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Partition function zeros of a square-lattice homopolymer
with nearest- and next-nearest-neighbor interactions
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We study distributions of the partition function zeros in the complex temperature plane for a square-lattice
homopolymer with nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions. The dependence of
distributions on the ratio of NN and NNN interaction strengths R is examined. The finite-size scaling of the
zeros is performed to obtain the crossover exponent, which is shown to be independent of R within error bars,
suggesting that all of these models belong to the same universality class. The transition temperatures are also
computed by the zeros to obtain the phase diagram, and the results confirm that the model with stronger NNN
interaction exhibits stronger effects of cooperativity.
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I. INTRODUCTION

Conformational transition of a flexible polymer chain in a
dilute solution is controlled by both hydrophobic interactions
between the monomers and the excluded volume effect. The
effects of the attractive and repulsive interactions are dominant
in low- and high-temperature regimes, respectively, and the
conformation of a linear polymer undergoes a transition from
a swollen state to a fully compact one [1–3] at a special
temperature θ . The collapse transition at θ has been identified
as a tricritical transition [2,4].

The interacting self-avoiding walk on a lattice has been
studied as a model for the polymer, where a site visited once
is banned and the energy of attractive interactions is defined to
be proportional to the number of nonbonded nearest-neighbor
(NN) monomer pairs. In three dimensions, the upper tricritical
dimension [5], the tricritical behavior follows the mean-field
theory prediction with logarithmic corrections [6], and the
first-order transition is expected at a temperature lower than
θ between liquid-like globule and solid-like phase [7–14]. On
the other hand, the nature of the collapse transition of a two-
dimensional polymer, which cannot be described by the mean-
field theory, has been extensively studied using lattice polymer
models with NN interactions [15–35].

In a previous work [36], we studied the critical properties
of a homopolymer on a square lattice where the strength
of NN and next-nearest-neighbor (NNN) interactions are the
same, and the result suggested that the model belongs to the
universality class of a polymer with NN interaction only. We
extend the investigation in this work to study the partition
function zeros for the continuous range of the ratio of NN
and NNN interaction strengths. The crossover exponent is
computed by the finite-size scaling, which is seen to be
independent of relative strengths of NN and NNN interactions,
suggesting that all of these models belong to the same
universality class. The critical temperature is also estimated
to construct a phase diagram in the space of interaction
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parameters, which shows the enhancement of cooperative
effect by NNN interaction. Although NNN interaction on a
hexagonal lattice [18,23,37–40] has been studied, we study
NN and NNN interactions on a square lattice with varying
ratio of their strengths for the first time, to the best of our
knowledge.

II. THE NUMBER OF CONFORMATIONS

Conformations of a polymer chain with N monomers can be
modelled by a self-avoiding walk where the position of the ith
monomer is given by ri = (k,l), with integers k and l, and ri �=
rj for i �= j due to the condition that each lattice site is visited
only once. By chain connectivity, we have |ri − ri+1| = 1.
The Hamiltonian is

H = −ε1

∑
i<j

�(ri ,rj ) − ε2

∑
i<j

�̃(ri ,rj ), (1)

where

�(ri ,rj ) =
{

1 if |i − j | > 1 and |ri − rj | = 1,

0 otherwise,
(2)

and

�̃(ri ,rj ) =
{

1 if |ri − rj | = √
2,

0 otherwise.
(3)

In this paper, the energies −ε1 < 0 and −ε2 < 0 are assigned
to each nonbonded NN and NNN contact between monomers,
respectively, to implement the effect of the attractive hy-
drophobic interaction. The case of ε2 = 0 corresponds to the
model where only NN interaction is present [29,33].

