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We propose a nearest neighbor method of pattern recognition which is based on a weighted
distance measure between patterns derived from profiles. There are a few new ingredients to the
proposed method, compared to the conventional nearest neighbor methods. The distance measure
is defined as a weighted sum of each pattern component, and the weight parameters are optimized.
We introduce a second-layer prediction procedure analogous to that in neural network methods.
We first construct a pattern database, where the classification of each pattern is already known.
Prediction for a query pattern is performed by examining patterns close to it. We apply the
proposed method to predict the protein secondary structure of the proteins in the CB513 set and
29 proteins from CASP5 in blind fashion. We find that the performance of our approach, especially
with the second-layer prediction, is almost comparable to the state-of-the-art method based on
neural network methods.

PACS numbers: 05.10.−a, 42.30.Sy, 89.75.Kd, 87.14.Ee
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I. INTRODUCTION

Pattern recognition is an important problem in sci-
ence and technology, with applications to a wide range of
fields including data classification, image analysis, speech
analysis, etc. [1, 2]. It is also very important in bioin-
formatics, where a huge amount of biological informa-
tion is to be analyzed. Various algorithms such as near-
est neighbor methods [3], Bayesian statistics methods [4]
and neural network methods [5–8] have been applied to
pattern recognition problems.

In this paper, we introduce a novel nearest neighbor
method. Our method distinguishes itself from earlier
implementations of nearest neighbor methods. First,
the distance measure is not a simple Euclidean measure,
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but a weighted one where the weights have some mono-
tonic dependence on internal indices of patterns. Second,
we can optimize the weight parameters defining the dis-
tance measure in the pattern space by using a training
set. Third, we incorporate a regression-like process of
reduction of the feature space, which is analogous to the
second-layer prediction in neural network methods. We
find that these features, especially the second-layer pre-
diction scheme, significantly improve the efficiency of our
method.

As a first application of our pattern recognition
method, we predict the secondary structure of a given
protein. First, we construct the pattern database con-
sisting of about two million patterns. Then, we apply
our method to the CB513 set with 513 non-homologous
proteins (http://www.compbio.dundee.ac.uk/∼www-
jpred/data/) for benchmarking and 29 CASP5 targets
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(http://predictioncenter.llnl.gov/casp5/) for blind tests,
and find that the prediction results are excellent.

II. NEAREST NEIGHBOR METHOD

The basic idea of the nearest neighbor method [3] is
as follows. First, one constructs a pattern database from
patterns with known classification, DM = {(Xi, Yi), 1 ≤
i ≤M}, where Xi is a pattern with class Yi. Then, the N
nearest neighbors closest to a pattern X with unknown
classification are identified as

{(X1, Y1), · · · , (XN , YN )}, (1)

by using a distance measure d(Xi, Xj) between Xi and
Xj . The class that appears most frequently among the
N nearest neighbors,

Y = majority(Y1, · · · , YN ), (2)

is predicted for X.
In order to use nearest neighbor methods, it is impor-

tant to generate patterns with an appropriate distance
measure, so that the patterns with identical classifica-
tions are clustered in small regions of the pattern space.
With such a suitable definition of patterns and a dis-
tance measure, nearest neighbor methods can extract
more information hidden inside a given pattern by in-
cluding many patterns with known classification. The
reasoning behind this is as follows: It is a well known fact
that biological sequences such as amino-acid sequences or
DNA sequences are not random, and consequently, the
patterns generated from these sequences would occupy
only a small portion of the pattern space, compared to
those generated from random sequences. Therefore, it is
reasonable to imagine that these patterns form islands in
the pattern space, where each island consists of patterns
of identical classification. In the conventional pattern
recognition methods such as neural networks, it is crucial
to prepare a non-homologous training set of biological se-
quences in order to avoid biased outcomes [9]. Inclusion
of highly homologous sequences in the training set often
leads to worse performance in these methods. This is
due to the fact that the neural network is a sort of global
classifier in that the whole pattern space is divided by a
mapping function with many parameters. The inclusion
of many homologous sequences would change the values
of parameters; this has a long-range (global) influence
on the classifying boundaries that may adversely affect
the classification. On the other hand, nearest neighbor
methods can be considered as local methods in that only
nearby patterns influence the classification of a query
pattern. Therefore, pattern recognition based on near-
est neighbors does not suffer from the inclusion of highly
homologous sequences (Fig. 1).

