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We introduce a novel method for predicting the secondary structure of proteins, PREDICT
(PRofile Enumeration DICTionary), in which the nearest-neighbor method is applied to a pattern
space. For a given protein sequence, PSI-BLAST is used to generate a profile that defines patterns
for amino acid residues and their local sequence environments. By applying the PSI-BLAST to
protein sequences with known secondary structures, we construct pattern databases. The secondary
structure of a query residue of a protein with unknown structure can be determined by comparing
the query pattern with those in the pattern databases and selecting the patterns close to the query
pattern. We have tested the PREDICT on the CB513 set (a set of 513 non-homologous proteins) in
three different ways. The first test was based on a pattern database derived from 7777 proteins in
the Protein Data Bank (PDB), including those homologous to proteins in the CB513 set and gave
an average Q3 score of 78.8 % per chain. In the second test, in order to carry out a more stringent
benchmark test on the CB513 set, we removed from the 7777 proteins all proteins homologous to the
CB513 set, leaving 4330 proteins. Pattern databases were constructed based on these proteins, and
the average Q3 score was 74.6 %. In the third test, we selected one query protein among the CB513
set and built pattern databases by using the remaining 512 proteins. This procedure was repeated
for each of the 513 proteins, and the average Q3 score was 73.1 %. Finally, we participated in the
CASP5 (group ID: 531) where we employed the first-layer database based on the 7777 proteins and
the second-layer database based on the CB513 set. The PREDICT gave quite promising results
with an average Q3 (Sov) score of 78.1 (77.4) % on 55 CASP5 targets.

PACS numbers: 05.10.−a, 42.30.Sy, 89.75.Kd, 87.14.Ee
Keywords: Protein structure prediction, Secondary structure prediction

I. INTRODUCTION

Determining the tertiary structure of a protein is very
important in understanding the function and the bio-
logical role of the protein. The exponential growth in
protein-sequence databases during recent years has by far
outpace the experimental determination of the tertiary
structures. Therefore, in the field of protein-structure
investigation, it has become increasingly more popular
to resort to computational methods [1–6] as an approach
complementary to experimental structure determination.
However, ab-initio predictions of the tertiary structures
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based solely on sequence information have not been suc-
cessful so far [1, 2]. For this reason, many research ef-
forts have been to devoted to determining the protein’s
secondary structure [2]. Reliable prediction of the sec-
ondary structure of a protein can serve as an intermedi-
ate step toward determining its tertiary structure [1,2,
6].

Methods for secondary structure prediction have
evolved from the early methods of single residue statis-
tics [7], gradually incorporating correlation properties
between neighboring residues [8]. In recent years, most
of the successful methods have been based on the ex-
ploitation of evolutionary information [9–12] via sophis-
ticated sequence alignment methods that can probe (oth-
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erwise not-easily detectable) distant relationships be-
tween proteins. The most notable example is the use
of the PSI-BLAST [13] to generate the profile, Position
Specific Scoring Matrix, which is a numerical represen-
tation of the position-dependent substitution of amino
acid residues. The profile elements inside a window of
a fixed size centered on a given residue position can be
used to define a pattern that describes the local sequence
environment of that particular residue [11]. Then, the
secondary structure of the residue can be predicted by
investigating the pattern. One method to perform this
task is to employ pattern recognition methods, such as
neural networks [14,15], to predict the secondary struc-
ture elements of a given protein sequence [9,11,12].

Another line of approach to secondary structure pre-
diction is the nearest-neighbor methods pursued by sev-
eral groups [10,16,17], who utilized a distance measure
based on the similarity of local configurations (nearby
amino-acid-sequence identities) of residues. For example,
Yi and Lander [16] proposed a nearest-neighbor method
based on a scoring system that combined a sequence sim-
ilarity matrix with a local structural environmental scor-
ing method. In spite of these efforts, we believe that the
potential of the nearest-neighbor approach has not been
exploited to its full capacity. For example, sophisticated
profile-generating algorithms, such as the PSI-BLAST,
were not used in the early works.

In this work, we propose a method for predicting
the secondary structures of proteins, PREDICT (PRofile
Enumeration DICTionary), where we apply the nearest-
neighbor approach to the patterns generated by PSI-
BLAST. To the best of our knowledge, this is the first
time for the nearest-neighbor idea to be combined with
the PSI-BLAST to give a powerful algorithm for gener-
ating profiles. From these profiles, we can define pat-
terns that represent the local sequence environment of
residues. PREDICT directly probes the geometrical
structure of the pattern space as represented by a col-
lection of patterns, which we call a pattern database,
corresponding to all the residues of proteins with known
secondary structures. We begin with a distance mea-
sure defined in the pattern space. The distance measure
between two patterns is defined as the weighted sum of
the absolute values of the differences between the corre-
sponding elements of the two patterns. The underlying
idea of PREDICT is that patterns located close to each
other in pattern space should have an identical secondary
structure if we use a sensible definition of the distance
measure.

