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Abstract. We propose an automated protocol for designing the energy
landscape suitable for the description of a given set of protein sequences
with known structures, by optimizing the parameters of the energy func-
tion. The parameters are optimized so that not only the global minimum-
energy conformation becomes native-like, but also the conformations dis-
tinct from the native structure have higher energies than those close to
the native one, for each protein sequence in the set. In order to achieve
this goal, one has to sample protein conformations that are local minima
of the energy function for given parameters. Then the parameters are
optimized using linear approximation, and then local minimum confor-
mations are searched with the new energy parameters. We develop an
algorithm that repeats this process of parameter optimization based on
linear approximation, and conformational optimization for the current
parameters, ultimately leading to the optimization of the energy param-
eters. We test the feasibility of this algorithm by optimizing a coarse
grained energy function, called the UNRES energy function, for a set of
ten proteins.

1 Introduction

According to the thermodynamic hypothesis [1], proteins adopt native struc-
tures that minimize their free energies. Therefore, obtaining energy function
that accurately describes proteins would lead not only to the prediction of
three-dimensional structures, but also to the understanding of folding mecha-
nism [2,3].

Energy functions are generally parameterized from quantum mechanical cal-
culations and experimental data on model systems. However, such calculations
and data do not determine the parameters with perfect accuracy. The residual
errors in energy functions may have significant effects on simulations of macro-
molecules such as proteins where the total energy is the sum of a large number
of interaction terms. Moreover, these terms are known to cancel each other to
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a high degree, making their systematic errors even more significant. Thus it is
crucial to refine the parameters of a energy function before it can be successfully
used to study protein folding.

In this work, we develop an automated protocol for the parameter optimiza-
tion, where the parameters are modified so as to make conformations with larger
values of root-mean-square deviation (RMSD) have higher values of energy rela-
tive to those with smaller values of RMSD. This goal is achieved by repeating two
distinct optimization procedures, sampling local minimum-energy conformations
for a given parameter set, and parameter optimization using linear approxima-
tion. The parameter optimization based on linear approximation is performed
by supernodal Cholesky factorization method [4], a Linear Programming algo-
rithm, and the local minimum-energy conformations with low energies for a
given parameter are sampled using the conformational space annealing method
[5,6,7,8].

We show the feasibility of this algorithm by successfully optimizing the UN-
RES energy function [9,10], for a set of ten proteins. Our work is an improve-
ment over previous works [3,11,12,13,14,15,16], where either primitive methods
of parameter optimization were used, or the optimization was performed for the
training set of a small number of protein sequences, at most four of them.

2 Methods

2.1 Constrained and Unconstrained Conformational Searches

In order to check the performance of a energy function for a given set of parame-
ters, one has to perform two types of conformational search, the constrained and
unconstrained conformational searches. In the constrained search, the backbone
angles of the conformations are fixed to the values of the native conformations,
and only the side-chain angles are minimized with respect to the energy. We call
the resulting conformations the super-native. The other conformations are ob-
tained from unconstrained conformational search. The conformations obtained
from the constrained and unconstrained searches are added to the structural
database of local minimum-energy conformations for each protein. The search
algorithm we use is the conformational space annealing (CSA) method [5,6,7,8].
The CSA method can be considered as a genetic algorithm that enforces a broad
sampling in its early stages and gradually allows the conformational search to be
focused into narrow conformational space in its later stages. As a consequence,
many low-energy local minima including the GMEC of the benchmark protein
can be identified for a given parameter set.

2.2 Parameter Refinement Using Linear Programming

The changes of energy gaps are estimated by the linear approximation of the
energy function in terms of parameters. Among the conformations with non-zero
RMSD values in the structural database, 50 (an arbitrary number) conformations
with the smallest RMSD values are selected as the native-like conformations,
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while the rest are considered as the non-native ones. Since an energy function
can be considered to describe the nature correctly if native-like structures have
lower energies than non-native ones, the parameters are optimized to minimize
the energy gaps E

(1)
gap and E

(2)
gap,

E(1)
gap = EN − ENN

E(2)
gap = ESN − ENN (1)

for each protein in the training set, where EN and ESN are the highest energies
of the native-like and super-native conformations, respectively, and ENN is the
lowest energy of the non-native conformations. The energies are the modified
ones that are weighted with the RMSD values of the conformations:

