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Abstract. Fuzzy k-nearest neighbor method is a generalization of near-
est neighbor method, the simplest algorithm for pattern classification.
One of the important areas for application of the pattern classification is
the protein secondary structure prediction, an important topic in the field
of bioinformatics. In this work, we develop a parallel algorithm for pro-
tein secondary structure prediction, based on the fuzzy k-nearest neigh-
bor method, that uses evolutionary profile obtained from PSI-BLAST
(Position Specific Iterative Basic Local Sequence Alignment Tool) as the
feature vectors.

1 Introduction

Although the prediction of the three-dimensional structure of a protein from its
amino acid sequence is one of the most important problems in bioinformatics
[1,2,3,4], ab initio prediction of the tertiary structures based solely on sequence
information has not been successful so far. For this reason, lots of research ef-
forts have been made for the determination of the protein secondary structure
[5,6,7,8,9,10,11,12,13,14,15,16], which can serve as an intermediate step toward
determining its tertiary structure.

The most common definition of the secondary structure is based on Dictionary
of Secondary Structure of Proteins (DSSP) [17] where the secondary structure is
classified as eight states. By grouping these eights states into three classes Coil
(C), Helix (H), and Extended (E), one obtains three state classification, which
is more widely used. Therefore, the protein secondary structure prediction is a
typical pattern classification problem, where one of the three possible states is
assigned to each residue of the query protein.
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The first step for solving such a problem is the feature extraction, where the
important features of the data are extracted and expressed as a set of numbers,
called feature vectors. The performance of the pattern classifier depends crucially
on the judicious choice of the feature vectors. It has been shown that constructing
feature vectors from the evolutionary profile obtained from PSI-BLAST (Position
Specific Iterative Basic Local Alignment Search Tool) [18], a bioinformatics tool
for the search of homologous protein sequences, gives better prediction results
than other choices [6,16] (see Sect. 2.1).

Once an appropriate feature vector has been chosen, a classification algo-
rithm is used to partition the feature space into disjoint regions with decision
boundaries. The decision boundaries are determined using feature vectors of a
reference sample with known classes, which are also called the reference dataset
or training set. The class of a query data is then assigned depending on the region
it belongs to. Various pattern classification algorithms such as artificial neural
network or support vector machine have been used for the protein secondary
structure prediction.

The k-nearest neighbor method is the simplest algorithm for the pattern clas-
sification. Moreover, it can be easily adapted for parallel computation. Although
the k-nearest neighbor method has been used for the secondary structure pre-
diction [11,12,14,15], the fuzzy variant of the algorithm [19] has never been used
for the secondary structure prediction, although it has been used for the solvent
accessibility prediction [20].

In this work, we develop a parallel algorithm for the protein secondary struc-
ture prediction, based on the fuzzy k-nearest neighbor method [19], where PSI-
BLAST profiles are used as the feature vectors. As a test of our algorithm, we
perform a benchmark test on EVA common set 1 consisting of 60 proteins [22].

2 Methods

2.1 The Feature Vectors

In order to construct the feature vector for a protein residue, we first perform
database search with PSI-BLAST [18]. PSI-BLAST then calculates the rate of
substitution of each residue of the query protein to another amino acids. By
multiplying appropriate normalization factors, taking logarithms, and rounding
off to integer values, these numbers are converted to what is called the position
specific scoring matrix, also called profile, a matrix of the size (protein length)×
20. This PSI-BLAST profile contains evolutionary information that cannot be
obtained from the raw sequence only. For a protein residue whose secondary
structure is to be predicted, one takes a window of size Nw centered around this
residue, and uses the matrix of size Nw × 20 as the feature vector to be input
into the pattern classification algorithm (see Fig. 1). We use Nw = 15 in this
work. The resulting feature vector is a 15 × 20 = 300 dimensional matrix. This
feature vector is the same as the one used in previous works [6,16] based on other
pattern classification methods.
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Fig. 1. The relation between PSI-BLAST profile and the feature vector of a residue.
The feature vector corresponding to a target residue is constructed from the PSI-
BLAST profile by considering a window of finite size (15 residues in this work) centered
on the residue.