Our method also has several new ingredients. First,
we construct our own pattern database of 7777 proteins
especially selected from the Research Collaboratory for
Structural Bioinformatics (RCSB) Protein Data Bank
(PDB), to be used for the secondary structure predic-
tion. Second, we introduce the concept of a second-layer
calculation to the nearest-neighbor approach, which has
been used mainly in the context of neural network meth-
ods [11]. Finally, we optimize the weight parameters

defining the distance measure in pattern space by using
a set of proteins with known structures.

We tested PREDICT on the CB513 set [12] (a set of
513 non-homologous proteins; http://www.compbio.dun
dee.ac.uk/∼www-jpred/data/) and participated in the
CASP5 [2] (http://predictioncenter.llnl.gov/casp5/pub
ResultS) (group ID: 531) for blind tests. The results of
PREDICT are quite promising.

II. METHODS

1. The First-layer Calculation

Considering only the first chains, we obtained a set
of 7777 proteins from the PDB after removing identi-
cal protein sequences. The structures of these proteins
had all been determined by using X-ray crystallography
with a resolution better than 3.0 Å. The secondary struc-
tures of these proteins are determined using the DSSP
(Dictionary of Protein Secondary Structure) [18] routine.
Following the CASP standard, we reduced the original
eight-state classification into three-state one (G, H, I →
H: helix; B, E → E: extended; T, S, → C: coil).

The profiles of these proteins were generated by us-
ing a PSI-BLAST search (version 2.2.4, with default
option E = 0.001 and three iterations) for each tar-
get protein against the National Center for Biotech-
nology Information nonredundant sequence database
(ftp://ncbi.nlm.nih.gov/blast/db/). Each profile con-
sisted of a matrix of size Nseq × 20, where Nseq was the
length of the protein sequence and 20 corresponded to
the 20 amino-acid types. The elements of the profiles
came from the relative frequencies of the amino acids for
each residue position observed in the multiple sequence
alignment.

We then defined the pattern for each residue by con-
sidering seven neighboring residues to the left and to the
right of a given residue position, so that the size of the
window was 15. Thus, a pattern constituted a 15 × 21
matrix where 21 stands for the 20 amino-acid types plus
one indicating the vacancies at the N- and C-terminal
ends of the protein sequences. The database of patterns
generated from the set of 7777 proteins contains 1988085
patterns corresponding to all the residues in this set. We
call this database the first-layer database.

For comparison, we also constructed first-layer
databases based on reduced sets of proteins. One of
them was derived from the set of 4330 proteins obtained
by removing from 7777 proteins those homologous to the
members of the CB513 set with a SD score [12] higher
than 5. The other one was constructed by selecting 512
proteins from the CB513 set, which were then used for
the test prediction of one remaining protein in the CB513
set (See Results and Discussion).
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The distance between two patterns is defined by

Dij =
∑
k

Wk|P (k)
i − P (k)

j |, (1)

where P
(k)
i (k = 1, 2, . . . , 15 × 21) is the k-th compo-

nent of the pattern i, and {Wk} are the weight param-
eters. Since we expect the pattern components nearer
to the center residue to be more important in defining
the distance, we use as an initial guess for the weights
Wk = (8 − |8 − r|)2, where r (r = 1, 2, . . . , 15) is the
index labeling the residue position corresponding to the
k-th component. (For example, r = 8 corresponds to the
center residue.) We denote this parameter set as {W 0

k }.
Since we expect that the patterns close to one another

in the pattern space to share the identical secondary
structure, we enumerate all pairwise distances between
a query pattern and the patterns in the database, and
select the N -nearest patterns. We then simply count
the occurrences of helix (‘H’), extended (‘E’), and coil
(‘C’) patterns among these N patterns. The secondary
structure of a query pattern can be simply determined
by the majority rule in which the secondary structure
of the most occurrences is chosen for the prediction. We
call this procedure as a first-layer calculation. The cutoff
number N can be chosen suitably by trial and error. We
have used various values of N (See Results and Discus-
sion).

2. The Second-layer Calculation

A first-layer calculation alone may be used for predict-
ing the secondary structure of proteins. But we found
that we can significantly improve the efficiency of the
prediction by introducing the so-called second-layer cal-
culation, which is analogous to the one used in second-
level neural networks [11]. Namely, instead of applying
the majority rule from the occurrences of ‘H’, ‘E’, and
‘C’ one can construct another kind of pattern based on
the first-layer calculation in the following way:

For a given sequence, its profile is generated by using
PSI-BLAST, and the pattern for each residue is obtained
following the procedure described earlier. Then, the first-
layer enumeration is performed by comparing the query
pattern with those in the first-layer pattern database, as
described in the previous section.