The energy of a given conformation can be expressed as
E = −ε1K1 − ε2K2, where K1 and K2 are the number of
contacts between NN and NNN monomers, respectively. The
partition function Z is then calculated from the number of
conformations for given values of K1 and K2, �N (K1,K2), as

Z =
∑

e−βH =
∑

K1,K2

�N (K1,K2)eβε1(K1+RK2), (4)

where β ≡ 1/kBT and R ≡ ε2/ε1. Although the total number
of conformations

∑
K1,K2

�N (K1,K2) has been computed
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FIG. 1. Partition function zeros in the complex y = eβε1 plane of the square-lattice homopolymer with N = 38 for (a) R = 1, (b) 2, (c) 3,
(d) 4, (e) 5, and (f) 10.

up to N = 72 [41], the computation of �N (K1,K2) itself
is much more expensive computationally, since the number
of NN and NNN interactions has to be checked for each
conformation. The number of conformations for a given value

of K1,
∑

K2
�N (K1,K2), was computed in Ref. [33] up to

N = 36 using an efficient parallel algorithm [42]. Using a
slightly modified version of the same algorithm, we compute
�N (K1,K2), up to chain length N = 38 in the current work.
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III. PARTITION FUNCTION ZEROS IN THE COMPLEX
TEMPERATURE PLANE

The partition function zeros were introduced by Yang and
Lee [43], in the complex fugacity plane of a fluid system and
the complex magnetic-field plane of the NN Ising ferromagnet
(Yang-Lee zeros), in order to explain the mechanism for the
occurrence of phase transitions in the thermodynamic limit.
Fisher [44] later studied the partition function zeros of the
square-lattice Ising model in the complex temperature plane
(Fisher zeros).

The distribution of Fisher zeros forms a simple locus in
the thermodynamic limit, and intersects positive real axis at a
transition temperature if a transition exists, thus explaining the
origin of the singularity of the free energy, which is absent for
a finite-size system [45,46]. The first zeros, the zeros closest
to the positive real axis, determine the singular behavior of the
free energy in the thermodynamic limit. Since the behavior of
the first zeros can be studied separately from other zeros, the
partition function zeros are a much more sensitive indicator
of a phase transition than the real-valued quantities, such as
the specific heat where effects from all zeros are included and
cannot be separated from each other. Furthermore, the partition
function zeros close in toward the real axis regardless of the
order of transition as long as such a transition exists, in contrast
to real-valued quantities, which show singularity only when an
appropriate derivative is taken.

We compute the zeros of the partition function in the
complex plane of y ≡ exp(βε1) by solving the polynomial
equation with MATHEMATICA,

Z(y) =
∑
K

�N (K)yK = A(y)
∏

i

(y − yi) = 0, (5)

where A(y) is a function that is analytic in the whole complex
plane. Figure 1 shows that the partition function zeros (yi)
distributed in the complex y plane for various R values have
an approximate R-fold symmetry in the angular direction, due
to the effect of NNN interaction. Note that the strength of
NNN interaction is ε2 = Rε1, whereas the zeros are plotted in
the plane of y ≡ exp(βε1). In the absence of NN interaction,
the zeros will have an exact R-fold symmetry when plotted
in the y plane. In fact, the symmetry is broken due to the
presence of NN interaction, and the apparent R-fold symmetry
is only approximate. For large R values, the locus of the zeros
can be approximated as a unit circle, as shown in Fig. 2 for
R = 50.

On the other hand, the zeros for R < 1, plotted in the
complex plane of y ′ ≡ exp(βε2) in Fig. 3, do not show
the pattern of 1/R-fold symmetry, indicating that the distri-
bution pattern of the zeros is mainly determined by NNN
interaction.

IV. CRITICAL BEHAVIOR

The radius of gyration, RN , of a polymer chain with N

monomers is generally described near the critical temperature
Tc by the scaling theory [2,15],

〈
R2

N

〉 ∼ N2νf (τNφ), (6)
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FIG. 2. (Color online) Partition function zeros in the complex
y = eβε1 plane of the square-lattice homopolymer with N = 38 for
R = 50. The solid line is a unit circle.

where the reduced temperature is defined as τ ≡ |T − Tc| /Tc

and the scaling function f (x) behaves as follows:

f (x) =
⎧⎨
⎩

x(6/(d+2)−2ν)/φ if x → ∞,

const. if x → 0,

x(2/d−2ν)/φ if x → −∞,

(7)

where d is the space dimension and the exponent ν represents
the geometrical properties of a polymer. The crossover
exponent φ describes how rapidly the system undergoes the
transition as T approaches Tc, which can be obtained by how
rapidly the first zeros, y1s, approach the positive real axis as
N increases [33,36],

Im[y1(N )] ∼ N−φ. (8)

In finite-size systems with even N , the crossover exponent is
approximated as

φ(N ) = − ln{Im[y1(N + 2)]/Im[y1(N )]}
ln{(N + 2)/N} , (9)

which reduces to the exact value of φ in N → ∞ limit,
estimated by using the Bulirsch-Stoer (BST) extrapolation

TABLE I. The estimated values of the critical point yc and the
crossover exponent φ for various R values.

