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Exact partition function zeros of the Wako-Saitô-Muñoz-Eaton β hairpin model
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I compute exact partition function zeros of β hairpins, using both analytic and numerical methods, extending
previous work [J. Lee, Phys. Rev. Lett. 110, 248101 (2013)] where only a restricted class of hairpins was
considered. The zeros of β hairpins with an odd number of peptide bonds are computed and the difference of the
distribution of zeros from those for an even number of peptide bonds is explained in terms of additional entropy
of liberating the extra bond at the turn region. Upon the introduction of a hydrophobic core in the central region
of the hairpin, the zeros are distributed uniformly on two concentric circles corresponding to the hydrophobic
collapse and the transition to the fully folded conformation. One of the circles dissolves as the core moves toward
the turn or the tip region, which is explained in terms of the similarity of the intermediate state with the folded or
unfolded states. The exact partition function zeros for a hairpin with a more complex structure of native contacts,
the 16 C-terminal residues of streptococcal protein G B1, are numerically computed and their loci are closely
approximated by concentric circles.
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I. INTRODUCTION

Theoretical studies on protein folding have often been
performed with simple models that incorporate information
on the native structure [1–13]. The Wako-Saitô-Muñoz-Eaton
(WSME) model is one such example [1–4], described by
Ising-like binary variables with long-range interactions on
a one-dimensional lattice. The transfer matrix formalism
was developed so that the exact partition function can be
computed for any given temperature [9]. Since the partition
function contains all the information on thermodynamics,
various quantities relevant for the conformational transition
of a protein can be calculated.

In this work I study the partition function zeros (PFZs) of the
WSME models of β hairpins. Partition function zeros are much
more sensitive indicators of phase transitions than real-valued
quantities such as specific heat and the PFZ method has been
used not only in equilibrium [14–27] and nonequilibrium
statistical physics [28,29], but also in other fields as diverse
as nuclear [30–32] and particle physics [33–35]. Although
the WSME model is an exactly solvable model for studying
protein folding [9], analysis of its PFZs is lacking; an exception
is the recent work by the present author [27], where the
features of zeros distinguishing two-state and barrierless
folding transitions have been identified.

Although a β hairpin is a very simple structure, it captures
nontrivial aspects of protein folding because contacts are
formed between residues far away in the sequence. Therefore,
β hairpins have been the subject of extensive experimental
and computational research [2–4,36–43], including the study
using the WSME model [2,3,9]. Exact PFZs for β hairpins
were studied also in Ref. [27], under the restriction that the
number of peptide bonds is even, the native contacts are
antiparallel, and their strengths are uniform [Fig. 1(a)]. The
native contacts with uniform strength can be considered as a
backbone-hydrogen bond, so the model describes the structure
without additional hydrophobic interactions of the side chains.
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In this work the analysis is extended in several aspects. First,
I compute the PFZs for the β hairpin with an odd number
of peptide bonds, which is more realistic in that there is an
extra bond at the turn region not participating in the hydrogen
bonds. The distribution of the zeros deviates from those for
an even number of peptide bonds and the difference can be
explained in terms of the additional entropy at the turn region.
Second, I drop the assumption of uniform interaction strengths
and introduce the hydrophobic core. The resulting PFZs
exhibit a feature that clearly indicates the multiple transitions:
the collapse transition from the fully unfolded state to the
intermediate and the folding transition from the intermediate
to the fully folded state. When the core is exactly in the middle
of the hairpin and when the local entropic cost of ordering a
bond is large enough, the zeros can be obtained analytically,
comprising concentric circles corresponding to the collapse
and folding transitions. The PFZs for varying positions of the
hydrophobic core are also obtained numerically. As the core
moves toward the turn or the tip region, the inner or outer
locus dissolves due to the fact that the distinction between the
intermediate and the fully folded or unfolded state vanishes.
Finally, I compute the exact partition function zeros of a real β

hairpin, the 16 C-terminal residues of streptococcal protein G
B1, where the assumption of the native contacts not crossing
each other is also dropped. In this more complex case, even
the density of states cannot be obtained analytically and one
must resort to the transfer matrix formalism [9] to compute the
density numerically. The resulting PFZs also distribute on two
concentric circles, again corresponding to multiple transitions.