The result of the first-layer calculation provides us
a three-state (H, E, C) frequency table for each query
residue. These frequency tables provide us with another
kind of pattern by considering a window of size 15 on
each residue. We call the resulting pattern the second-
layer pattern, which consists of 15 × 4 elements, where
the additional fourth column denotes vacancies at the
terminal ends of the sequences. Therefore, by perform-
ing the first-layer calculations for the protein residues
whose secondary structures are known, we construct the

database of the second-layer patterns, which we call the
second-layer pattern database.

In order to perform the second-layer calculation, we
first perform the first-layer calculation for a query residue
to obtain the corresponding second-layer pattern. Then
the calculation is performed in a fashion similar to that
used for the first-layer one by comparing the query
second-layer pattern with those of the second-layer pat-
tern database. The distance measure in the second-layer
pattern space is defined in a similar way as in the case
of the first-layer pattern space with a trivial difference in
the number of columns (4 vs. 21):

Dij =
∑
k

W̃k|S(k)
i − S(k)

j |, (2)

where S(k)
i (k = 1, 2, . . . , 15 × 4) is the k-th component

of the pattern i, and {W̃k} are the weight parameters.
We again use weights of W̃k = (8 − |8 − r|)2, where r
(r = 1, 2, . . . , 15) is the index labeling the position of
the residue corresponding to the k-th component. Using
this distance matrix, we select the N -nearest patterns for
the query residue. Then, the secondary structure of the
query residue is predicted following the majority rule and
using these N -nearest patterns. We used the same values
of N that were used in the first-layer calculation. We
find that applying the second-layer procedure improves
the performance of the prediction substantially over the
one based on the first-layer method alone (See Results
and Discussion).

3. Distance Measure and Weight Optimization

For the distance between two first-layer patterns, Eq.
(1), we use an initial guess for the the weights W 0

k =
(8 − |8 − r|)2, where r (r = 1, 2, . . . , 15) is the index
labeling the residue position corresponding to the k-th
component. Obviously, the parameter set {W 0

k } is not
the best one, and it would be desirable to seek a better
weight parameter set. Therefore, we optimize the param-
eters so that the success rate of our prediction increases
for a given set of proteins, which is the CB513 set in this
work. We first perform the first-layer calculation for each
residue in this set by using all the other residues in the
CB513 set to generate a pattern database. The method
of prediction used here for evaluating the performance
of the parameter set is slightly different from the one
described in other sections. We select three sets of 100
nearest patterns whose secondary structures are H, E,
and C. We calculate the average distances between the
patterns in each set and the query pattern, denoted by
DH , DE , and DC . We will use the secondary structure
corresponding to the least value among DH , DE , and
DC as the prediction. The fraction of residues of the
proteins in the CB513 set whose secondary structure is
correctly predicted using the initial parameter set {W 0

k }
is 71.0 %.
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In order to optimize the parameters, we first define the
gaps g1 and g2 as follows. Suppose that the secondary
structure of a given query residue is a helix. In this case,
the gaps are defined as

g1 = DH −DC ,

g2 = DH −DE .

For residues with secondary structures of E or C, the
gaps are defined in a similar way. It is obvious that for
a residue whose experimental secondary structure agrees
with the prediction, both g1 and g2 are negative. Here,
we want to change the parameters so that many residues
in the CB513 set are predicted correctly. We first select
residues whose correct secondary structures differ from
the prediction, and call the resulting subset as set A.
We define g = max(g1, g2) and choose the lower 10 %
(in the value of g) of the residues in the set A. We call
the resulting subset as set B. The residues in set B are
considered as the ones whose gaps can be easily converted
into negative values by parameter optimization. We then
minimize g for all residues in set B, one by one. For
each residue, the gaps are linear functions of the weight
parameters,

g1 =
∑
k

Wkd
k
1 ,

and
g2 =

∑
k

Wkd
k
2 ,

where the components dkj can be easily calculated from
the pattern elements. If g1 > g2, we increase the param-
eters {Wk} by an amount δWk:

δWk = −ε sign(dk1)Wk ,

where ε is a small positive number. Similarly, for g1 <
g2,

δWk = −ε sign(dk2)Wk .