R φ yc

0 0.430(29) 2.15(24)
1
4 0.435(61) 1.708(50)
1
2 0.43(12) 1.507(14)
1 0.439(45) 1.320(24)
2 0.446(70) 1.185(30)
3 0.45(13) 1.130(43)
4 0.430(56) 1.100(35)
5 0.441(18) 1.081(26)
10 0.451(15) 1.0419(41)
20 0.451(35) 1.0213(34)
30 0.451(38) 1.0143(25)
40 0.451(39) 1.0107(18)
50 0.451(39) 1.0086(14)
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FIG. 3. Partition function zeros in the complex y ′ = eβε2 plane of the square-lattice homopolymer with N = 38 for (a) R = 1, (b) 1/2,
(c) 1/3, (d) 1/4, (e) 1/5, and (f) 1/10.

[47]. The extrapolation of φ to infinite N is presented in
Table I and Fig. 4 as a function of R, all of which are
seen to agree with the conjectured exact value 3/7 [18,34]
within the errors. The φ value for R = 0 was estimated to be

0.422 using data for chain lengths up to N = 36. The current
estimate φ = 0.430 for R = 0 obtained using the data that
includes a longer chain with n = 38, is closer to 3/7. It is also
in a reasonable agreement with previous estimates obtained
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FIG. 4. The values of φ(R) with error bars are shown as a function
of R. The dotted line indicates the conjectured exact value 3/7.

by other methods, as listed in Table I of Ref. [33] (See also
Ref. [48]).

The result suggests that the polymer with NN and NNN
interactions on a square lattice all belong to the same
universality class.

The critical temperature, yc, the point on the x axis at which
the real parts of the first zeros approach in the limit of N → ∞,
can be also obtained by applying the BST extrapolation to the
finite-size scaling,

Re[y1(N )] − yc ∼ N−φ. (10)

Table I and Fig. 5 show the estimated values of yc for
various R values, for 0 � R � 50. In Fig. 5, we re-express
yc(R) in terms of (a) coupling constants (βε1 − βε2) and
(b) temperature versus R. In both diagrams, the data points are
well-fitted by a linear equation form, y = ax + b, with
(a) a = −0.5635(38) and b = 0.4340(12), and (b)
a = 2.312(34) and b = 1.262(70), i.e.,

(a) βε2 = −0.5635βε1 + 0.434, (11)

and

(b) kBT /ε1 = 2.312R + 1.262, (12)

but the deep reason behind this apparent linearity is not clear
to the authors. The value of b in (a), the y-axis intercept point,
indicates the critical temperature βcε2 in the limit R → ∞, i.e.,
in the case without NN interaction. Equation (12) with R = 0
directly indicates the transition temperature of the case with
NN interaction only, kBT /ε1 = 1.262, which is in reasonable
agreement with the value 1.30(17) obtained from the finite-size
scaling up to chain length 36 [33].

V. DISCUSSIONS

We studied the collapse transition of a square-lattice
polymer with both NN and NNN interactions for various
values of ratio R = ε2/ε1, by calculating the exact partition
function zeros up to chain length N = 38, the longest one
to be enumerated exactly up to present. It was revealed that
the partition function zeros show the repeated pattern of
substructures with an approximate R-fold symmetry. For R

