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We study the collapse transition of a polymer on a square lattice with both nearest-neighbor and next
nearest-neighbor interactions, by calculating the exact partition function zeros up to chain length
36. The transition behavior is much more pronounced than that of the model with nearest-neighbor
interactions only. The crossover exponent and the transition temperature are estimated from the scal-
ing behavior of the first zeros with increasing chain length. The results suggest that the model is of
the same universality class as the usual θ point described by the model with only nearest-neighbor
interaction. © 2011 American Institute of Physics. [doi:10.1063/1.3663712]

I. INTRODUCTION

A flexible polymer chain in a dilute solution is influenced
by both hydrophobic interactions between the monomers and
the excluded volume effect. The attractive interactions are ne-
glected at high temperatures or in a good solvent, but become
significant as the temperature T is lowered. As T reaches a
special temperature θ , the linear polymer undergoes an abrupt
change from an expanded conformation for T > θ to a fully
compact conformation for T < θ .1–3 Long polymer in a good
solvent is a critical system, and the collapse transition at T
= θ has been identified as a tricritical transition.3, 4 The θ

point behavior is well-described by self-avoiding walks with
attractive interaction energy assigned for each pair of non-
bonded nearest-neighbor (NN) monomers. The tricritical ex-
ponents take the mean-field values for d > 3, and there are
logarithmic corrections at d = 3.3–8 A great deal of studies
have been performed to understand the nature of the collapse
transition in two dimensions,5–33 which is expected to exhibit
much more non-trivial behavior than its higher dimensional
counterparts.

In this work, we study the collapse transition of a poly-
mer on a square lattice, with both nearest-neighbor and next
nearest-neighbor (NNN) interactions present, by calculating
the exact partition functions up to chain length N = 36. We
estimate the crossover exponent and the transition tempera-
ture from the zeros of the partition function, and also from
the specific heat. Although the method of partition function
zeros became one of the most popular tools for studying the
critical phenomena with the advancement of computational
power,34, 35 there are few works where partition function zeros
of lattice polymers were calculated. For examples, exact par-
tition function zeros were computed for the simple-cubic lat-
tice up to chain length 13,36 for the face-centered lattice up to
chain length 9,37 and for the square lattice up to chain length
36.28, 29 Only NN interactions were present in these works.

a)Electronic mail: sykimm@cjnu.ac.kr.
b)Electronic mail: jul@ssu.ac.kr.

In fact, the current work is the first instance where a square-
lattice polymer with NNN interactions is ever studied. It was
only on a hexagonal lattice that models with NNN interactions
were studied previously.8–13

By introducing the NNN interactions, the transition be-
havior is much more pronounced than that of the model only
with NN interactions.29 The results suggest that the model be-
longs to the same universality class as the one described by
the model with only NN interactions.

II. THE NUMBER OF CONFORMATIONS

Conformations of a polymer chain with N monomers are
modeled as a two-dimensional self-avoiding chain of length
N on a square lattice. The position of the monomer i is given
by ri = (k, l), where integers k and l are the Cartesian coor-
dinates relative to an arbitrary origin. Chain connectivity re-
quires |ri − ri + 1| = 1, i.e., bond length is unity. Due to the
excluded volume, there can be no more than one monomer on
each lattice site, ri �= rj for i �= j. The attractive hydropho-
bic interaction is incorporated by assigning the energies −ε1

< 0 and −ε2 < 0 for each non-bonded NN and NNN contact
between monomers. The resulting Hamiltonian is

H = −ε1

∑
i<j

�(ri , rj ) − ε2

∑
i<j

�̃(ri , rj ), (1)

where

�(ri , rj ) =
{

1, if |i − j | > 1 and |ri − rj | = 1,

0, otherwise,
(2)

�̃(ri , rj ) =
{

1, if |ri − rj | = √
2,

0, otherwise.
(3)

The result when only NN interactions are present, correspond-
ing to the θ point,29 can be reproduced by putting ε2 = 0.
We consider the case with ε1 = ε2 ≡ ε. The energy of the
system is then E = −ε(K1 + K2) ≡ −εK, where K1 and K2
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are the number of contacts between NN and NNN monomers,
respectively.