We repeat this procedure 50 times for each residue in
set B. When all the residues in set B have been used
for parameter optimization, one iteration is completed.
We start the next iteration by evaluating the gaps of
all the residues in the CB513 set, selecting the residues
with incorrect secondary structure calculation results, se-
lecting the 10 % among them with the smallest gaps,
and minimizing these gaps. We perform 300 iterations
and call the resulting parameter set as {W 300

k }. We use
ε = 0.2/Npatt, where Npatt = 84119 is the number of
patterns in the CB513 set. After the parameter opti-
mization, the fraction of residues with negative gaps is
indeed, increased to Q3 = 73.1 % from the initial value
of Q3 = 71.0 % (See Results and Discussion for the def-
inition of Q3).

It should be noted that as we change the parameters
to minimize gaps for a particular residue, the gaps for
other residues might increase as a result. For this rea-
son, we use a very small value of ε, which is inversely

Fig. 1. Values of the parameters Wk for k = 1, 2, . . . , 15×
21 are plotted for {W 0

k } and {W 300
k }. We note that the pa-

rameter set {W 300
k } depends on the amino-acid type and on

the position from the center residue.

proportional to Npatt. Of course, to treat the problem
more rigorously, we might consider optimizing gaps for
a particular residue while imposing (linear) constraints
on the gaps of other residues. This results in an opti-
mization problem called linear programming, where the
object function and the constraints are all linear func-
tions. We could not pursue this line of investigation due
to the large computer memory requirement. Also, in
principle, one might consider a set of proteins that is
more extensive than the CB513 set, which would require
more extensive computational resources.

Since the parameter optimization was performed using
only the first-layer calculation on the CB513 set, {W 300

k }
is used only in the steps of the first-layer enumeration.
We show the values of the parameter sets {W 0

k } and
{W 300

k } in Fig. 1. We note that in contrast to the origi-
nal weights {W 0

k }, which depend only on the position of
the residue corresponding to the pattern element k from
the central residue, the optimized weights exhibit an ex-
plicit additional dependence on the amino-acid type.

III. RESULTS AND DISCUSSION

In this section, we use the Q3 score, Sov ( the Segment
OVerlap) measure [19], and the Matthews correlation co-
efficients [20] to evaluate the performance of PREDICT.
Q3 gives percentage of residues predicted correctly for
all three conformational states (H,E,C):

Q3 =
Ncor

Nres
, (3)

where Nres is the total number of residues, and Ncor is
the number of residues whose conformational states are
predicted correctly. Q3 in Eq. 3 can be calculated for
all the residues of the target proteins, denoted as Qr3,
or alternatively, it can be calculated for each protein se-
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quence and be averaged over the set of protein chains
with equal weights, which we denote as Qc3.

In order to define the Sov measure, we define the set
of overlapping segments with secondary structure i (=
H,E,C):

S(i) = {(s1(i), s2(i))|s1(i) ∩ s2(i) 6= ∅}, (4)

where (s1(i) and s2(i)) are pairs of observed and pre-
dicted secondary structure segments in conformational
state i (= H,E,C), which has at least one residue in com-
mon. S(i) is the set of all such pairs. Then, the Sov
measure is defined as

Sov =
1

Npair

∑
i∈{H,E,C}

∑
S(i)

[
minov(s1(i), s2(i)) + δ(s1(i), s2(i))

maxov(s1(i), s2(i))
· len(s1(i))

]
, (5)

where len(s1(i)) and len(s2(i)) are the numbers of
residues in the segments s1(i) and s2(i), respectively,
minov(s1(i)ands2(i)) are the lengths of actual overlap
of a given pair s1(i) and s2(i), maxov(s1(i)ands2(i)) are
the lengths of the total extent of the residues which be-
long to either s1(i) or s2(i), and

δ(s1, s2) = min[(maxov(s1, s2)−minov(s1, s2))
; minov(s1, s2); int(len(s1)/2); int(len(s2)/2)] (6)

Also, the normalization factor Npair is defined as:

Npair =
∑

i∈H,E,C

∑
S(i)

len(s1(i)) +
∑
S′(i)

len(s1(i))

 , (7)

where S′(i) is the set of observed segments s1(i) that has
no overlap with the predicted segments of the secondary
structure i.

The Matthews correlation coefficients are defined as
follows: For each of the conformational state H, E, and
C,

Ci =
(pini)− (uioi)√

(ni + ui)(ni + oi)(pi + ui)(pi + oi)
, (8)

where pi is the number of correctly predicted residues in
conformational state i (= H,E,C), ni is the number of
residues that are correctly identified as something other
than state i, oi is the number of residues that are not in
state i but are incorrectly predicted as in state i, and ui
is the number of residues in state i that are missed by
the algorithm.