as large as 50, the locus of the partition function zeros is
approximately a unit circle, which means that the critical tem-
perature yc in the limit R → ∞ approaches one, i.e., Tc → ∞
for R → ∞ in accordance with Eq. (12). The crossover
exponent and the transition temperature were estimated by
finite-size scaling of the zeros. The crossover exponents were
shown to be independent of R with error bars and coincided
with the θ -point value 3/7, suggesting that the polymer on a
square lattice with NN and NNN interactions all belong to the
same θ -point universality class. Such a universal behavior of
the square-lattice polymer is in contrast with some of the other
systems, such as Ising model, where the critical exponent is
known to depend on the ratio of NNN interaction to NN one,
leading to nonuniversal behaviors [49]. We could also obtain
the phase diagram of a square-lattice polymer with NN and
NNN interactions, by examining the transition temperature
for various R values.
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FIG. 5. The phase diagrams of the square-lattice homopolymer in (a) the βε1 − βε2 plane (for ε1 > 0 and ε2 > 0) and (b) the temperature
(kBT /ε1) versus the coupling ratio (R = ε2/ε1) plane. The solid lines are (a) βε2 = −0.5635βε1 + 0.434 and (b) kBT /ε1 = 2.312R + 1.262.
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[32] M. Gaudreault and J. Viñals, Phys. Rev. E 80, 021916 (2009).
[33] J. H. Lee, S.-Y. Kim, and J. Lee, J. Chem. Phys. 133, 114106

(2010).
[34] S. Caracciolo, M. Gherardi, M. Papinutto, and A. Pelissetto,

J. Phys. A 44, 115004 (2011).
[35] M. Ponmurugan and S. V. M. Satyanarayana, J. Stat. Mech.

(2012) P06010.
[36] J. H. Lee, S.-Y. Kim, and J. Lee, J. Chem. Phys. 135, 204102

(2011).
[37] P. H. Poole, A. Coniglio, N. Jan, and H. E. Stanley, Phys. Rev.

Lett. 60, 1203 (1988).
[38] B. Duplantier and H. Saleur, Phys. Rev. Lett. 60, 1204 (1988).
[39] B. Duplantier and H. Saleur, Phys. Rev. Lett. 62, 1368 (1989).
[40] C. Vanderzande, A. L. Stella, and F. Seno, Phys. Rev. Lett. 67,

2757 (1991).
[41] I. Jensen, J. Phys. A 37, 5503 (2004).
[42] J. H. Lee, S.-Y. Kim, and J. Lee, Comput. Phys. Commun. 182,

1027 (2011).
[43] C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952); T. D. Lee

and C. N. Yang, ibid. 87, 410 (1952).
[44] M. E. Fisher, in Lectures in Theoretical Physics, edited by W. E.

Brittin, Vol. 7c (University of Colorado Press, Boulder, 1965),
p. 1.

[45] W. Janke and R. Kenna, Comput. Phys. Commun. 147, 443
(2002).

[46] W. Janke, D. A. Johnston, and R. Kenna, Nucl. Phys. B 682, 618
(2004).

[47] R. Bulirsch and J. Stoer, Numer. Math. 6, 413 (1964).
[48] C. Vanderzande, in Lattice Models of Polymers (Cambridge

University Press, Cambridge, 1998), p. 129.
[49] M. P. Nightingale, Phys. Lett. A 59, 486 (1977); J. L. Monroe

and S.-Y. Kim, Phys. Rev. E 76, 021123 (2007); S.-Y. Kim, ibid.
81, 031120 (2010); J. H. Lee, H. S. Song, J. M. Kim, and S.-Y.
Kim, J. Stat. Mech. (2010) P03020.