Emodified = E + 0.3 RMSD. (2)

Weighting the energies with the RMSD values makes the large RMSD con-
formations have high energies compared to ones with small RMSD values. The
parameter optimization is carried out by minimizing the energy gaps E

(1)
gap and

E
(2)
gap of each protein in turn, while imposing the constraints that all the other

energy gaps, including those from the other proteins, do not increase.
In this work, we adjust the 715 linear parameters of the UNRES energy

function [9,10], a coarse-grained protein energy function. The energy of a lo-
cal minimum-energy conformation can be written as:

E =
∑

j

pjej(xmin) (3)

where ei’s are the energy components evaluated with the coordinates xmin of
a local minimum-energy conformation. Since the positions of local minima also
depend on the parameters, the full parameter dependence of the energy gaps are
nonlinear. However, if the parameters are changed by small amounts, the energy
with the new parameters can be estimated by the linear approximation:

Enew ≈ Eold +
∑

i

(pnew
i − pold

i )ei(xmin) (4)

where the pold
i and pnew

i terms represent the parameters before and after the
modification, respectively. The parameter dependence on the position of the
local minimum can be neglected in the linear approximation, since the derivative
in the conformational space vanishes at a local minimum. The additional term
0.3 RMSD of Eq.(2) vanishes in these expressions due to the same reason. The
changes of the energy gaps are estimated as:

∆E(1)
gap = E(1)

gap({pnew
j }) − E(1)

gap({pold
j })

= (EN({pnew
j }) − ENN({pnew

j })) − (EN({pold
j }) − ENN({pold

j }))

=
∑

j

(eN
j − eNN

j )(pnew
j − pold

j ) (5)
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∆E(2)
gap = E(2)

gap({pnew
j }) − E(2)

gap({pold
j })

= (ESN({pnew
j }) − ENN({pnew

j })) − (ESN({pold
j }) − ENN({pold

j }))

=
∑

j

(eSN
j − eNN

j )(pnew
j − pold

j ) (6)

The magnitude of the parameter change δpj ≡ pnew
j −pold

j is bounded by a certain
fraction ε of pold

j . We use ε = 0.01 in this study. First, the vector δpj is chosen

within the bound to decrease the energy gap ∆E
(1)
gap of the selected protein as

much as possible while imposing the constraints that any positive values among
E

(2)
gap and the energy gaps of the other proteins do not increase and negative

values do not become positive. Denoting the energy gaps of the k-th protein
as E

(p=1,2)
gap (k) and assuming the i-th protein is selected for the decrease of the

energy gap, this problem can be phrased as follows:

Minimize

∆E
(1)
gap(i) =

∑
j(e

N
j (i) − eNN

j (i))(pnew
j − pold

j )

with constraints

|δpi| ≤ ε

∆E(2)
gap(i) =

∑

j

(eSN
j (i) − eNN

j (i))(pnew
j − pold

j ) ≤
{

0 if E
(2)
gap(i) > 0

−E
(2)
gap(i) otherwise

∆E(p=1,2)
gap (k �= i)=

∑

j

(e(S)N
j (k) − eNN

j (k))(pnew
j −pold

j )≤
{

0 if E
(p)
gap(k) > 0

−E
(p)
gap(k) otherwise

This is a global optimization problem where the linear parameters pj are the
variables. The object function to minimize, and the constraints, are all linear in
pj . This type of the optimization problem is called the Linear Programming. It
can be solved exactly, and many algorithms have been developed for solving the
Linear Programming problem. We use the primal-dual method with supernodal
Cholesky factorization [4] in this work, which finds an accurate answer with
reasonably computational costs.

After minimizing ∆E
(1)
gap(i), we solve the same form of linear programming

where now ∆E
(2)
gap(i) is the objective function and the other energy gaps become

constrained. Then we select another protein and repeat this procedure (300 times
in this work) of minimizing ∆E

(1)
gap and ∆E

(2)
gap in turn.

The algorithm of parameter optimization based on linear approximation, using
repeated Linear Programming, is summarized in algorithm 1.