2.2 The Distance Measure

There are various ways of defining the distance between two feature vectors A
and B, but in this work we use three methods, Euclidean, Cosine, and Correlation
distances, defined as

DAB(Euc) =
Nw∑

i=1

wi

∑

j

(Pij(A) − Pij(B))2, (1)

DAB(Cos) = 1 −
Nw∑

i=1

wi

∑
j Pij(A) · Pij(B)

√∑
p Pip(A)2

∑
q Piq(B)2

, (2)

DAB(Corr) = 1 −
Nw∑

i=1

wi

∑
j(Pij(A) − P̄i(A)) · (Pij(B) − P̄i(B))

√∑
p(Pip(A) − P̄i(A))2

∑
q(Piq(B) − P̄i(B))2

, (3)

respectively, where Pij(A)(i = 1, 2, · · · , 15; j = 1, 2, · · · , 20) is a component of
the feature vector A, wi a weight parameter, and

P̄i(A) ≡ 1
20

20∑

j=1

Pij(A).
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Since we expect the profile elements for residues nearer to the target residue
to be more important in determining the local environment of the target residue,
we use weights wi = (8 − |8 − i|)2.

2.3 The Reference Dataset

In order to construct the reference dataset consists of representative protein
chains without bias, we utilize the ASTRAL SCOP database, where the protein
chains are hierarchically classified into structural families, and representative
proteins are selected for each of them. In particular, we used ASTRAL SCOP
(version 1.63) chain-select-95 subset and chain-select-90 subset [21]. We then
clustered these sequences with BLASTCLUST (NCBI BLAST 2.2.5,
http://www.ncbi.nlm.nih.gov/BLAST/) and selected the representative chain
for each cluster, in order to remove additional homologies. The resulting refer-
ence dataset consists of 4362 non-redundant proteins (905684 feature vectors)
that have less than 25% sequence identity with each other.

2.4 Fuzzy k-Nearest Neighbor Method

In the simplest version of the fuzzy k-nearest neighbor (FKNN) method [19],
the fuzzy class membership us(x) to the class s is assigned to the query data x
according to the following equation:

us(x) =

∑
sec(j)=s D

−2/(m−1)
j

∑k
j=1 D

−2/(m−1)
j

(4)

where the summation of j in the numerator is restricted to those belonging
to the class s, m is a fuzzy strength parameter, which determines how heavily
the distance is weighted when calculating each neighbor’s contribution to the
membership value, k is the number of nearest neighbors, and c is the number of
classes, and Dj is the distance between the feature vector of the query data x
and the feature vector of its j-th nearest reference data x(j).

The advantage of the fuzzy k-nearest neighbor algorithm over the standard
k-nearest neighbor method is quite clear. The fuzzy class membership us(x) can
be considered as the estimate of the probability that the query data belongs to
class i, and provides us with more information than a definite prediction of the
class for the query data. Moreover, the reference samples which are closer to the
query data are given more weights, and an optimal value of m can be chosen
along with that for k, in contrast to the standard k-nearest neighbor method
with fixed value of 2/(m − 1) = 0. In fact, the optimal value of k and m are
found from the leave-one-out cross-validation procedure (see below), and the
resulting value for 2/(m − 1) is indeed nonzero.

The optimal values of k and m were determined by leave-one-out cross val-
idation test, where the prediction was performed for one of the chains in the
reference dataset, using the remaining 4361 chains as the reference dataset, pro-
cedure being repeated for each of the 4362 chains. The optimal values of k and



448 S.-Y. Kim, J. Sim, and J. Lee

m are determined as the ones yielding the maximum average value of Q3 score,
which is define as:

Q3 ≡ 100% × Ncorr

N
(5)

with N and Ncorr being the total number of residues of the query protein, and
the total number of correctly predicted residues, respectively.

The optimal value of m turns out to be 1.29, and that of k is 85 when using
Euclidean and Correlation distances, and 70 when using Cosine.