1. CB513 Set

In order to test the performance of PREDICT, we
chose the 513 non-homologous proteins of the CB513 set.
We carried out three benchmark tests on the CB513 set.
In the first benchmark test (benchmark I), we used all
7777 sequences to construct the first-layer database and

used the 513 non-homologous protein sequences of the
CB513 set to construct the second-layer database.

Since the 7777 sequences include those which are ho-
mologous to the sequences in the CB513 set, we removed
them from the 7777 sequences. For this calculation, we
used the SD score defined by Cuff and Barton [12] as the
criterion for homology. This score is known to be more
rigorous than the usual criterion based on sequence iden-
tity [12]. In the 7777 sequences, those with SD scores
above 5.0 against any sequence in the CB513 set were
eliminated to obtain a set of 4330 sequences. In the
second benchmark test (benchmark II), we used these
4330 sequences to construct the first- and the second-
layer databases.

Finally, in the third benchmark test (benchmark III),
we constructed the first- and the second-layer databases
consisting of 512 sequences by excluding a test sequence
from the CB513 set, and we carried out the benchmark
prediction for this test sequence. This procedure was
repeated for each of the 513 sequences in the CB513 set.
It should be noted that for each of the 513 calculations,
we constructed separate databases of the first and the
second layers.

It should be noted that, in contrast to benchmark tests
II and III, the database for benchmark test I contains
sequences homologous to the query protein. In fact, in
an actual blind prediction such as CASP, we intend to
use any possible homology between the query sequence
and those in the database, so benchmark I estimates the
performance of PREDICT in such a situation, where the
performance is expected to be improved by using all 7777
proteins in the database.

In benchmark I, we paid special attention to exclude
the patterns coming from the query protein sequence in
the pattern database. The sequences in the CB513 set
were also used for optimizing parameters defining the
distance measure in pattern space. (One should not con-
fuse this procedure with the training procedure in neural
network-based method) The parameters optimized using
the CB513 set are called {W 300

k } whereas the unopti-
mized parameters are called {W 0

k } (See Methods). The
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Table 1. The PREDICT predictions of benchmark I for the CB513 set. Qr3 and Qc3 are the Q3 scores obtained by averaging
over 84199 residues and 513 chains, respectively. Also, CH , CE , and CC denote Matthews correlation coefficients for H, E, and
C, respectively, The column labelled as W 0 shows the results obtained using the initial parameter set, and the one below the
label W 300 shows the results obtained using the optimized parameters in the first-layer calculation (see text). The number N
denotes the number of closest patterns utilized for the prediction by the majority rule. We use the first-layer database based
on the 7777 proteins and the second-layer database based on the CB513 set.