2.3 Reminimization and New Conformational Search

Since the procedure of the previous section was based on the linear approxima-
tion Eqs.(5) and (6), we now have to evaluate the true energy gaps using the
newly obtained parameters. The breakdown of the linear approximation may
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Algorithm 1. Parameter optimization for conformations in the structural
database, using linear programming
1: Np = Number of protein sequences in the dataset (constant)
2: Nit = Maximum number of iteration (300 in this work)
3: p(i) = The initial parameters at the start of this sub-algorithm
4: for i = 0 to Nit do
5: Calculate energy gaps E

(1)
gap(p)(p = 1, · · · , Np)

6: for p = 1 to Np do
7: minimize ∆E

(1)
gap(p), while constraining the other energy gaps (Linear Pro-

gramming)
8: minimize ∆E

(2)
gap(p), while constraining the other energy gaps (Linear Pro-

gramming)
9: end for

10: if Energy gaps are negative for all of the Np proteins then
11: End this sub-algorithm, since parameters are optimized for the conformations

in the structural database.
12: end if
13: end for

come from two sources. First, the conformations corresponding to the local min-
ima of the energy for the original set of parameters are no longer necessarily so
for the new parameter set. For this reason, we reminimize the energy of these
conformations with the new parameters. Since super-native conformations are
not local minimum-energy conformations, even with the original parameters, the
unconstrained reminimization of these conformations with the new parameters
may furnish low-lying local minima with small values of RMSD. Second, the lo-
cal minima obtained from conformational searches with the original parameter
set may constitute only a small fraction of low-lying local minima. After the
modification of the parameters, some of the local minima which were not con-
sidered due to their relatively high energies, can now have low energies for the
new parameter set. It is even possible that entirely distinct low-energy local min-
ima appear. Therefore these new minima are taken into account by performing
subsequent conformational searches with the newly obtained parameter set.

2.4 Update of the Structural Database and Iterative Refinement of
Parameters

The low-lying local energy minima found in the new conformational searches are
added into the energy-reminimized conformations to form a structural database
of local energy minima. The conformations in the database are used to obtain
the energy gaps, which are used for the new round of parameter refinement. As
the procedure of [conformational search → parameter refinement → energy rem-
inimization] is repeated, the number of conformations in the structural database
increases. This iterative procedure is continued until sufficiently good native-like
conformations are found from the unconstrained conformational search. The
whole procedure is summarized in algorithm 2.
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Algorithm 2. The algorithm for protein energy function parameter optimiza-
tion
1: Np = Number of protein sequences in the dataset (constant)
2: Nit = Maximum number of iteration (constant)
3: p(i) = the initial parameters
4: for i = 0 to Nit do
5: for p = 1 to Np do
6: For the protein sequence p, sample low-lying local minimum-energy conforma-

tions with no constraints, and save their coordinates and energy components.
7: For the protein sequence p, sample low-lying local minimum-energy native-like

conformations (constrained sampling), and save their coordinates and energy
components

8: end for
9: if Low-lying conformations found from unconstrained search are native-like for

all of the Np sequences then
10: Parameter optimization accomplished. End the algorithm.
11: end if
12: if i == 0 then
13: structural database ⇐ low-lying conformations obtained from unconstrained

search + low-lying native-like conformations obtained from constrained search
(coordinates and energy components)

14: else
15: structural database ⇐ structural database + low-lying conformations ob-

tained from unconstrained search + low-lying native-like conformations ob-
tained from constrained search (coordinates and energy components)

16: end if
17: Optimize parameters using Linear Programming, so that the energy gap Eg =

Ena −Enn between the maximum energy among native-like conformations, Ena,
and the minimum energy among non-native conformations, Enn (See alg. 1), is
minimized for each of the Np sequences in the training set ⇒ p(i + 1) (new
parameters)

18: Reminimize structural database with respect to the energy function with the
new parameters

19: end for

3 Results and Discussions

3.1 Ten Proteins in the Training Set and Two Proteins in the Test Set

We apply our protocol to the optimization of UNRES energy function, for a train-
ing set consisting of ten proteins, that belong to the structural class of α proteins.
The PDB codes of these proteins are, 1BBA(36), 1BDD(60), 1EDI(56), 1EDK(56),
1HNR(47), 1IDY(54), 1PRB(53), 1PRU(56), 1VII(36), and 1ZDB(38), where the
number inside parentheses are the lengths of these proteins. The initial parameter
set is the one used in CASP3[17,18]. The optimized parameter set obtained using
the training set above, is useful for the protein folding study of an α protein, in-
cluding the tertiary structure prediction, where the secondary structure content
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Table 1. The Cα RMSD of GMEC, for the ten proteins in the training set and the
two proteins in the test set. The number in parantheses are the smallest RMSD values
found in the fifty low-energy conformations.