1. Protein Secondary Structure and Patterns

Fig. 1. Schematic figure in the pattern space, comparing
the nearest neighbor method with other pattern recognition
methods such as neural networks. The letters H and E denote
patterns from a non-homologous set of proteins, correspond-
ing to helix and extended secondary structures, respectively.
The letter Q denotes a query pattern with an extended con-
formation. (a) Many pattern recognition methods use these
conformations as a training set and construct a boundary
between helices and extended conformations. The addition
of redundant patterns corresponding to helices, denoted by
h1 and h2, may adversely affect the prediction, due to the
shift of the boundary as schematically indicated by an arrow
in the figure. (b) In the nearest neighbor method, the sec-
ondary structure is predicted by enumerating all patterns in
the database to determine patterns close in distance to the
query pattern, which are enclosed by a circle in the figure.
Therefore, the presence of h1 does not affect the prediction
result, whereas that of h2 increases the chance that the query
pattern is incorrectly predicted as a helix.

Here we consider, as an example of patterns and near-
est neighbor methods, the problem of predicting pro-
tein secondary structure. Proteins are polymers (chain
molecules) built from 20 basic units, called amino acids.
The function and biological role of a protein are mainly
determined by its three-dimensional geometric structure
in its native state. It is well known that native structure
is determined solely by the amino-acid sequence infor-
mation [10]. It is, therefore, a very important task to
predict the tertiary structure of a protein, based on the
sequence information alone. However, this kind of ab
initio prediction has not yet been successful to the level
of practical applicability.

A less ambitious attempt is to predict, instead of the
full 3-D structure, so-called secondary structure elements
of local residues (amino acids) that represent local struc-
tural information, such as α-helix, β-strand and coil. Re-
liable prediction of protein secondary structure can serve
as an intermediate step toward determining protein ter-
tiary structure. For this reason, much research effort
[11–14] has been made for the determination of protein
secondary structure. Predicting the secondary structure
of a protein from its sequence is a typical pattern recog-
nition problem.

There are many proteins with distinct sequences which
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Fig. 2. Definition of the pattern of a residue on the pro-
file by considering a window centered at the residue. For a
window size of 15, the pattern is a 15× 21 matrix, where 21
stands for 20 amino-acid types plus one indicating vacancies
at terminal ends of sequences.

share common secondary structures. Therefore, it is im-
portant to find a pattern which represents common fea-
tures of local environments of protein residues sharing
the same secondary structure. For this purpose, one of
the most powerful tools available at present is the so-
called PSI-BLAST (http://ncbi.nlm.nih.gov/BLAST/)
[15]. A rough sketch of steps of PSI-BLAST is as fol-
lows. First, for a given sequence, similar sequences are
searched from a sequence database using a score func-
tion [16]. Thus obtained similar sequences are used to
produce substitution frequencies of each residue into 20
different types of amino acids. These tables of substi-
tution frequencies are again used to search the sequence
database for recruiting further similar sequences. These
newly recruited sequences are now added to the already
obtained similar sequences to generate a new table of
substitution frequencies. These processes are repeated
until no new sequences are found with a preset level of
similarity. In this way, we find the final table of sub-
stitution frequencies which is the position-specific score
matrix (PSSM), also called the profile [17,18]. By per-
forming these kinds of iterative searches, PSI-BLAST is
known to find distantly related sequences that are often
missed in the initial search.

The profile of a sequence contains information on com-
mon features of related sequences. Based on the profile,
we define the pattern for each residue by considering
seven neighboring residues to the left and to the right of
the given residue position, so that the size of the window
becomes 15 (Fig. 2). Each pattern contains information
on the local environment of a given residue. The concept
of this pattern has been used for secondary structure pre-
diction by using neural networks [9,14]. In this work, it is
used for the first time in the context of nearest neighbor
methods.

The Protein Data Bank (PDB) consists of about
22,000 proteins whose structures have been determined
by X-ray crystallography or NMR methods. We con-
struct a pattern database by using the set of 7,777 pro-
teins from the Protein Data Bank (http://www.rcsb.org)
after removing identical sequences, considering only the

first chains. The structures of these proteins are all de-
termined by X-ray crystallography with resolution better
than 3.0 Å. The secondary structure element for a given
local residue can be determined by looking into the pat-
terns of hydrogen bonds and geometric features. One of
the most widely accepted criteria is the so-called DSSP
(Definition of Secondary Structure of Proteins) [19]
which automatically generates (from the tertiary struc-
tures) an unambiguous and physically meaningful state
of secondary structures of proteins. Actually, the origi-
nal DSSP produces an eight-state classification which, in
usual secondary structure predictions, is reduced to three
states (H: α-helix, E: β-strand and C: coil). The profiles
of 7,777 proteins are generated by PSI-BLAST (with de-
fault option E = 0.001 and three iterations) for each pro-
tein against the NR (nonredundant) sequence database
(ftp://ncbi.nlm.nih.gov/blast/db/). The resulting pat-
tern database contains 1,988,085 patterns, which we call
the first-layer database.