first layer

W 0 W 300

N Qr3 Qc3 Sov CH CE CC Qr3 Qc3 Sov CH CE CC

1 88.1 84.7 79.0 0.75 0.74 0.72 88.3 85.1 78.8 0.76 0.75 0.72

10 82.1 79.4 71.5 0.65 0.63 0.63 82.6 80.1 71.0 0.67 0.63 0.64

20 79.0 76.9 68.0 0.60 0.58 0.58 79.7 77.7 68.3 0.62 0.59 0.60

30 77.8 75.9 67.8 0.58 0.56 0.56 78.3 76.5 67.1 0.60 0.56 0.57

40 76.7 75.0 67.0 0.57 0.55 0.55 77.5 75.9 66.8 0.59 0.55 0.56

50 76.0 74.5 66.3 0.56 0.53 0.54 76.9 75.5 66.3 0.58 0.54 0.56

60 75.4 74.1 66.1 0.55 0.53 0.54 76.4 75.0 66.2 0.57 0.54 0.55

70 75.1 73.8 65.9 0.54 0.52 0.53 76.1 74.7 66.0 0.57 0.53 0.54

80 74.8 73.6 65.8 0.54 0.51 0.53 75.9 74.7 66.0 0.57 0.52 0.54

90 74.5 73.4 65.5 0.53 0.51 0.52 75.7 74.5 66.2 0.57 0.52 0.54

100 74.3 73.3 65.9 0.53 0.51 0.52 75.4 74.3 66.3 0.56 0.52 0.54

200 73.1 72.2 65.5 0.51 0.49 0.50 74.3 73.4 65.8 0.55 0.50 0.52

300 72.3 71.4 65.1 0.50 0.48 0.49 73.6 72.8 65.7 0.54 0.49 0.51

400 71.8 70.9 64.8 0.49 0.47 0.48 73.2 72.3 65.7 0.53 0.48 0.50

500 71.6 70.8 64.7 0.49 0.48 0.48 73.0 72.0 65.5 0.52 0.48 0.50

second layer

W 0 W 300

N Qr3 Qc3 Sov CH CE CC Qr3 Qc3 Sov CH CE CC

1 91.8 90.3 86.1 0.84 0.83 0.81 90.2 87.8 83.0 0.81 0.78 0.76

10 89.8 87.3 84.1 0.80 0.76 0.76 89.9 87.7 84.3 0.81 0.76 0.76

20 86.9 84.6 81.6 0.75 0.70 0.71 87.2 85.1 82.1 0.76 0.70 0.71

30 85.5 83.4 80.4 0.73 0.68 0.68 85.8 83.8 80.9 0.74 0.68 0.69

40 84.6 82.6 79.7 0.72 0.67 0.67 85.0 83.0 80.1 0.72 0.67 0.68

50 83.9 81.9 79.1 0.70 0.66 0.65 84.3 82.5 79.3 0.71 0.66 0.67

60 83.4 81.4 78.5 0.69 0.65 0.65 83.6 81.9 78.7 0.70 0.65 0.66

70 82.8 80.8 77.8 0.68 0.64 0.64 83.0 81.3 78.3 0.69 0.64 0.64

80 82.3 80.5 77.5 0.67 0.63 0.63 82.5 80.9 78.0 0.69 0.63 0.64

90 81.6 79.8 77.0 0.66 0.62 0.62 81.9 80.4 77.4 0.68 0.62 0.63

100 80.3 78.8 75.9 0.64 0.60 0.60 80.3 78.8 75.9 0.64 0.60 0.60

200 77.9 76.8 74.0 0.61 0.56 0.56 77.9 76.8 74.0 0.61 0.56 0.56

300 76.5 75.5 72.9 0.58 0.54 0.54 76.5 75.5 72.9 0.58 0.54 0.54

400 75.8 74.8 72.3 0.57 0.52 0.53 75.8 74.8 72.3 0.57 0.52 0.53

500 75.2 74.4 71.9 0.57 0.51 0.52 75.2 74.4 71.9 0.57 0.51 0.52

benchmark results for the CB513 set are shown in Table
I. In the tables, N denotes the number of closest patterns
utilized for the prediction by using the majority rule, and
when {W 300

k } is used, it is used only for the first-layer
calculation (See Methods). All second-layer calculations
were carried out using {W 0

k }. Among the Q3 scores, Qr3

is the one obtained by averaging over the total number
of residues (84199) while Qc3 is the one obtained by av-
eraging over the number of chains (513). The slightly
larger values of Qr3 over those of Qc3 are due to the fact
that results for smaller-sized (less than 100 amino acids)
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Table 2. Results of the benchmark test II. The first-layer and the second-layer databases are constructed based on the 4330
proteins which are not homologous to the CB513 set.

benchmark II

layer first layer second layer

N Qr3 Qc3 Sov CH CE CC Qr3 Qc3 Sov CH CE CC

1 69.3 68.8 57.9 0.48 0.45 0.44 69.5 69.1 58.5 0.48 0.45 0.42

10 70.4 70.0 59.6 0.49 0.45 0.46 73.6 73.3 67.9 0.55 0.51 0.50

20 70.8 70.4 61.0 0.49 0.45 0.47 74.3 73.9 69.2 0.56 0.52 0.51

30 71.0 70.4 61.7 0.49 0.46 0.47 74.4 74.1 70.1 0.56 0.52 0.52

40 71.0 70.3 61.9 0.49 0.46 0.47 74.5 74.1 70.7 0.56 0.52 0.52

50 71.0 70.4 62.2 0.49 0.46 0.47 74.5 74.1 70.6 0.56 0.52 0.52

60 71.0 70.3 62.1 0.49 0.45 0.47 74.5 74.1 70.7 0.56 0.52 0.52

70 71.2 70.5 62.6 0.49 0.45 0.48 74.6 74.1 70.7 0.56 0.52 0.52

80 71.3 70.6 62.9 0.49 0.45 0.48 74.6 74.2 70.8 0.56 0.52 0.52

90 71.3 70.6 63.2 0.49 0.45 0.48 74.6 74.1 70.9 0.56 0.52 0.52

100 71.6 70.8 63.8 0.50 0.46 0.48 74.6 74.2 71.0 0.56 0.52 0.52

200 71.7 70.9 64.9 0.50 0.46 0.48 74.7 74.2 71.3 0.57 0.52 0.52

300 71.7 70.9 65.3 0.50 0.47 0.48 74.7 74.3 71.5 0.57 0.52 0.52

400 71.5 70.7 65.3 0.49 0.47 0.48 74.7 74.2 71.4 0.57 0.51 0.52

500 71.4 70.7 65.7 0.49 0.47 0.48 74.7 74.2 71.4 0.57 0.51 0.52

Table 3. Results of the benchmark test III. In this test, one protein in the CB513 is used in turn as a query protein, and
the first-layer and the second-layer databases are constructed based on the remaining 512 proteins of the CB 513 set. This
procedure was repeated 513 times, once for each protein in the set.