Here, we define the reduced number of conformations
ωN(K), where conformations related by rigid rotations, reflec-
tions, and translations are regarded as equivalent, and counted
only once. On the other hand, due to an assumption that the
polymer chain has an intrinsic direction, the conformations
with reverse labels i ↔ N − i + 1 for all (i = 1, 2, . . . , N)
are considered distinct. It is easy to see that the total number
of conformations generated by rotations and reflections from
a given conformation is eight, except for the straight chain
where the total number of conformations generated by rota-
tions and reflections is four due to invariance with respect to
reflection perpendicular to the chain. The total number of con-
formations �N(K) is obtained from ωN(K) as follows:

�N (K) =
{

8ωN (K) − 4, if K = 0,

8ωN (K), otherwise.
(4)

Thus, one can achieve about eight-fold reduction in the com-
puting time by enumerating the reduced number of conforma-
tions ωN(K) instead of �N(K).29 We obtained ωN(K) up to N
= 36 by the help of a parallel algorithm classifying confor-
mations by sizes of rectangles they span.38

III. PARTITION FUNCTION ZEROS IN THE COMPLEX
TEMPERATURE PLANE

Yang and Lee39 first introduced the concept of the parti-
tion function zeros in the complex fugacity plane, and found a
mechanism for the occurrence of phase transitions in thermo-
dynamic limit. Later, Fisher40 showed that the partition func-
tion zeros in the complex temperature plane are very impor-
tant in understanding phase transitions. For system exhibiting
the temperature-driven phase transition, the locus of Fisher
zeros forms a line and crosses the positive real axis in ther-
modynamic limit. The intersection point of the locus with the
positive real axis corresponds to the critical temperature. The
zeros closest to the positive real axis are called the first ze-
ros, which approach the positive real axis as the system size
increases.

The partition function of our model is

Z =
∑

e−βH =
∑
K

�N (K)yK, (5)

where y ≡ exp (βε) and β ≡ 1/kBT. We see that since K is
bounded, the partition function (5) is an nth order polynomial
of y where n is the maximum value of K. The partition func-
tion zeros yi (i = 1, 2, . . . , n) are then obtained by solving the
polynomial equation Z(y) = 0. The solution was found with
MATHEMATICA. As can be seen from Fig. 1, the first zeros ap-
proach the positive real axis in the complex temperature plane
as polymer length increases.

IV. THE SCALING BEHAVIOR AND THE
CRITICAL EXPONENT

Near the critical temperature Tc, the radius of gyration
(or the end-to-end distance) RN of a polymer chain with N
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FIG. 1. Positions of the first zeros in the first quadrant of the complex tem-
perature (y = eβε ) plane for N = 10, 12, . . . , 36. Open circles indicate the
results when both NN and NNN interactions are present, and open squares
are those for the model with NN interactions only. Two dots indicated by
arrows are the corresponding values of yc.

monomers is generally expressed by the scaling theory,3, 5〈
R2

N

〉 ∼ N2νf (τNφ), (6)

where the reduced temperature is defined as τ ≡ (T − Tc)/Tc

and the scaling function f(x) behaves as follows:

f (x) =

⎧⎪⎨
⎪⎩

x(6/(d+2)−2ν)/φ, if x → ∞,

const., if x → 0,

|x|(2/d−2ν)/φ, if x → −∞.

(7)

The exponent ν represents the geometrical properties of a
polymer, and the crossover exponent φ describes how rapidly
the system undergoes the transition as T approaches Tc. The
crossover exponent φ also describes how rapidly the first ze-
ros approach the positive real axis as N increases,29

Im[y1(N )] ∼ N−φ, (8)

where y1(N) is a first zero for a polymer chain with N
monomers. In finite-size systems with even N, the crossover
exponent is approximated as

φ(N ) = − ln{Im[y1(N + 2)]/Im[y1(N )]}
ln{(N + 2)/N} , (9)

which reduces to the exact value of φ in N → ∞ limit, es-
timated by using the Bulirsch-Stoer (BST) extrapolation.41

We obtain 0.4422(14) for the crossover exponent as shown
in Fig. 2, where the estimated error could further be reduced
by removing unreliable data obtained from N < 18. The er-
ror is estimated by examining the robustness of the extrapo-
lated value with respect to perturbations of the data points, but
it is not a statistically rigorous confidence level.29, 41 There-
fore, we estimated the error by slightly changing the ratio of
NNN and NN interactions, R ≡ ε2/ε1, which we set to 1 in
the current work. We change R by 0.5, and get φ = 0.428
for both R = 0.5 and 1.5. If we assume that R is irrelevant
and combine the results for R = 0.5, 1.0, and 1.5, the result-
ing range of the crossover exponent is 0.428 ≤ φ ≤ 0.442.
The result is consistent with the conjectured exact value of φ

= 3/7 = 0.4286 obtained from hexagonal lattice with random
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FIG. 2. The finite size approximations of the crossover exponent, φ(N), are
shown as a function of 1/N for even N with 10 ≤ N < 18 (open circles) and
N ≥ 18 (solid circles). The value of φ = 0.4422(14) for N → ∞ (the open
circle with an error bar) is estimated by the BST extrapolation for N ≥ 18.

annealed forbidden faces,8 as well as our previous estimate
from the model with NN interactions only, φ = 0.422(12),
suggesting that they belong to the same universality class.
More extensive analysis for various values of R is postponed
for a future study.

