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We apply the conformational space annealing method to the Lennard-Jones clusters and find all
known lowest energy configurations up to 201 atoms, without using extra information of the problem
such as the structures of the known global energy minima. In addition, the robustness of the algorithm
with respect to the randomness of initial conditions of the problem is demonstrated by ten successful
independent runs up to 183 atoms. Our results indicate that this method is a general and yet efficient
global optimization algorithm applicable to many systems.
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role of the temperature in SA. The diversity of sampling is
directly controlled in CSA by introducing a distance

N � 309. Although these approaches are powerful, they
fail when the GM configuration is of an unexpected
Finding the global minimum (GM) of a given function,
called the global optimization, is an important problem
in various fields of science and engineering. One of the
simplest algorithms for global optimization is the simu-
lated annealing (SA) method [1], which has been applied
to many systems. Although SA is very versatile in that it
can be applied to many problems, the drawback is that
its efficiency is usually much lower than problem specific
algorithms. This is especially problematic for nondeter-
ministic polynomial-time hard (NP-hard) problems such
as protein folding or molecular cluster optimizations. For
this reason, it is important to find an algorithm which is
as general as SA, and yet competitive with problem
specific ones.

Recently, a powerful global optimization method
called conformational space annealing (CSA) was pro-
posed [2], and applied extensively and exclusively to the
protein folding problem [3–9]. The benchmark tests
[2–4] have demonstrated that it can not only find the
known GM conformations with less computations than
existing algorithms, but it also provides new GMs in some
cases [3,4].

The CSA unifies the essential ingredients of three
global optimization methods, Monte Carlo with minimi-
zation (MCM) [10], genetic algorithm (GA) [11], and SA.
First, as in MCM, we consider only the phase space of
local minima; i.e., all configurations are energy mini-
mized by a local minimizer. Second, as in GA, we con-
sider many configurations (called bank in CSA)
collectively, and we perturb a subset of bank configura-
tions (seeds) using other bank configurations. This pro-
cedure is similar to mating in GA. However, in contrast to
the typical mating procedure in GA, we often replace
small portions of a seed with the corresponding parts of
bank configurations in order to search the neighborhood
of the seed configuration, as is elaborated later. Finally, as
in SA, we introduce a parameter Dcut, which plays the
0031-9007=03=91(8)=080201(4)$20.00 
measure between two configurations and comparing it
with Dcut, whereas in SA there are no such systematic
controls. The value of Dcut is slowly reduced just as in SA,
hence the name conformational space annealing. Main-
taining the diversity of the population using a distance
measure was also tried in the context of GA [12], al-
though no annealing was performed.

It should be noted that although the CSA method has
been applied, so far, only to the polypeptide systems, the
structure of the algorithm is not specific to these systems.
In fact, to apply the CSA to an optimization problem,
only two things are necessary: a method for perturbing a
seed configuration, and a distance measure between two
configurations. This suggests that the CSA is a candidate
for a versatile and yet powerful global optimization
method. In this Letter, we demonstrate it by applying
the CSA to Lennard-Jones (LJ) clusters.

The LJ cluster is a system consisting of identical atoms
interacting by a pairwise LJ potential:
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where N is the number of atoms and rij is the distance
between atoms i and j. We use the reduced unit where
� � � � 1. It is not only interesting as a model for heavy
inert gases but also serves as a popular benchmark system
for optimization algorithms. In fact, despite the simple
form of the interaction, finding the GM configuration has
been a challenging problem even for small N [12–37].

Many of the powerful global optimization algorithms
applied to this system are specific to the LJ cluster. In
particular, they use the information on the structure of
the known GMs of LJ clusters, favoring closely packed
ones. For example, many GMs for N � 147 were discov-
ered for the first time in Ref. [13] by using icosahedrally
derived lattices. A similar strategy [34] was utilized for
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FIG. 1. Schematic figure showing the search procedure of
CSA. The boxes represent the identical phase space. (a) Ini-
tially, we cover the phase space by large spheres centered on
randomly chosen local minima denoted by 
 and replace the
centers with lower-energy local minima. When A is replaced by
�, the sphere moves in the direction of the arrow. (b) As the
algorithm proceeds and the energies of the representative con-
figurations at the centers of the spheres are lowered, the size of
the spheres is reduced and the search space is narrowed down to
small basins of low-lying local minima.
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structure. Also, since they are designed specifically for
the LJ cluster problem, it is not clear if they can be
applied to other systems.