2.5 The Parallel Implementation

The FKNN method can be easily adapted for parallel computation. In the par-
allel implementation, the computational load is shared between computational
nodes, resulting in drastic increase in computational speed. The advantage of the
parallel program in terms of computational time can also be seen from Fig. 2
(see Results and Discussions). To elaborate on the parallel algorithm, each of
the nodes is assigned a distinct subset of the feature vectors in the reference
dataset, and each member of this set is compared with query vector, and knn of
them with the smallest distance from the query vector are chosen. The numbers
of the feature vectors assigned to the nodes are all equal up to roundoff error, so
that the loads are balanced. The 0-th node, which we call the master, performs
the job of collecting knn candidates of nearest neighbors from each of the nodes.
It then sorts these Nnodes × knn indices with respect to the distance D to select
the final knn nearest neighbors. The master then produces the final output. The
pseudo-code for the parallel algorithm is given in algorithm 1., along with the
sub-algorithms 2., 3., and 4..

Algorithm 1. parallel FKNN algorithm for the protein secondary structure
prediction
1: knn = Number of nearest neighbors (constant)
2: Nnodes = Total number of computing nodes
3: Rank = The number of this node, a number between 0 and Nnodes − 1
4: Construct the feature vector for each residue of the query protein {algorithm2.}
5: Construct the feature vector for each residue in the database {algorithm3.}
6: st = Rank ∗ Nf/Nnodes + 1
7: ed = (Rank + 1) ∗ Nf/Nnodes {st and ed is the starting and ending number of

feature vectors the current node will look into. This is to divide computational
load between nodes.}

8: for jq = 1 to Lq do
9: Calculate the probabilities prob(jq, s) of the residue q being in each of the con-

formational state s (=C,H,E) {algorithm4.}
10: The predicted secondary structure S(jq) = (s that maximizes prob(jq, s) )
11: print out jq , S(jq), and prob(jq, s) (s = C,H,E)
12: end for
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Algorithm 2. Constructing feature vectors for each residue of the query protein
Read in query profile
Lq = Length of the query sequence
for jq = 1 to Lq do

Construct matrix Pq(jq) of size 15 × 20, centered around the residue jq , from the
query profile

end for

Algorithm 3. Constructing feature vectors for each residue in the database
Nf = 0 {Nf will be the total number of feature vectors in the reference dataset,
equal to the total number of residues in the dataset}
Np = Number of protein chains in the reference dataset
Read in profiles in the reference dataset (database profiles)
for i = 1 to Np do

L(i) = Length of the i-th protein chain
for j = 1 to L(i) do

Nf ⇐ Nf + 1
Construct matrix PDB(Nf ) of size 15×20, centered around the residue j of the
i-th protein, from the database profile

end for
end for

3 Results and Discussions

The benchmark test was performed on EVA common set 1 consisting of 60 pro-
teins [22] and RS126 set consisting of 126 non-homologous protein [5], with the
optimal values of m and k determined by the leave-one-out cross-validation on
the reference dataset derived from ASTRAL SCOP (see Methods). The perfor-
mance on EVA common set 1 was compared with three neural network based
prediction methods, PSIPRED (v2.3) [6], PROFking (v1.0) [7], and SABLE
(v2.0) [8], and the performance on RS126 set was compared with two methods
based on support Vector Machine (SVM), SVM freq [9] and SVMpsi [10].

In addition to Q3 score (see section 2.4), two additional performance scores,
SOV score [23] and three state correlation coefficient (Corr(3)) [24], are used
for the assessment of performance. The average values and the standard errors
of these scores for the performance on EVA common set 1, of the fuzzy k-
nearest method with various distance measures, and the other three methods,
are displayed in Table 1. The results of the test on RS126 set are shown on
Table 2.

We see that in both of these test, the performance is best when the Correlation
distance measure is used. We see that in the first test, average performance scores
are lower than those of PSIPRED and SABLE, but higher than PROFking.
However, considering the magnitudes of the standard error, these differences are
not drastic, and we may say that the performances are more or less comparable
to other methods. Also, the actual performances of the prediction algorithms
depend on their versions and the set of proteins used for the test, and it should
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Algorithm 4. Calculating the fuzzy membership of a query residue to each of
the secondary structural class

for s = C,H,E do
membership(jq, s) = 0

end for
for mDB = st to ed do

D(jq , mDB) = Distance between Pq(jq) and PDB(mDB)
end for
Sort indices of the feature vectors the current node is examining, with respect to
D(jq , mDB), in descending order.
if Rank == 0 then {This node is the master, so collect the results and re-sorts
them, and print the final output}

indx() ⇐ save indices of knn nearest neighbors among the feature vectors exam-
ined by the master
dscore() ⇐ save distances of knn nearest neighbors among the feature vectors
examined by the master
for i = 1 to Nnodes − 1 do