052601-6

http://dx.doi.org/10.1051/jphyslet:0197500360305500
http://dx.doi.org/10.1146/annurev.bb.20.060191.002311
http://dx.doi.org/10.1146/annurev.bb.20.060191.002311
http://dx.doi.org/10.1103/PhysRevB.7.545
http://dx.doi.org/10.1051/jphyslet:019780039017029900
http://dx.doi.org/10.1103/PhysRevLett.77.2822
http://dx.doi.org/10.1103/PhysRevLett.77.2822
http://dx.doi.org/10.1103/PhysRevLett.84.1836
http://dx.doi.org/10.1103/PhysRevLett.84.1836
http://dx.doi.org/10.1209/epl/i2004-10520-y
http://dx.doi.org/10.1209/epl/i2004-10520-y
http://dx.doi.org/10.1002/polb.20908
http://dx.doi.org/10.1002/polb.20908
http://dx.doi.org/10.1063/1.2209684
http://dx.doi.org/10.1063/1.2209684
http://dx.doi.org/10.1103/PhysRevE.74.041804
http://dx.doi.org/10.1103/PhysRevE.75.060801
http://dx.doi.org/10.1103/PhysRevE.75.060801
http://dx.doi.org/10.1103/PhysRevE.76.061803
http://dx.doi.org/10.1103/PhysRevE.76.061803
http://dx.doi.org/10.1103/PhysRevE.86.011802
http://dx.doi.org/10.1016/0375-9601(75)90031-6
http://dx.doi.org/10.1051/jphys:019820043090140700
http://dx.doi.org/10.1007/BF01021079
http://dx.doi.org/10.1103/PhysRevLett.59.539
http://dx.doi.org/10.1088/0305-4470/17/4/007
http://dx.doi.org/10.1063/1.446748
http://dx.doi.org/10.1016/0032-3861(85)90008-4
http://dx.doi.org/10.1016/0032-3861(85)90008-4
http://dx.doi.org/10.1088/0305-4470/18/17/003
http://dx.doi.org/10.1088/0305-4470/19/16/027
http://dx.doi.org/10.1103/PhysRevB.39.495
http://dx.doi.org/10.1103/PhysRevB.39.495
http://dx.doi.org/10.1051/jphys:01988004905073900
http://dx.doi.org/10.1103/PhysRevE.48.3656
http://dx.doi.org/10.1051/jp1:1995153
http://dx.doi.org/10.1023/A:1023287513382
http://dx.doi.org/10.1023/A:1023287513382
http://dx.doi.org/10.1103/PhysRevE.65.010801
http://dx.doi.org/10.3938/jkps.44.617
http://dx.doi.org/10.1063/1.2842064
http://dx.doi.org/10.1063/1.2842064
http://dx.doi.org/10.1016/j.cpc.2008.12.015
http://dx.doi.org/10.1016/j.cpc.2008.12.015
http://dx.doi.org/10.1103/PhysRevE.80.021916
http://dx.doi.org/10.1063/1.3486176
http://dx.doi.org/10.1063/1.3486176
http://dx.doi.org/10.1088/1751-8113/44/11/115004
http://dx.doi.org/10.1088/1742-5468/2012/06/P06010
http://dx.doi.org/10.1088/1742-5468/2012/06/P06010
http://dx.doi.org/10.1063/1.3663712
http://dx.doi.org/10.1063/1.3663712
http://dx.doi.org/10.1103/PhysRevLett.60.1203
http://dx.doi.org/10.1103/PhysRevLett.60.1203
http://dx.doi.org/10.1103/PhysRevLett.60.1204
http://dx.doi.org/10.1103/PhysRevLett.62.1368
http://dx.doi.org/10.1103/PhysRevLett.67.2757
http://dx.doi.org/10.1103/PhysRevLett.67.2757
http://dx.doi.org/10.1088/0305-4470/37/21/002
http://dx.doi.org/10.1016/j.cpc.2011.01.004
http://dx.doi.org/10.1016/j.cpc.2011.01.004
http://dx.doi.org/10.1103/PhysRev.87.404
http://dx.doi.org/10.1103/PhysRev.87.410
http://dx.doi.org/10.1016/S0010-4655(02)00323-5
http://dx.doi.org/10.1016/S0010-4655(02)00323-5
http://dx.doi.org/10.1016/j.nuclphysb.2004.01.028
http://dx.doi.org/10.1016/j.nuclphysb.2004.01.028
http://dx.doi.org/10.1007/BF01386092
http://dx.doi.org/10.1016/0375-9601(77)90665-X
http://dx.doi.org/10.1103/PhysRevE.76.021123
http://dx.doi.org/10.1103/PhysRevE.81.031120
http://dx.doi.org/10.1103/PhysRevE.81.031120
http://dx.doi.org/10.1088/1742-5468/2010/03/P03020