Recently there were a number of successful applica-
tions of unbiased search methods to LJ clusters. One of
the most powerful methods in this category is the basin-
hopping method [28,31]. Almost all GMs known at
present [38] were reproduced for N � 110, and those for
N � 69; 78; 107 were updated. This is an impressive result
indeed. However, there are certain magic numbers (N �
76; 77; 103; 104) where the GMs could not be found by
directly optimizing the system consisting of N atoms.
They could be found only by adding and subtracting an
atom from the GM configurations of cluster size N 	 1. In
Ref. [35], a variant of the basin-hopping method was
applied for N � 110, which performed better than the
original version, but the known lowest energy minima for
N � 75–77 could be found only 4; 2; 8 times out of
1000 independent runs. Similarly, the unbiased search
in Ref. [32] could not reproduce the GMs for N �
75–77; 98. In Ref. [12], all GMs for N � 150 were repro-
duced with a unbiased search method. The same method
was also applied for larger cluster sizes, and some of the
known lowest energy minima for N � 309 were found
[37,38]. A global optimization method which combines
the idea of basin hopping and the genetic algorithm was
applied for the cluster size N � 309 but failed to repro-
duce the known minima [38] for N � 185; 187.

In this work, we apply the CSA to the LJ cluster
problem. We find all known GM configurations for N �
201 [38]. In particular, for each LJ cluster for N � 183,
we generate ten independent random configurations and
succeed in finding the GMs for all cases without an
exception. This is an exhaustive test unprecedented in
the literature and shows that our algorithm is quite robust
with respect to the change of initial conditions.

To elaborate on the details of the CSA method, we first
randomly generate a certain number of initial configura-
tions (50 in this work) whose energy is subsequently
minimized. We call the set of these configurations the
first bank. We make a copy of the first bank and call it the
bank. The configurations in the bank are updated in later
stages, whereas those in the first bank are kept unchanged.
Also, the number of configurations in the bank is kept
unchanged when the bank is updated. The initial value of
Dcut is set as Dave=2, where Dave is the average distance
between the configurations in the first bank. New configu-
rations are generated by choosing a certain number (20
in this work) of seed configurations from the bank and
by replacing parts of the seeds by the corresponding parts
of configurations randomly chosen from either the first
bank or the bank. Random perturbations are also per-
formed. In this work 20 and 10 configurations are gen-
erated for each seed using the partial replacements and
random perturbations, respectively. Then the energies of
these configurations are subsequently minimized (trial
configurations).
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A newly obtained local minimum configuration � is
compared with those in the bank to decide how the bank
should be updated. One first finds the configuration A in
the bank which is closest to � with the distance D��; A�.
If D��; A�<Dcut, � is considered as similar to A. In this
case, the configuration with lower energy among � and A
is kept in the bank, and the other one is discarded. How-
ever, if D��; A� > Dcut, � is regarded as distinct from all
configurations in the bank. In this case, the configuration
with the highest energy among the bank configurations
plus � is discarded, and the rest are kept in the bank. We
perform this operation for all trial configurations.

This process of generating new conformations by per-
turbation and subsequent local minimizations, and updat-
ing the bank, can be visualized as follows (Fig. 1). Each of
the bank configurations can be considered to represent all
local minima contained in the sphere with radius Dcut

centered on it. To improve a bank configuration A, we first
select A as a seed. We perturb A and subsequently energy
minimize it to generate a trial configuration �. When �
originates from A by small perturbation, it is likely that �
is contained in a sphere centered on A. If � replaces A, the
center of the sphere moves from A to �. If � belongs to a
different sphere centered on B, � can replace B in a
similar manner. When � is outside of all existing spheres,
a new sphere centered on � is generated. In this case, to
keep the number of spheres fixed, we remove the sphere
represented by the highest-energy configuration. Obvi-
ously, the former two cases are more likely to happen
when the spheres are large, and the latter when spheres
are small. A larger value of Dcut produces more diverse
sampling, whereas a smaller value results in quicker
search of low-energy configurations at the expense of
getting trapped in a basin probably far away from the GM.

Therefore, for efficient sampling of the phase space, it
is necessary to maintain the diversity of sampling in the
080201-2
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early stages and then gradually shift the emphasis toward
obtaining low-energy configurations, by slowly reducing
Dcut. In practice, the Dcut is reduced by a fixed ratio after
the bank update has been attempted by all the newly
generated trial configurations, in such a way that Dcut

reaches Dave=5 after 10 000 local minimizations. Then
seeds are selected again from the bank configurations
which have not been used as seeds yet, to repeat the
aforementioned procedure. The value of Dcut is kept con-
stant after it reaches the final value.

When the energy of a seed configuration does not
improve after a fixed number of perturbations, we stop
perturbing it. To validate this judgment, it is important
that typical perturbations are kept small, so that the
perturbed configurations are close to their original seeds.
However, large perturbations are also performed, in order
to efficiently sample various regions of the search space.