Receive indices and distances of knn nearest neighbors among the feature vectors
examined by the i-th node
indx() ⇐ add indices of knn nearest neighbors among the feature vectors ex-
amined by the i-th node
dscore() ⇐ add distances of knn nearest neighbors among the feature vectors
examined by the i-th node

end for
else

Send indices and distances of knn nearest neighbors among the feature vectors
examined by the i-th node to the master

end if
if Rank == 0 then

Sort indices with respect to dscore() {The collection consists of Nnodes × knn

results, so master must sort them again to select knn nearest neighbors}
for jDB = 1, knn do {Calculate the fuzzy membership from knn nearest neigh-
bors}

s(jDB) = secondary structural class corresponding to the jDB-th feature vector

membership(jq, s(jDB)) ⇐ membership(jq , s(jDB))+ fuzzy membership calcu-
lated from D(jq , jDB)

end for
for s = C,H,E do

prob(jq, s) = membership(jq, s)/
�

s′∈{C,H,E} membership(jq , s
′)

end for
end if

be emphasized that the result is not to be considered as an extensive test of
these methods.

Since the programs based on SVM are not available for public use, we quote
the values from the literature [9,10]. The values of performance measures not
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Table 1. Average scores of secondary structure prediction on EVA common set 1, using
fuzzy k-nearest neighbor (FKNN) method with Euclidean (Euclid), Cosine (Cos), and
Correlation (Corr) distance measures. The average scores are given also for three other
methods for comparison. The numbers in the parentheses are the standard errors.

Q3 SOV Corr(3)
FKNN(Euclid) 70.9 (1.8) 64.5 (2.3) 0.495 (0.024)
FKNN(Cos) 70.9 (1.8) 64.5 (2.3) 0.499 (0.034)
FKNN(Corr) 71.8 (1.9) 67.9 (2.4) 0.527 (0.026)
PSIPRED 75.1 (1.8) 75.3 (2.4) 0.557 (0.024)
PROFking 67.2 (2.3) 64.3 ( 2.8) 0.463 (0.029)

SABLE 75.6 (1.5) 73.1 ( 2.5) 0.532 (0.029)

Table 2. Average scores of secondary structure prediction on RS126 set, using fuzzy
k-nearest neighbor (FKNN) method with Euclidean (Euclid), Cosine (Cos), and Cor-
relation (Corr) distance measures. The average scores are given also for two other
methods based on SVM, for comparison.

Q3 SOV Corr(3)
FKNN(Euclid) 88.6 83.1 0.791
FKNN(Cos) 88.6 83.1 0.744
FKNN(Corr) 89.0 84.0 0.796

SVMfreq 75.1 - -
SVMpsi 76.1 72.0 -

reported in the references are omitted. We see that the fuzzy k-nearest neighbor
method also shows good performance when compared with SVM-based methods.

The parallel code was implemented in mpi C, and run on 32 Intel Xeon proces-
sors. For 60 proteins in the EVA set, for the Euclidean, cosine, and correlation
distance measures, respectively, the calculation took 47, 58, and 60 minutes of
wall clock time, defined as the time elapsed between the start and end of the
program.

The advantage of the parallel algorithm we introduced in this work is that the
communication between computational nodes are kept to a minimal level. In fact,
the most of the computations are performed by each of the nodes independently,
and the communication occurs only at the end of such computations, and only
between the king and slaves, when the master collects the results from the slaves
and sorts them again to predict the secondary structure. In order to examine
the parallel efficiency, we repeated the computation for EVA common set 1
using the correlation distance measure for different number of CPUs in order
to obtain the response curve in Fig. 2. In the figure, the inverse of the time is
plotted against the number of CPUs involved in the computation, in order to
show the dependence of the computational speed on the number of CPUs. The
result shows that, although the dependence is not exactly linear, the scalability
is reasonably good, demonstrating the advantage of parallel computation over
serial version.
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Fig. 2. The inverse of wall time in min−1 (vertical axis) plotted against the number of
CPUs used for the computation (horizontal axis). The curve shows excellent scalability
of the parallel FKNN algorithm, due to minimal amount of communication between
CPUs.
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