II. EXACT PARTITION FUNCTION ZEROS OF THE WSME
MODEL OF SIMPLE β HAIRPINS

The WSME model describes a peptide or protein of length
N + 1 by an Ising-type variable mi (i = 1, . . . ,N), which
denotes the state of the ith peptide bond connecting ith and
(i + 1)th residues. The variable mi takes the value 1 or 0
depending on whether the bond is in the ordered or disordered
state. If the entropy of the ordered bond relative to the dis-
ordered one is denoted as �si < 0, then λi ≡ exp(−�si) > 0
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(a) (b) (c)

FIG. 1. Native conformations of simple models of β hairpins,
where the number of peptide bonds N is (a) even and (b) odd.
(c) Example of a more complex hairpin model with the lines of
native contacts crossing each other.

can be considered as the effective number of microstates of
a disordered bond. We assume that the local entropy cost for
ordering a bond is the same throughout the protein chain, which
is a common assumption for a β hairpin [2,3,9], and write the
effective number of disordered bond states as λ = exp(−�s).
The number of conformations of an ordered bond is 1 by
definition. Note that λ does not have to be an integer in general.
The Hamiltonian of the WSME model is

H ({mk}) =
N−1∑
i=1

N∑
j=i+1

εij�ij

j∏
k=i

mk, (1)

where εij is the contact energy of the ith and j th bonds and �ij

is 1 only if the bonds are in contact in the native structure and 0
otherwise. Thus the contact energy is assigned if and only if the
corresponding pair of bonds is in contact in the native structure
and the stretch of sequence between them are all in the ordered
state. The contact energy εij can represent either the backbone
hydrogen bond or hydrophobic interactions between the side
chains. The density of the states �(E) for given energy value E

is computed using this Hamiltonian and the partition function
zeros are then obtained by solving a polynomial equation using
these densities as coefficients.

We first concentrate on simplified classes of β hairpins
in which the ith bond forms native contacts only with the
(N − i + 1)th bond at the opposite side of the hairpin. The
model with an even value of N [Fig. 1(a)] has an advantage that
an analytic formula can be obtained for the partition function
zeros in the limit of large λ [27]. However, the structure is
rather unrealistic in that all the peptide bonds participate in the
antiparallel hydrogen or hydrophobic bonds. All the known
experimental structures of β hairpins have extra bonds in the
turn region. Therefore, I compute the PFZs for the structure
with an odd value of N [Fig. 1(b)] that has an additional
peptide bond at the turn. The analytic formula for the density
of states can be obtained as a simple extension of that for the
even number of peptide bonds, but the polynomial equation
for the zeros can be solved only numerically.

When the lines of native contacts cross each other as in
Fig. 1(c), the analytic formula for the density of states becomes
more complicated and consequently less useful. However, one
can easily compute the exact density of states and partition
function zeros for a given set of parameters, using a transfer
matrix [9].

Let us call the contact between the ith and (N − i + 1)th
bonds the ith contact and rewrite the corresponding energy
as εi ≡ εi,N−i+1 [i = 1, . . . ,(N − 1)/2] for simplicity of
notation. The broken native contacts can appear only as a
sequential stretch in the tip region due to the restriction that
the native contacts can form only when all the intervening
bonds are ordered. Suppose that the ith native contacts with
i > j are all formed and those with i � j are all broken. The

corresponding energy value is

Ej =
n∑

i=j+1

εi = EF −
j∑

i=1

εi (0 � j � n), (2)

where n ≡ (N − 1)/2 and EF ≡ ∑n
i=1 εi is the energy value

of the fully folded conformation. If j < n, then at least one
of the bonds forming the j th contact has to be disordered, so
they cannot both be in the ordered states. Therefore, the total
number of states that these pairs can be in is