It should be noted that in the early stages of CSA the
seed configurations are continuously being replaced by
low-energy local minima close to it. Therefore, when all
of the bank configurations are used as seeds (one iteration
completed), usually after tens of thousands of local mini-
mizations, this implies that the procedure of updating the
bank might have reached a deadlock. However, we give
these configurations another chance by resetting them to
be eligible for seeds and repeat another iteration of search.
After a preset number of iterations, we conclude that our
procedure has reached a deadlock. When this happens, we
enlarge the search space by adding more random configu-
rations into the bank and repeat the whole procedure until
the stopping criterion is met. In this work, after three
iterations are completed, we increase the number of bank
configurations by adding 50 randomly generated and
minimized configurations into the bank (and also into
the first bank) and reset Dcut to Dave=2. The algorithm
stops when the known GM [38] is found, which is exam-
ined after all the new trial configurations are used for
possible bank updates.

It should be noted that since one iteration is completed
only after all bank configurations have been used as
seeds, and we add random configurations whenever our
search has reached a deadlock, there is no loss of general-
ity for using particular values for the number of seeds, the
number of bank configurations, etc.

We define the distance measure D�k; k0� as follows.
Given a configuration k, we define the first and second
shells centered on each atom as the spheres of radii 1.35
and 1.70. These values of the radii are obtained from the
radial distribution function, which is approximately esti-
mated from randomly generated local minimum configu-
rations with N � 201, and do not depend much on N. We
then obtain the histogram Hk�1; n� [Hk�2; n�] which is the
number of atoms having n atoms in the first [second] shell.
The first and second coordination numbers contain the
geometrical information of the local environment of each
atom. Therefore, the histograms provide collective infor-
mation of such local structures in a cluster. We put larger
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weight for the first coordination number than the second
one since the former is more important than the latter. In
addition, larger weights are assigned to the histograms
with larger n, since they correspond to the core part of a
cluster. This motivates us to define D�k; k0� as

D�k; k0� �
X
n

n�2jHk�1; n� �Hk0 �1; n�j � jHk�2; n�

�Hk0 �2; n�j�: (2)

It should be noted that the details of the definition of
D�k; k0� do not affect the overall performance.

The method of perturbing a seed configuration s to
generate a new configuration is as follows [25]. We first
generate random planes passing through the center of
mass of the seed s and another bank configuration k. We
then choose from s a certain fraction (25%–50%) of
atoms which are farthest from the plane and replace
them by the corresponding counterpart in k. We also
make a random rotation perpendicular to the face of the
cut surface when we put together the two parts. The main
difference from the method used in Ref. [25] is that we are
making a fractional replacement of a seed, for the reason
discussed earlier. In addition, we also generate new con-
figurations by choosing an atom in s with the lowest
coordination number and move it to the neighborhood
of an atom with the second lowest coordination number.

We could reproduce all published GM configurations
[38] for N � 201. To measure the overall efficiency of our
algorithm, we performed exhaustive systematic runs. We
performed ten independent CSA runs for each cluster size
N � 183 and found all known GMs for all ten cases,
without an exception, which demonstrates the robustness
of the algorithm with respect to the randomness of the
initial conditions. The same test was performed for 184 �
N � 201, but for N � 184; 188–192; 198; 199 the optimi-
zation was only partially successful (four through nine
out of ten). The average values and fluctuations of CPU
times for these runs are shown in Fig. 2. The computa-
tions were carried out on Athlon processors (1.667 GHz),
and the limited-memory quasi-Newton method [39] was
used for local minimization. The minimization stopped
whenever jGj=

�������
3N

p
� 0:001, where G is the gradient. A

similar plot was presented in Ref. [12] for N � 150,
where the identical local minimizer was used. These
results are also included in Fig. 2 for comparison, after
the rescaling of the CPU clocks. The result suggests that
our algorithm is faster on average for the sizes where the
data are available, although a rigorous conclusion is
difficult to be drawn due to the possible technical differ-
ences such as the stopping criteria of the local minimizer,
and the fact that our result is the average of ten indepen-
dent runs.

The CSA method is now also being applied to quite
different kinds of problems such as the traveling salesman
problems, spin glasses, not to mention complex molecular
clusters. For example, the shortest path of ATT532 [40]
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FIG. 2. CPU time (sec) of ten separate runs for cluster size
N � 201. The square boxes denote the average values and the
error bars indicate the ranges of the values. The partially
successful runs (N � 184; 188–192; 198; 199) are excluded
(see text). The circles denote the result for N � 150 reported
in Ref. [12] after rescaling of the CPU clocks.
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was found for all 100 independent runs, whose results will
be reported elsewhere. This suggests that the CSA method
is a general and yet efficient global optimization algo-
rithm applicable to many systems. As is the case for GA,
the CSA can also be easily adapted for efficient parallel
computation [4,9].
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