on normal pairwise matches. The resulting reference dataset
consists of 3644 non-redundant proteins with 854 876 feature vectors.

The RS126 set and the dataset with 229 proteins
The solvent accessibility was predicted for two sets of proteins in order to
evaluate the performance of our method. In the first test, the protein residues in
the RS126 dataset (Rost and Sander, 1994) were used as queries. The proteins
in the RS126 dataset have less than 25% pairwise sequence identity. This set
was used to evaluate different methods of solvent accessibility prediction,
for example, PHDacc (Rost and Sander, 1994) and other methods (Kim and
Park, 2004; Thompson and Goldstein, 1996; Yuan et al., 2002). For a rigorous
benchmark test, the chains of the reference dataset and the RS126 dataset were
split into domains according to the SCOP annotation, and the chains that have
any domain with >25% identity to those of the RS126 dataset were excluded
from the reference dataset. The resulting set consisted of 3460 proteins with
819 090 feature vectors, which was used as the reference dataset for the
benchmark test on the RS126 dataset.

The second set of query proteins was constructed from newly added pro-
teins, >50 residues, in the 90% identity chain set of the ASTRAL SCOP
(version 1.65). We removed from the test set the chains having domains with
>25% sequence identity to those of the reference dataset. We also removed
one of the chains for any pair in the dataset containing domains with >25%
sequence identity. The resulting set consisted of 229 protein chains that had
<25% sequence identity with the reference dataset and with each other.

Algorithm
The nearest neighbor algorithm is a simple classification algorithm; a query
data is classified according to the classification of the nearest neighbor from a
database of known classifications, i.e. a reference dataset. A natural general-
ization of the nearest neighbor algorithm is the so-called k-nearest neighbor
algorithm, where the k-nearest samples are selected and the query data is
assigned the class most frequently represented among them. A further exten-
sion is to weight the k-nearest samples with a certain power of the distance
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from the query data. Also, instead of assigning a definite class to the query
data, one can calculate the fuzzy membership (see below), which can be used
to estimate the confidence level of the prediction. The algorithm incorpor-
ating these generalizations is called the fuzzy k-nearest neighbor algorithm
(Keller et al., 1985).

Despite its simplicity, nearest neighbor methods can give competitive per-
formance compared to many other methods. The nearest neighbor methods
have been used to predict protein secondary structure (Salamov and Solovyev,
1995, 1997; Salzberg and Cost, 1992; Yi and Lander, 1993) and classify
biological and medical data (Kauffman and Jurs, 2001; Singh et al., 1996;
Vaidyanathan et al., 1997). Also it has been reported that performances of
classification were improved by using fuzzy k-nearest neighbor algorithms
(Bezdek et al., 1993; Cabello et al., 1991; Huang and Li, 2004; Leszczynski
et al., 1999; Seker et al., 2003; Sokolowska et al., 2003). However the
k-nearest neighbor method has never been used to predict protein solvent
accessibility.

In this work, we apply the fuzzy k-nearest neighbor method to the solvent
accessibility prediction. In the fuzzy k-nearest neighbor method, the fuzzy
class membership ui(x) to the class i is assigned to the query data x according
to the following equation:

ui(x) =
∑k

j=1 ui(x
(j))D

−2/(m−1)

j
∑k

j=1 D
−2/(m−1)

j

, i = 1, . . . , c,

where m is a fuzzy strength parameter, which determines how heavily the
distance is weighted when calculating each neighbor’s contribution to the
membership value, k is the number of nearest neighbors, and c is the num-
ber of classes. Also, Dj is the distance between the feature vector of the
query data x and the feature vector of its j th nearest reference data x(j),
and ui(x

(j)) is the membership value of x(j) to the ith class, which is 1 if
x(j) belongs to the ith class, and 0 otherwise. The advantage of the fuzzy
k-nearest neighbor algorithm over the standard k-nearest neighbor method
is quite clear. The fuzzy class membership ui(x) can be considered as the
estimate of the probability that the query data belongs to class i, and provides
us with more information than a definite prediction of the class for the query
data. Moreover, the reference samples which are closer to the query data are
given more weights, and an optimal value of m can be chosen along with
that for k, in contrast to the standard k-nearest neighbor method with a fixed
value of 2/(m − 1) = 0. In fact, the optimal value of k and m are found from
the leave-one-out cross-validation procedure (see Results section), and the
resulting value for 2/(m − 1) is indeed nonzero.

Performance measures
In this work, two measures are used to evaluate the performance of prediction
methods. One is the accuracy, the percentage of correctly classified residues,
and the other is the Matthew’s correlation coefficients (MCC). These measures
can be calculated by the following equations:

accuracy =
∑c

i pi

N
,

MCCi = pini − oiui√
(pi + oi)(pi + ui)(ni + oi)(ni + ui)

,

where N is the total number of residues, and c is the class number. Also, pi ,
ni , oi and ui are the number of true positives, true negatives, false positives
and false negatives for class i, respectively. The MCCs have the same value
for the two classes in the case of the 2-state prediction, i.e. MCCB = MCCE.