ωj = (λ + 1)2 − 1. (3)

The nth native contact is special in that it can be broken due to
the disorder in the (n + 1)th peptide bond at the turn. When the
(n + 1)th bond is in the native conformation, at least one of the
residues in the nth pair should be in a non-native state, leading
to (λ + 1)2 − 1 states. In contrast, if the (n + 1)th bond is in
one of λ unfolded states, then the residues forming the nth
pair can be any of the (λ + 1)2 conformations. Therefore, the
total number of conformations for the three bonds at the turn
regions is

ωn = (λ + 1)2 − 1 + λ(λ + 1)2 = (λ + 1)3 − 1. (4)

All the other bonds with broken native contacts can be in
any of λ + 1 states, whereas those forming the native contact
are in the ordered state, whose number is 1 by definition. By
multiplying these numbers by ωj for j > 0, the total number
of conformations for a given value of j is obtained as

�(Ej ; λ) =

⎧⎪⎨
⎪⎩

1 (j = 0)

[(λ + 1)2 − 1](λ + 1)2j−2 (1 � j < n)

[(λ + 1)3 − 1](λ + 1)2n−2 (j = n),

(5)

where j = 0 corresponds to the fully folded conformation.
The last line of (5) is the only difference from the density of
states obtained for even value of N .

If all the native contacts are due to hydrogen bonds, we
may assign an equal energy value εi = ε < 0 to each contact
and the partition function zeros are obtained by solving the
polynomial equation

Z(z) =
∑

j

�(Ej ; λ)zj = 0, (6)

where z ≡ eβε . The solution for the even value of N was
obtained analytically in Ref. [27] as

zj = 1

(λ + 1)2
exp

(
2πij

N/2 + 1

)
(j = 1, . . . ,N/2) (7)

under the approximation

λ2 + 2λ + 1

λ2 + 2λ
� 1. (8)

The normalized zeros (λ + 1)2zj for N = 14 are displayed
in Fig. 2 as intersections of the straight lines with the unit
circle. The exact numerical solution for N = 14 and 15 are
also plotted as closed and open symbols; those for N = 14
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FIG. 2. Partition function zeros of the WSME model of β hairpins
with seven native contacts and uniform interaction strengths in the
complex plane of (λ + 1)2z. The analytic solution (7) lies on the
intersection of the unit circle and the straight lines, which fits quite
well with the numerical solutions for N = 14. The zeros for N = 15
are located inside the circle due to the entropy cost for disordering the
extra bond at the turn region. The introduction of the entropic barrier
also makes the angular distribution closer to the uniform distribution.

agree quite well with the analytic solution even for the extreme
case of λ = 1 (�s = 0).1

In contrast, the zeros for N = 15, corresponding to the
same number of native contacts as N = 14, are located
inside the circle because now the fully unfolded structure is
more favorable compared to that with an even N due to the
additional entropic contribution from the extra bond at the
turn. The deviation from N = 14 increases as λ increases,
as expected. The gap of the distribution of zeros, defined as
the separation between the first zeros relative to the average
separation between the zeros, is a signature of the low free
energy barrier at the transition temperature, indicating a
first-order-like barrierless (or weak barrier) transition [27].
For the same number of native contacts we see that the gap for
the odd value of N is smaller than that for the even N , which
is due to the introduction of the entropic barrier between the
fully unfolded state and the rest of the states.

III. PARTITION FUNCTION ZEROS OF β HAIRPINS
WITH HYDROPHOBIC CORES

By introducing hydrophobic interactions in addition to the
hydrogen bond, we can observe the collapse transition to

1Even for vanishing local entropy �s = 0 for disordered bonds,
the unfolded conformation has higher entropy since both ordered
and disordered bonds contribute to the ensemble of unfolded
conformations.