benchmark III

layer first layer second layer

N Qr3 Qc3 Sov CH CE CC Qr3 Qc3 Sov CH CE CC

1 61.8 61.6 49.4 0.35 0.33 0.31 65.2 64.6 53.1 0.40 0.37 0.34

10 69.1 68.8 59.7 0.46 0.44 0.44 72.0 71.6 65.1 0.52 0.47 0.47

20 70.1 69.8 62.6 0.47 0.45 0.46 72.9 72.5 67.7 0.53 0.49 0.49

30 70.5 70.1 63.7 0.48 0.45 0.46 73.2 72.8 68.6 0.54 0.49 0.49

40 70.6 70.2 64.5 0.48 0.46 0.46 73.4 72.8 68.8 0.54 0.49 0.50

50 70.7 70.3 64.7 0.48 0.46 0.47 73.4 72.9 69.1 0.54 0.49 0.50

60 70.7 70.3 64.9 0.48 0.46 0.47 73.5 73.0 69.4 0.55 0.49 0.50

70 70.8 70.3 65.1 0.48 0.46 0.47 73.5 73.0 69.5 0.54 0.49 0.50

80 70.8 70.3 65.3 0.48 0.46 0.47 73.5 73.0 69.4 0.54 0.49 0.50

90 70.9 70.4 65.3 0.48 0.46 0.47 73.5 73.0 69.6 0.55 0.49 0.50

100 70.9 70.4 65.4 0.48 0.46 0.47 73.5 73.1 69.7 0.55 0.49 0.50

200 70.8 70.4 65.8 0.48 0.46 0.47 73.4 72.9 69.7 0.54 0.49 0.50

300 70.6 70.0 65.5 0.47 0.45 0.47 73.4 72.8 69.6 0.55 0.49 0.50

400 70.5 69.9 65.0 0.47 0.45 0.46 73.3 72.7 69.5 0.55 0.49 0.49

500 70.3 69.7 65.1 0.46 0.45 0.46 73.2 72.6 69.4 0.54 0.49 0.49

sequences are poorer than those for bigger-sized ones.
We observe that the performance of the second-layer

prediction is consistently better than that of the first-
layer one by about 3 – 10 %. It should be noted that,
even with the unoptimized parameters {W 0

k }, the per-
formance of PREDICT is quite excellent. We also apply

the optimized parameter set {W 300
k } in order to check

whether the parameter was optimized properly, and we
find the efficiency of the parameter set {W 300

k } for defin-
ing the distance measure to be only slightly better than
that of {W 0

k }. The histograms for the Q3 and the Sov
scores for N = 100 are shown in Fig.2. We use the op-
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Fig. 2. Second-layer prediction (with parameters {W 300
k }

in the first-layer calculation) for the CB513 set: (a) histogram
of Q3 scores for N = 100, and (b) histogram of Sov scores for
N = 100.

timized parameter set {W 300
k } for the predictions of the

CASP5 targets (see the next subsection).
We tried various values of N and found that using N =

1 gave the best performance for benchmark I. However,
we believe this result is due to the fact that there are
proteins in the database which are homologous to the
query protein; thus using N = 1 corresponds to selecting
the most homologous protein. In fact, in the case of
benchmark tests II and III (see below), where proteins
homologous to the query protein were removed from the
database, the performance of PREDICT did not improve
as we decreased the value of N below around 100.

For a more stringent evaluation of our calculations,
we used exclusively {W 0

k } for all benchmark tests below
(benchmarks II and III of Tables II and III). In bench-
mark II, using the set of 4330 sequences, the best per-
formance for the second-layer calculation with N = 200,
where Qr3 = 74.7, Qc3 = 74.3, Sov = 71.5, CH = 0.57,
CE = 0.52, and CC = 0.52. The CPU time for the pre-
diction was less than 10 seconds per residue on average,
using an AMD MP2200 1.8 GHz CPU. In benchmark III,
where the databases were constructed separately for each
sequence in the CB513 set, the best performance was
obtained for the second-layer calculation with N = 100,
where Qr3 = 73.5, Qc3 = 73.1, Sov = 69.7, CH = 0.55,
CE = 0.49, and CC = 0.50.