1BBA 1BDD 1EDI 1EDK 1HNR 1L2Y
initial parameters 8.9 (8.1) 9.8 (7.2) 7.8 (5.0) 7.6 (4.9) 9.9 (6.6) 6.5 (4.6)

optimized parameters 9.3 (4.3) 3.9 (2.9) 3.8 (2.4) 3.9 (2.4) 9.4 (5.3) 3.6 (3.1)
1IDY 1PRB 1PRU 1VII 1ZDB 1F4I

initial parameters 11.2 (6.9) 10.1 (7.5) 11.5 (6.9) 6.3 (4.9) 7.7 (6.7) 6.8 (5.1)
optimized parameters 10.1 (4.9) 6.2 (5.9) 6.7 (5.8) 5.3 (3.5) 7.6 (3.0) 5.4 (4.2)

can be determined relatively easily using experimental methods such as Circular
Dichroism (CD) or NuclearMagnetic Resonances (NMR). It is of course possible to
obtain energy function parameters suitable for the general description of proteins
regardless of their structural classes, using training set consisting of proteins that
belong to diverse structural classes[13,14].

The performance of UNRES energy function with the optimized parameters
was tested, by sampling low-energy conformations of two α proteins not included
in the training set, 1F4I(40) and 1L2Y(20).

For proteins both in training and test sets, fifty conformations were sampled
in each conformational search. The RMSDs of Cα coordinates from those of
native structures for the global minimum-energy conformations (GMEC) are
shown in Table 1, along with the smallest values of RMSD found among the fifty
low-energy conformations, obtained with the initial and optimized parameters.
Five iterations of linear optimization were performed in order to obtain the
optimized parameter set. The energies are not displayed since their numerical
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Fig. 1. Plots of the energy and Cα RMSD values of fifty low-energy conformations for
the protein 1BBA, obtained using the initial (plus signs) and the optimized param-
eters (filled circles). Although the RMSD of the GMEC is smaller for conformations
obtained with the initial parameters, much more native-like low-energy conformations
are obtained with the optimized parameters.
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Fig. 2. Plots of the energy and Cα RMSD values of fifty low-energy conformations for
the protein 1L2Y, obtained using the initial (plus signs) and the optimized parameters
(filled circles). The GMEC found with the optimized parameters has smaller RMSD
value than that found with the initial parameters. Also, much more native-like low-
energy conformations are obtained with the optimized parameters.

values have no physical meaning, due to the fact that the overall scale of the
linear parameters is not fixed in our protocol. We see from the data that after five
iteration, the parameters are indeed optimized for the ten proteins in the training
set. The smallest RMSD values found among the fifty low-energy conformations
decreased for all of the proteins in the training set, and the RMSD values of the
GMECs also decreased for all of them except 1BBA. Since the native structure
of a protein is usually predicted by constructing several models, rather than
selecting just one GMEC, GMEC not being native-like is not a serious problem,
as long as there are sufficient number of native-like conformations in the final set
of low-energy conformations obtained by the sampling algorithm. In fact, even
for 1BBA where RMSD value of the GMEC increased, those of the second and
third lowest energy conformations all decreased, and there are much more native-
like low-energy conformations obtained with the optimized parameters, as can
be seen in Fig. 1 where the RMSD values of the fifty low-energy conformations
are plotted against their energy values.

We see that also for the two proteins in the test set, the lowest RMSD value
found from the fifty low-energy conformations, as well as that of GMEC, decrease
as the parameters are optimized. Again, the low-energy conformations become
more native-like overall, as can be seen from the plot of RMSD against energy
values for 1L2Y(Fig. 2). The result suggests that the optimized parameters are
transferable to α proteins not included in the training set, and can be used for
the study of protein folding of such proteins.
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