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Conformational Space Annealing and a Lattice Model Protein
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The conformational space annealing (CSA) method is a powerful global optimization method for
sampling low-lying local minimum energy conformations of a physical system. In this work, I apply
CSA to the study of a two-dimensional HP lattice model of a protein, where a conformation is
defined as a self-avoiding chain on a lattice. I study the 36-residue chain with a particular sequence
HPH2P2H2P3H2PHP3H2P2H2P4HPH2PHP2 presented by Li et al., for which by exhaustive
enumeration of compact conformations, only one such conformation with the lowest energy was
shown to exist. The CSA algorithm finds conformations with energies lower than those found by
Li et al. for 100 independent runs, demonstrating that the global minimum energy conformation is
not necessarily the most compact structure.
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I. INTRODUCTION

Finding the global minimum (GM) of a given function,
called global optimization, is an important problem in
various fields of science and engineering. One of the sim-
plest algorithms for global optimization is the simulated
annealing (SA) method [1], which has been applied to
many systems. Although the SA is very versatile in that
it can be applied to many problems, the drawback is that
its efficiency is usually much lower than problem specific
algorithms. This is especially problematic for NP-hard
problems such as protein folding or molecular cluster op-
timizations. For this reason, it is important to find an
algorithm which is as general as SA, and yet competitive
with problem-specific ones.

Recently, a powerful global optimization method
called conformational space annealing (CSA) was pro-
posed and applied extensively and exclusively to vari-
ous models of proteins [2–12] and a Lennard-Jone cluster
[13]. The benchmark tests [2–4,10,11,13] demonstrated
that it could not only find the known GM conformations
with less computations than existing algorithms, but also
provided new GMs in some cases [3,4].

It should be noted that although the CSA method has
been applied, so far, only to off-lattice systems, it can be
readily applied to lattice models [14,15]. In fact, if the
CSA is to be applied to an optimization problem, usually
only two things are necessary; a method for perturbing a
seed configuration, and a distance measure between two
configurations (See Sec. II). Additionally, since the local
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minimization is a crucial component of the CSA method,
one has to make a suitable approximate definition of local
minimization for the case of lattice models, in contrast
to off-lattice systems where the local minimization is well
defined.

In this work, I apply the CSA method for the global
optimization of a lattice model, the HP model of pro-
teins [16–27]. The HP model is a simplified model of
proteins in which amino acids are modelled as a point
with hydrophobic inter-residue energy only, and a pro-
tein conformation is defined as a self-avoiding chain on
a lattice [28–32]. In particular, in Refs. 20 and 25, the
authors studied all possible sequences of 27-residue pro-
tein on a three-dimensional lattice and 36-residue pro-
tein on a two-dimensional lattice. By exhaustively enu-
merating all compact conformations filling a cube of size
3 × 3 × 3 and a square of 6 × 6, whose total num-
bers amount to 51704 and 28728 respectively, the se-
quences with unique ground states were shown to com-
prise only a small fraction of the set of possible sequences.
In particular, for two-dimensions, the 36-residue se-
quence HPH2P2H2P3H2PHP3H2P2H2P4HPH2PHP2

was presented as an example of such a sequence, along
with the corresponding global minimum energy confor-
mation among compact structures. I sample conforma-
tions of this sequence with the CSA and find conforma-
tions with energies lower than the compact conforma-
tion presented in Ref. 20. The result shows that the
ground-state structure is not necessarily the most com-
pact structure and that it can be missed even by an ex-
haustive enumeration if that enumeration is restricted
only to compact conformations.
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II. METHODS

In the original HP model, the conformations of a
polymer chain with N monomers are modelled as two-
dimensional self-avoiding chains of length N on a square
lattice. The bond length is unity, so the position of
monomer i is given by ri = (k, l), where integers k and l
are the Cartesian coordinates relative to an arbitrary ori-
gin. Chain connectivity requires |ri−ri+1| = 1. Because
of the excluded volume, there can be no more than one
monomer on each lattice site, ri 6= rj for i 6= j. Beads
on the chain are of two types, H and P standing for Hy-
drophobic and Polar. The potential energy is defined
as

U =
∑
i<j

Eσiσj∆(ri − rj)

= EHHnHH + EPPnPP + EHPnHP , (1)

where σi is the amino acid type of the i-th residue. Also,
∆(ri − rj) = 1 if ri and rj are adjoining sites but
i 6= j ± 1, and ∆(ri − rj) = 0 otherwise. In the sec-
ond expression, nαβ is the number of contacts between
residues of types α and β.