2. CASP5 Targets

In order to obtain the performance of PREDICT in
a blind test on sequences with unknown structures, we
participated in CASP5 (http://predictioncenter.llnl.gov/
casp5/pubResultS) (group ID:531) and applied the the
PREDICT procedure to the CASP5 targets. We used the
optimized parameter set {W 300

k } with N = 100, and we
used the CB513 set for the second-layer pattern database
due to the time constraint for submiting our results to
CASP5 on time. The average Qr3 score was 77.55 %, the
average Qc3 score for 55 targets was 78.09 % with stan-
dard deviation of 7.24 %, and the average Sov score was
77.38 % with the standard deviation of 9.75 %; the av-
erage Matthews coefficients for H, E, and C were 0.68,
0.65, and 0.58, with standard deviations 0.14, 0.17, and
0.12, respectively. After CASP5, we repeated the cal-
culation using the 7777 proteins, instead of CB513 set,
as the second-layer pattern database, and we obtained
an average Qr3 score of 77.66 %, an average Qc3 score of
78.12 % with standard deviation of 7.66 %, and an av-
erage Sov score of 77.63 % with a standard deviation of
10.30 %; the average Matthews coefficients for H, E, and
C were 0.68, 0.65, and 0.59 with standard deviations of
0.14, 0.17, and 0.13, respectively. We observe that the
performance of PREDICT improves only slightly as we
expand the size of the second-layer pattern database.

IV. CONCLUSION

We have presented a new method for predicting the
secondary structure of proteins, PREDICT, based on the
concept of the distance measure in the pattern space. To
the best of our knowledge, this is the first time that the
nearest-neighbor idea has been applied to the patterns
generated from PSI-BLAST. The results from the CB513
set and the 55 CASP5 targets have shown that the per-
formance of PREDICT is quite promising.

It would also be interesting to probe the geometry of
the entire pattern space with respect to the distance mea-
sure and to the many islands of the three subspaces cor-
responding to the ‘H’, ‘E’, and ‘C’. This would require
an understanding of the local and the global-clustering
properties of these subspaces. In addition, the effective
dimensions for these subspaces should be investigated.
Understanding these features should lead to further im-
provements in PREDICT.

ACKNOWLEDGMENTS

This work was supported by grant No. R01-2003-
000-11595-0 (Sung Jong Lee and Jooyoung Lee) and
No. R01-2003-000-10199-0 (Julian Lee) from the Basic



Prediction of the Secondary Structures of Proteins by Using PREDICT· · · – Keehyoung Joo et al. -1449-

Research Program of the Korea Science & Engineering
Foundation.

REFERENCES

[1] D. Baker and A. Sali, Science 294, 93 (2001).
[2] P. Aloy, A. Stark, C. Hadley and B. R. Russel, Proteins

53, 436 (2003).
[3] K. Joo, J. Lee, S.-Y. Kim, I. Kim, J. Lee and S. J. Lee,

J. Korean Phys. Soc. 44, 599 (2004).
[4] J. Sim, S.-Y. Kim, J. Lee and A. Yoo, J. Korean Phys.

Soc. 44, 611 (2004).
[5] M. Heo, S. Kim, E.-J. Moon, M. Cheon, K. Chung and

I. Chang, J. Korean Phys. Soc. 44, 1571 (2004).
[6] J. Lee, S.-Y. Kim, K. Joo, I. Kim and J. Lee, Proteins

56, 704 (2004).
[7] P. Y. Chou and G. D. Fasman, Biochemistry 13, 222

(1974).
[8] J. Garnier, D. J. Osguthorpe and B. Robinson, J. Mol.

Biol. 120, 97 (1978).

[9] B. Rost and C. Sander, J. Mol. Biol. 232, 584 (1993).
[10] A. A. Salamov and V. V. Solovyev, J. Mol. Biol. 247, 11

(1995).
[11] D. T. Jones, J. Mol. Biol. 292, 195 (1999).
[12] J. A. Cuff and G. J. Barton, Proteins 34, 508 (1999).
[13] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. H. Zhang,

Z. Zhang, W. Miller and D. J. Lipman, Nucl. Acids. Res.
25, 3389 (1997).

[14] T. Shimizu, J. Korean Phys. Soc. 40, 1072 (2002).
[15] S. Fujiki, M. Nakao and N. M. Fujiki, J. Korean Phys.

Soc. 40, 1091 (2002).
[16] T. M. Yi and E. S. Lander, J. Mol. Biol. 232, 1117

(1993).
[17] J. M. Levin, Protein Eng. 10, 771 (1997).
[18] W. Kabsch and C. Sander, Biopolymers 22, 2577 (1983).
[19] A. Zemla, C. Venclovas, K. Fidelis and B. Rost, Proteins

34, 220 (1999).
[20] B. W. Matthews, Biochim. Biophys. Acta. 405, 442

(1975).