Implementation of fuzzy k-nearest neighbor algorithm
The program implementing the fuzzy k-nearest neighbor algorithm for protein
solvent accessibility prediction was written in ANSI C and run on a Linux
machine with the CPU of AMD Athlon MP2400. It occupies 69 MB of
disk space including the reference data. The prediction program has two
running modes: a normal mode and a fast mode. The normal mode generates
the feature vectors from the PSI-BLAST profiles of the reference dataset
whenever it calculates the distance between two feature vectors. It requires
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Fig. 1. The contour diagrams of prediction accuracies of leave-one-out cross-
validation on the reference dataset derived from ASTRAL SCOP. The contour
diagrams of the prediction accuracies of the fuzzy k-nearest neighbor method
are shown for (a) the 3-state (9%; 36% thresholds) and for (b) 2-state (0%
threshold) solvent accessibility prediction. The prediction accuracies were
calculated by leave-one-out cross-validation on the reference dataset derived
from ASTRAL SCOP. The optimal values of the fuzzy strength parameter m

and the number of nearest neighbors k are (1.33, 65) for the 3-state prediction
(9%; 36% thresholds) and (m, k) = (1.50, 40) for the 2-state prediction with
a 0% threshold.

the execution time of 8.1 s per query residue on average and 69 MB memory.
In the fast mode feature vectors are loaded in memory all at once in the
beginning. It takes 4.7 s to predict the solvent accessibility of a query residue.
The fast mode costs less computational time than the normal mode, but costs
more memory, which is 285 MB.

RESULTS AND DISCUSSION

Prediction accuracy of the fuzzy k-nearest neighbor
method of leave-one-out cross-validation
First, leave-one-out cross-validation on the ASTRAL SCOP dataset
of 3644 proteins (see Methods section) was performed, where we
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Table 1. The optimal values of the fuzzy parameter m, the number of nearest neighbors k and the corresponding prediction accuracies of leave-one-out
cross-validation on the reference dataset derived from ASTRAL SCOP

State threshold (%)
3-state (9%; 36%) 2-state (0%) 2-state (5%) 2-state (16%) 2-state (25%)

Fuzzy k-NN
m 1.33 1.5 1.25 1.29 1.33
k 65 40 75 65 65
Accuracy 64.1 86.7 82.0 79.0 78.5
MCC B:0.577, I:0.245, E:0.528 0.464a 0.564a 0.578a 0.570a

Standard k-NN (m = ∞)

k 35 15 20 20 30
Accuracy 61.2 85.8 80.2 77.3 76.9
MCC B:0.534, I:0.180, E:0.496 0.414a 0.521a 0.542a 0.537a

aFor the 2-state predictions, the MCC values are the same for the two classes, i.e. MCCB = MCCE.

Table 2. The prediction results on the RS126 dataseta

Accuracy (%)
3-state (9%; 36%) 2-state (0%) 2-state (5%) 2-state (16%) 2-state (25%)

Fuzzy k-NN 63.8 87.2 82.2 79.0 78.3
PHDacc 57.5 86.0 — 75.0 —
SVMpsi 59.6 86.2 79.8 77.8 76.8
Thompson and Goldstein 57.9 — — 75.0 —

aNN means nearest neighbors. PHDacc (Rost and Sander, 1994) used neural networks, SVMpsi (Kim and Park, 2004) was based on support vector machines, and Thompson and
Goldstein (1996) applied Bayesian statistics for the solvent accessibility prediction on the RS126 dataset. These accuracies are from their published results.

selected one of the 3644 chains and predicted its solvent accessib-
ility, using the remaining 3643 chains as the reference dataset. This
procedure was repeated for each of the chains in the dataset. Tests
have been done with various values of the fuzzy strength parameter
m and the number of nearest neighbors k, to obtain the optimal val-
ues of m and k. The contour diagrams of prediction accuracies as
functions of 2/(m − 1) and k are shown in Figure 1, for the 3-state
prediction (9%; 36% thresholds) and the 2-state prediction with 0%
threshold. The optimal values are (m, k) = (1.33, 65) for the 3-state
prediction (9%; 36% thresholds) and (m, k) = (1.50, 40), (1.25, 75),
(1.29, 65) and (1.33, 65) for the 2-state predictions (0, 5, 16 and 25%
thresholds), respectively. For these values of (m, k), the prediction
accuracies are 64.1% for the 3-state prediction and 86.7, 82.0, 79.0
and 78.5% for the 2-state prediction (0, 5, 16 and 25% thresholds),
respectively. Table 1 shows the optimal values of k and m and cor-
responding prediction accuracies for the fuzzy k-nearest neighbor
method. These optimal values of k and m are used for all the bench-
mark tests in the following. For comparison, the results from the
standard k-nearest neighbor method, corresponding to the m = ∞,
are also shown in Table 1. The results indicate that performance can
be improved by allowing a finite value of m.