Since the numerical values EHH = − 2.3, EHP =
− 1, and EPP = 0 were used for the calculations in
Refs. 20 and 25, I use the same relative scale for ease
of comparison, but scale by overall factor of 10 to make
them integer for the convenience of calculation. In this
unit, the lowest energy compact conformation found by
Li et al. [20] has energy

E0
compact = −320, (2)

with nHH = 10, nHP = 9, and nPP = 6. If we al-
low only self-avoiding chains throughout the algorithm,
it is extremely difficult to generate conformations be-
cause most of the conformations will be rejected due to
overlapping residues. Therefore, in this work, I allow
overlap of residues, but with an energy penalty. This
additional term is of the form

Urepulsion = Erepulsion
∑
i<j

∆′(ri − rj), (3)

where ∆′(ri−rj) = 1 only if ri−rj = 0 and ∆′(ri−rj) =
0 otherwise. With a sufficiently large positive value of
Erepulsion, conformations with overlapping residues get
quickly eliminated during the energy minimization due
to their relatively high energies, and the resulting con-
formations are the local minimum energy conformations
of the original potential energy in Eq. (1). In this work,
I use Erepulsion = 1000 and find that this value is good
enough for my purpose.

To elaborate on the details of the CSA method, we first
randomly generate a certain number of initial conforma-
tions (50 in this work) whose energies are subsequently
minimized. We call the set of these conformations the
bank. We make a copy of the bank and call it the first

bank. The conformations in the bank are updated in
later stages whereas those in the first bank are kept un-
changed. Also, the number of conformations in the bank
is kept unchanged when the bank is updated. The di-
versity of the bank conformations is controlled by a pa-
rameter Dcut (see below), and its initial value is set as
Dave/2, where Dave is the average distance between the
conformations in the first bank. New conformations are
generated by choosing a certain number (30 in this work)
of seed conformations from the bank and by replacing
parts of the seeds with the corresponding parts of con-
formations randomly chosen from either the first bank
or the bank. A residue of a seed conformation is ran-
domly selected, and a continuous segment starting from
this residue is replaced, where the segment length is also
randomly determined between 1 and 0.4Nseq. In this
work, 10 conformations are generated for each seed by
using partial replacements. Then, the energies of these
conformations are subsequently minimized (trial confor-
mations).

A newly obtained local minimum conformation α is
compared with those in the bank to decide how the bank
should be updated, unless the energy of the conforma-
tion α is higher than those of the bank conformations.
The definition of the distance measure between confor-
mations is crucial for this procedure, and in this work,
the distance measure D(A,B) between two conforma-
tions A and B is defined as

D(A,B) =
2
π

Nseq−1∑
i=1

|θi(A)− θi(B)|, (4)

where θi(A) is the angle between the i-th and the i + 1-th
residues for the conformation A.

One first finds the conformation A in the bank that
is closest to α with the distance D(α,A). If D(α,A) <
Dcut, α is considered to be similar to A. In this case, the
conformation with lower energy among α and A is kept
in the bank, and the other one is discarded. However, if
D(α,A) > Dcut, α is regarded as distinct from all confor-
mations in the bank. In this case, the conformation with
the highest energy among the bank conformations is dis-
carded, and the rest are kept in the bank. We perform
this operation for all trial conformations.

For efficient sampling of the conformational space, the
diversity of sampling must be maintained in the early
stages; then, the emphasis is gradually shifted toward
obtaining low energy conformations by slowly reducing
Dcut. In practice, Dcut is reduced by a fixed ratio after
the bank update has been attempted by all the newly
generated trial conformations in such a way that Dcut

reaches Dave/5 after 10000 local minimizations. Then,
seeds which have not been used as seeds yet are selected
again from the bank conformations, to repeat the afore-
mentioned procedure. The value of Dcut is kept constant
after it reaches the final value.

It should be noted that in the early stages of the CSA,
the seed conformations are continuously being replaced



-1452- Journal of the Korean Physical Society, Vol. 45, No. 6, December 2004

Fig. 1. Local moves used for the definition of local mini-
mization consist of (a) three bead flips, (b) crankshaft move-
ments, (c) rigid rotations, and (d) rigid reflections.

by low-energy local minima close to it. Therefore, when
all of the bank conformations are used as seeds (one it-
eration completed), the procedure of updating the bank
might have reached a deadlock. However, we give these
conformations another chance by resetting them to be
eligible for seeds, and repeat another iteration of search.
After a preset number of iterations, we conclude that
our procedure has reached a deadlock. When this hap-
pens, we enlarge the search space by adding more ran-
dom conformations into the bank and repeat the whole
procedure until the stopping criterion is met. In this
work, after 3 iterations are completed, we increase the
number of bank conformations by adding 50 randomly
generated and minimized conformations into the bank
(and also into the first bank), and reset Dcut to Dave/2.
In the exhaustive searches I performed (See Sec.III), the
algorithm was stopped when the number of bank confor-
mations exceeded 1000.