(a) (b) (c)

FIG. 3. Intermediate conformation where a hydrophobic core
(double line) is formed but the tip region is unfolded. The dashed
lines denote broken native contacts. (a) When a hydrophobic core
exists near the tip of the hairpin, it can be formed only in the fully
folded conformation. (b) When the hydrophobic core is near the turn,
the intermediate conformation is almost indistinguishable from an
unfolded conformation in terms of energy and entropy. (c) Nontrivial
folding intermediates can be formed when the hydrophobic core is
located near the middle of the hairpin.

an intermediate where the hydrophobic core is formed but
the tip region is unfolded [Fig. 3(c)]. Again, the partition
function zeros can be obtained analytically for a special case.
Consider the case in which N is even, n ≡ N/2 is odd, and the
hydrophobic core consists of a single additional interaction at
h ≡ (n + 1)/2, with (free) energy �GSC = qε < 0 for some
integer q. We also assume that each hydrogen bond contributes
the energy �HHB = pε < 0, where p is also an integer. The
partition function can then be factorized as

Z = z−pn−q λ2 + 2λ

(λ + 1)2

⎡
⎣λ2 + 2λ + 1

λ2 + 2λ
+

h−1∑
j=1

(λ + 1)2j zpj

+
n∑

j=h

(λ + 1)2j zpj+q

⎤
⎦

� z−pn−q

⎡
⎣h−1∑

j=0

(λ + 1)2j zpj +
n∑

j=h

(λ + 1)2j zpj+q

⎤
⎦

= z−pn−q

⎡
⎣h−1∑

j=0

[(λ + 1)2zp]j

⎤
⎦ [1 + (λ + 1)2hzhp+q], (9)

where the approximation (8) is used. The first and the second
factors give two concentric circles for zeros:

zj = 1

(λ + 1)2/p
exp

(
2πi(j + hk)

hp

)

(j = 1, . . . ,h − 1),(k = 0, . . . ,p − 1),
(10)

z̃j =
exp

( (2j+1)πi

hp+q

)
(λ + 1)2h/(hp+q)

(j = 0, . . . ,hp + q − 1).

The angular distribution of the zeros on the inner circle has
the same form as the one without the hydrophobic core,
corresponding to the first-order-like barrierless transition [27],
whereas that on the outer circle is a uniform distribution
corresponding to the two-state transition, due to the energy
cost of breaking the hydrophobic core during the transition
from the intermediate to the fully unfolded state. It is easy to
see, from the analytic solution of the loci (10), that the folding
and collapse transition occurs at Tf = −εp/[2kB ln(λ + 1)]
and Tc = −ε(hp + q)/[2kBh ln(λ + 1)]. As expected, a larger
value of |�GSC | corresponds to a higher value of Tc and a
denser distribution of zeros on the outer locus, signifying a
sharper collapse transition. Also, for q = 0, the two circles
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FIG. 4. Partition function zeros of the WSME model of β hairpin
models with a hydrophobic core. There are three additional zeros
for k = 9 outside the range of the plot at z = −0.45 and z =
0.28 ± 0.41i.

collapse into one circle corresponding to the folding transition
(7) by setting p = 1 without loss of generality. The exact
partition function zeros for n = 9, p = 1, q = 2, and λ = 2,
with an extra hydrophobic interaction at the kth contact, are
plotted on a complex z plane, in Fig. 4, along with the circles
at radii 1/(λ + 1)2/p = 1/9 � 0.111 and 1/(λ + 1)2h/(hp+q) =
1/95/7 � 0.208. We see that the zeros for k = 5 are extremely
well described by the analytic solution (10), being distributed
on the inner and outer circles at an angular interval of
2π/hp = 2π/5 (4π/hp = 4π/5 between the first zeros) and
2π/(hp + q) = 2π/7, respectively. We see that as the position
of the hydrophobic core is moved toward the tip, the radius of
the outer locus decreases because the intermediate becomes
unfavorable entropically. In addition, the density of zeros
at the inner locus decreases because the intermediate and
the fully folded conformation become less distinguishable
[Fig. 3(a)]. Eventually, at k = 1, the zeros form one locus
corresponding to the folding transition. In contrast, as the
hydrophobic core moves toward the turn, the radius of the outer
locus increases and its density decreases because the entropy of
the intermediate increases and it becomes less distinguishable
from the unfolded state [Fig. 3(b)].