Without additional information, we assumed the leading
finite size correction to φ is of order O(N−1) when perform-
ing the BST procedure. We estimated the range of φ also by
changing the leading exponent of the extrapolating function.
With R = 1 fixed, we performed BST extrapolation with the
leading finite size correction of order O(N−a) with a = 0.5 and
1.5. We get φ = 0.418 and 0.458 for a = 0.5 and 1.5, respec-
tively, and combining these results with that for a = 1.0, we
get 0.418 ≤ φ ≤ 0.458, again consistent with both the con-
jectured exact value and the estimate from the model with NN
interactions only. Again, there is no evidence that our model
belongs to a universality class different from that of the model
with NN interactions only.

The real parts of the first zeros can be used to estimate the
critical temperature yc, by estimating the point they approach
in the limit of N → ∞,

Re[y1(N )] − yc ∼ N−φ, (10)

with the value of φ obtained above. The value of yc, ob-
tained by extrapolating the data for even N with N ≥ 18, is
1.3279(41), which corresponds to Tc/ε = 3.526(39) (Fig. 3).
It is also shown in Fig. 1 along with the result for the model
where only NN interactions are present,29 corresponding to
yc = 2.16(18) (Tc/ε = 1.30(17)). The transition temperature
becomes much higher when additional attractive NNN inter-
actions are included, which is to be expected. We obtain yc

= 1.3288(41) with the conjectured exact value φ = 3/7,8

which is not much different from the result above. As can be
seen from Fig. 1, the transition behavior is much more visible
when we introduce NNN interactions.

V. SPECIFIC HEAT

Now we estimate the critical temperature yc again by an-
alyzing the behavior of the specific heat per monomer, for

0.0 0.1 0.2 0.3 0.4

1/N
φ

0.9

1.0

1.1

1.2

1.3

1.4

R
e[

y]

FIG. 3. The real parts of the first zeros are shown as a function of 1/Nφ for
even N with 10 ≤ N < 18 (open circles) and N ≥ 18 (solid circles). The value
of yc = 1.3279(41) (the open circle with an error bar) for N → ∞ is estimated
by the BST extrapolation for N ≥ 18 with φ = 0.4422.

comparison with the result obtained from the partition func-
tion zeros. The specific heat per monomer is

C(T ,N )

ε2N
= 1

ε2N

∂E

∂T
= β2

ε2N

∂2 ln Z

∂β2

= (ln y)2

N

[∑
K K2�N (K)yK∑

K �N (K)yK

−
(∑

K K�N (K)yK∑
K �N (K)yK

)2
]

, (11)

which is plotted in Fig. 4 as a function of y for several values
of N. The finite N approximation of the transition point, yc(N),
is obtained from the condition ∂C/∂y = 0. We observe a peak
around y � 1.5, which becomes sharper as N increases. By
applying the BST extrapolation to the finite-size scaling

yc(N ) − yc(∞) ∼ N−φ, (12)

we obtain the transition point yc(∞) = 1.265(19), equivalent
to Tc/ε = 4.25(29), where the data for even N with 18 ≤ N
≤ 36 were used. yc(N) is displayed in Fig. 5 as a function
of 1/Nφ , along with the extrapolated value yc(∞). The cur-
rent result is not drastically different from that obtained by the

1.0 1.5 2.0 2.5 3.0
y

0.0

0.1

0.2

0.3

C
 / 

N

FIG. 4. The specific heat for N = 20, 28, and 36 from bottom to top.
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FIG. 5. The finite size approximation of yc obtained from the specific heat,
yc(N), are shown as a function of 1/Nφ for even N with 10 ≤ N < 18 (open
circles) and N ≥ 18 (solid circles). The value of yc(∞) = 1.265(19) (the open
circle with an error bar) is estimated by the BST extrapolation for N ≥ 18
with φ = 0.4422.

partition function zeros, but the precision is lower due to the
fact that the specific heat is riddled by noisy contributions
from zeros other than the first ones.29

VI. DISCUSSIONS

In this work, we studied the collapse transition of a
square-lattice polymer with both NN and NNN interactions,
by calculating the exact partition function zeros up to chain
length N = 36. The crossover exponent φ and the transition
temperature Tc were obtained by examining their scaling be-
havior with increasing chain length. We estimated Tc also by
calculating the specific heat from the exact partition function.
Our results suggest that the polymer with both NN and NNN
interactions on a square lattice belongs to the θ universality
class described by the model where only NN interactions are
present, but by introducing NNN interactions, the transition
behavior becomes more pronounced than the model with only
NN interactions.29
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