It should be noted that although the local minimiza-
tion is a crucial component of the CSA algorithm, the
concept of the local minimum for the lattice model is not
so straightforward as in the case of off-lattice systems. In
contrast to the off-lattice model where the coordinates of
the system are continuous and a local minimum confor-
mation is defined as the one with vanishing gradient,
care must be taken in order to suitably redefine the local
minimum in the case of the lattice model. A natural def-
inition of a local minimum conformation would be one
whose energy does not get lowered by local moves only,
so one must first define local moves. In this work, I use
four types of local moves, three-bead flip, crank-shaft
movement, partial rigid rotation, and partial reflection
(Fig. 1). The first three movements were used by Chan
and Dill [19] for the Monte-Carlo simulation of the HP
model whereas the reflection is newly added in this work.
The local minimization was performed by randomly se-
lecting a residue and moving the residue with a method
randomly selected from among the four methods with
preset probabilities. The residues at both ends were spe-
cially treated, and they were given more chance for rigid
rotation, which is also the method adopted by Chan and
Dill [19]. A new conformation is accepted if its energy is
lower than the original one, rejected if it has higher en-

Table 1. Summary of the 100 independent CSA searches.
The lowest energy among each final 1000 bank conformations
was either – 330, – 333, or – 336. NR denotes the number of
corresponding runs, NC is the maximum number of distinct
conformations one could obtain for the corresponding energy
in the final bank, NF is the average number of local move-
ments until the final minimum energy conformations were
obtained, and the total degeneracy is the total number of
distinct conformations with the given energy obtained from
all 100 independent runs.

Minimum Energy NR NC NF total degeneracy

– 330 3 14 40467461.5 17

– 333 51 8 37802800.0 21

– 336 46 4 45273000.0 10

ergy, and accepted with probability of 1/2 if its energy
is the same as that of the original conformation. We re-
peat the local movements for 5Nseq times, regardless of
success of failure to update, but repeat another 5Nseq lo-
cal moves if the final energy value is positive, and so on,
where Nseq is the chain length. The local minimization
procedures stops unconditionally if the total number of
attempted local moves exceeds 5N2

seq, although this case
never happened in my computation. I find that a rigid
rotation is most efficient for local minimization, so I used
a probability of 0.7 for this move and 0.1 for all the oth-
ers, which is an optimal value obtained from a trial run
on shorter sequences.

III. RESULTS

Using a single Intel Xeon CPU (2.4GHz), I
performed several test runs for the sequence
HPH2P2H2P3H2PHP3H2P2H2P4HPH2PHP2, and
found that conformations with energies E < E0

compact =
− 320 are located within two seconds of wall-clock time,
within a few iterations with 50 bank conformations.
I then performed exhaustive systematic runs for this
sequence to look for the lowest energy conformation
obtainable by the CSA. I performed 100 independent
CSA runs with different values of the initial seed for the
random number generator. Each run was terminated
when the number of bank conformations reached 1000,
and the search had reached a deadlock three times. It
should be noted that typical CSA runs were terminated
with bank conformations of 50 or 100 [13], so this is a
very exhaustive search, indeed. However, all 100 runs
took only 7 hours and 5 minutes, implying an average
wall-clock time of only 4 minutes and 25 seconds for
each run. The lowest energies found from the final bank
conformations are E = −3 30 for 3 runs, E = − 333
for 51 runs, and E = − 336 for the remaining 46 runs.
The total number of distinct conformations for each of
these energies, from all 100 runs, are 17, 21, and 10,
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Fig. 2. Examples of conformations with E = − 336
(nHH = 12, nHP = 6), for the sequence under study. The
black and the white beads denote residues of type H and P,
respectively.

respectively. These results are summarized in Table 1,
along with the average number of local moves until all
the lowest energy conformations in the final bank were
obtained. The number of local moves is the analogue of
the number of function calls in the off-lattice case, and
I denoted it by NF in the table.

Although 10 distinct conformations with E = − 336
are obtained, with nHH = 12 and nHP = 6, many of
them are related to each other by local movements of
several residues. Some of the distinct lowest energy con-
formations for E = − 336 are displayed in Fig. 2. As
we can see from the figure, the conformations have a
more “protein-like” natural look compared to the con-
formation obtained by Li et al. [20], where the chain
was artificially packed into a 6× 6 square.

IV. CONCLUSION

In this work, I applied the CSA method for sampling
the low-energy conformations of the 36-residue HP pro-
tein with sequence HPH2P2H2P3H2PHP3H2P2H2P4

HPH2PHP2. I could quickly obtain various conforma-
tions with energies lower than the one obtained by ex-
act enumeration of compact conformations filling a 6× 6
square, demonstrating that the CSA method is an effi-
cient method for sampling low-energy conformations of
a physical system. Although the CSA method can be
easily adapted for parallel computation, the local mini-
mization was performed very rapidly for the lattice sys-
tem under study, and parallel implementation was not
necessary for a chain length of 36.

The result of this work suggests that the conforma-
tion with the lowest energy is not necessarily the maxi-
mally compact conformation. Of course, one cannot be
absolutely sure that the lowest energy conformations ob-
tained in this work are truly the global minimum energy

conformations of the sequence under study. In princi-
ple, the true global minimum energy and the correspond-
ing conformations can be checked by exact enumeration
of all possible conformations, which require tremendous
amount of computer power and would be possible only
by massively parallel computations. Such an endeavor is
left for a future work.
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