Prediction accuracies of the benchmark tests on the
RS126 dataset and the dataset with 229 proteins
The first benchmark test on the RS126 dataset was performed with the
optimal values of m and k determined by the leave-one-out cross-
validation on the reference dataset derived from ASTRAL SCOP

(see Methods section). The fuzzy k-nearest neighbor method shows
63.8% accuracy for the 3-state prediction (9%; 36% thresholds)
and 87.2, 82.2, 79.0 and 78.3% for the 2-state prediction with
thresholds of 0, 5, 16 and 25% on the RS126 dataset, respectively.
The fuzzy k-nearest neighbor method shows slightly better predic-
tion accuracies than other methods on the RS126 dataset as shown
in Table 2. PHDacc used a neural network method using evolu-
tionary profiles of amino acid substitutions derived from multiple
sequence alignments, and reported 57.5% for the 3-state prediction
(9%; 36% thresholds), and 86.0 and 75.0% for the 2-state predictions
(thresholds of 0 and 16%), respectively. SVMpsi (Kim and Park,
2004) was based on a support vector machine using the position-
specific scoring matrix generated from PSI-BLAST, and reported
59.6% accuracy for the 3-state prediction (9%; 36% thresholds)
and 86.2, 79.8, 77.8 and 76.8% accuracies for the 2-state predic-
tions (thresholds of 0, 5, 16 and 25%), respectively. Thompson and
Goldstein (1996) applied Bayesian statistics and optimized residue
substitution classes, and reported 57.9% accuracy for the 3-state
prediction (9%; 36% thresholds) and 75.0% accuracy for the 2-
state prediction (threshold of 16%). These prediction accuracies are
obtained from their published results.

For the second benchmark tests on the dataset with 229 pro-
teins, we have used the PredictProtein Server (Rost et al.,
2004), which provides PHDacc and PROFacc predictions, and
Jpred server (Cuff and Barton, 2000; Cuff et al., 1998) to com-
pare the prediction performance directly. The predictions with
PredictProtein Sever (http://cubic.bioc.columbia.edu/pp/index.html)
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Table 3. The prediction results on the benchmarking dataset with 229 proteinsa

State threshold
3-state (9%; 36%) 2-state (0%) 2-state (5%) 2-state (16%) 2-state (25%)

Fuzzy k-NN
Accuracy (%) 62.6 85.5 80.8 78.1 77.8
MCC B:0.560, I:0.199, E:0.508 0.431 0.541 0.560 0.554

PHDacc
Accuracy (%) 57.1 — — — —
MCC B:0.489, I:0.127, E:0.419 — — — —

PROFacc
Accuracy (%) 62.0 — — — —
MCC B:0.551, I:0.200, E:0.508 — — — —

Jpred
Accuracy (%) — 84.8 80.7 — 76.6
MCC — 0.388 0.535 — 0.525

aPHDacc and PROFacc results were obtained from PredictProtein Server (http://cubic.bioc.columbia.edu/pp/index.html), and Jpred results were obtained from Jpred sever
(http://www.compbio.dundee.ac.uk/∼www-jpred/). The predictions with PredictProtein Sever and Jnet were performed with default options.

and Jpred (http://www.compbio.dundee.ac.uk/∼www-jpred/) were
performed with default options. It should be noted that any query
protein has <25% sequence identity with those in the reference
dataset in our method, whereas no such restriction was placed on
the sequence similarity between the query protein and training set in
other methods. Therefore, our method has no advantage over other
methods in this respect. However, it should also be admitted that the
other methods were trained on a much smaller dataset, and database
growth can give an indirect advantage to newer methods (Przybylski
and Rost, 2002) like ours.

The prediction accuracies of our method are slightly better
than other methods on the benchmarking dataset with 229 pro-
teins, as shown in Table 3. For the 3-state prediction (9%; 36%
thresholds), PHDacc and PROFacc give 57.1 and 62.0% accuracies,
and our method gives a 62.6% accuracy. For the 2-state predictions
(thresholds of 0, 5 and 25%), Jpred shows 84.8, 80.7 and 76.6% pre-
diction accuracies, and our method shows slightly better prediction
accuracies of 85.5, 80.8 and 77.8%, respectively. Our result is better
also in terms of MCCs as shown in Table 3.

CONCLUSION
In this work, we applied the fuzzy k-nearest neighbor method to
solvent accessibility prediction, using PSI-BLAST profiles as feature
vectors. We achieved better prediction accuracies than other methods
such as neural network methods and support vector machines.
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