IV. PARTITION FUNCTION ZEROS
OF A REAL β HAIRPIN

So far we have concentrated on a general class of simplified
hairpin models. A real β hairpin, the 16 C-terminal residues
of streptococcal protein G B1, was also studied with the
WSME model [2,3,9], which includes crossed lines of native
contacts [Fig. 1(c)]. We compute the density of states using
the transfer matrix formalism [9], where the native contacts
are given in Refs. [2,3]. The hydrogen bond and hydrophobic
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Re[z]
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FIG. 5. Partition function zeros of the WSME model of the β

hairpin composed of the 16 C-terminal residues of streptococcal
protein G B1.

interaction energies are �HHB = −1.1 kcal/mol and �GSC =
−2.0 kcal/mol and the local entropic cost of folding is
�s = −3.12 cal/Kmol, which corresponds to p = 11 and
q = 20 with ε = −0.1 kcal/mol and λ = 4.80. The zeros are
obtained as the solutions to a 137th-order polynomial equation,
which are plotted in the plane of eβε in Fig. 5. We see that the
loci of zeros also form concentric circles with radii 0.727 and
0.845, corresponding to the temperatures T = 158 and 299 K.

Note that since a real β hairpin is an intrinsically finite
system, there is no phase in a rigorous sense. The PFZs
may provide a generalized definition of a conformational
transition in a finite-size system [17,18]. Here, since the loci
are circles, we simply define conformational transitions to
exist at the intersections of these circles with the positive real
axis.

The transition temperature T = 299 K is quite consistent
with the value of 297 K, which was defined in terms of kinetic
rates and unfolding curves in Ref. [2]. A two-state transition
behavior at this temperature was reported experimentally [2]
and also confirmed by theoretical study using the WSME
model [9]. In contrast, the distribution of the zeros on the
inner locus is not only nonuniform but also very sparse,
especially near the positive real axis. Therefore, any possible
transition from the hydrophobically collapsed intermediate
to the fully folded state near T ∼ 158 K might be quite
smooth, making it hard to be connected with experimental
data on real-value quantities such as a peak in the specific heat.
Moreover, the WSME model is based on native structure that
is obtained by experiments performed at temperature far above
T ∼ 158 K, so the validity of extrapolating the WSME model
to such a low temperature may need to be put under further
scrutiny.
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V. CONCLUSION

I computed the partition function zeros of β hairpins in
the framework of the Wako-Saitô-Muñoz-Eaton model, using
both analytic and numerical methods. The zeros for the β

hairpin with an odd number of peptide bonds were computed,
which is much more realistic than the one where all the peptide
bonds participate in the hydrogen bonds. The distribution of the
zeros exhibits features that correspond to an additional entropic
barrier between the fully unfolded conformation and the rest of
the states. By introducing a hydrophobic core, the zeros for a
hairpin that undergoes multiple transitions could be obtained,
consisting of concentric circles. By moving the position of the
hydrophobic core toward either tip of the turn region, one of
the circles is seen to dissolve, which has a clear interpretation
that the intermediate structure becomes indistinguishable from
either the fully folded or fully unfolded states. The zeros of

a real β hairpin, the 16 C-terminal residues of streptococcal
protein G B1, were also numerically computed, where the
structure of the hydrophobic core is more complex due to
native contacts that cross each other. I found that these zeros
also lie on concentric circles, the difference from the simpler
cases being that the distribution of the zeros on the inner
circle is not uniform. Also the zeros on the inner circle are
rather sparse, indicating that the corresponding transition has
an extremely weak cooperativity.
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