2. The First-layer Prediction

The distance between two patterns is defined by

Dij =
∑
k

W 0
k |P

(k)
i − P (k)

j |, (3)

where P
(k)
i (k = 1, 2, . . . , 15 × 21) is the k-th compo-

nent of the pattern i, and {W 0
k } are the weight parame-

ters. Since we expect the pattern components nearer to
the center residue to be more important in defining the
distance, we use weights W 0

k = (8 − |8 − r|)2, where r
(r = 1, 2, . . . , 15) is the index labeling the residue posi-
tion corresponding to the k-th component.

We enumerate all pairwise distances between a query
pattern and all the patterns in the database, and select
the N nearest patterns. We then simply count the oc-
currences of H, E and C among these N patterns. The
secondary structure of a query pattern can be determined
simply by the majority rule that the secondary structure
of the most occurrences is chosen for the prediction. We
call this procedure the first-layer prediction. The cutoff
number N can be chosen suitably by trial and error.

3. The Second-layer Prediction

We introduce the second-layer prediction, which is
more efficient than the first-layer prediction. Namely, in-
stead of applying the majority rule from the occurrences
of H, E and C, one can construct another kind of pattern
based on the first-layer calculation in the following way.
The result of the first-layer prediction provides us with
a three-state (H, E, C) frequency table for each query
residue. These frequency tables provide us with another
kind of pattern by considering a window of size 15 on
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each residue. We call the resulting pattern the second-
layer pattern, which consists of 15 × 4 elements, where
the additional fourth column is used to denote vacancies
at the terminal ends of sequences. Therefore, by per-
forming the first-layer calculations for protein residues
whose secondary structures are known, we construct the
database of the second-layer patterns, which we call the
second-layer pattern database. Because of an enormous
amount of computational resources required to include
all 7,777 protein sequences (1,988,085 residues), we use
the CB513 set (84,119 residues) to construct the second-
layer database. No two proteins in the CB513 set share
more than 25 % sequence identity.

In order to perform the second-layer prediction, we
first perform the first-layer prediction for a query residue
to obtain the corresponding second-layer pattern. Then,
the prediction is performed by comparing the query
second-layer pattern with those of the second-layer pat-
tern database. The distance measure is again defined
by

Dij =
∑
k

W̃k|S(k)
i − S(k)

j |, (4)

where S(k)
i (k = 1, 2, . . . , 15 × 4) is the k-th component

of the pattern i, and W̃k = (8 − |8 − r|)2. Using this
distance measure, we select the nearest N patterns for
the query residue. Then, the secondary structure of the
query residue is predicted following the majority rule by
using these nearest N patterns. We use the same value
of N that is used in the first-layer calculation. Applying
the second-layer procedure improves the Q3 score (the
percentage of correctly predicted residues in sequences
of known structure) of the prediction substantially over
the one based on the first-layer method alone. One might
consider repeating a similar procedure again (this would
constitute the third-layer prediction), which we do not
carry out in this work.

4. Weight Optimization

For the distance between two first-layer patterns,
Eq. (3), we use the initial weightsW 0

k = (8−|8−r|)2. The
parameter {W 0

k } is not the best one, and it would be de-
sirable to seek better weight parameters. Therefore, we
optimize the parameters so that the success rate of our
prediction increases for a given set of proteins, called a
training set. We choose the CB513 set as the training set.
We first perform the first-layer prediction for each residue
in this set, by using all the other residues in the CB513
set to generate a pattern database. We select three sets
of 100 nearest patterns whose secondary structures are
H, E, and C. We calculate the average distances between
the patterns in each set and the query pattern, denoted
by DH , DE , and DC . We will use the secondary struc-
ture corresponding to the least value among DH , DE ,

and DC as the prediction. The fraction of residues of
the proteins in the training set whose secondary struc-
ture is correctly predicted by using the initial parameters
{W 0

k } is 71.0 %.
In order to optimize the parameters, we first define the

gaps g1 and g2 as follows. Suppose that the secondary
structure of a given query residue is a helix. In this case,
the gaps are defined as:

g1 = DH −DC , g2 = DH −DE . (5)

For residues with secondary structures of E or C, the
gaps are defined in a similar way. It is obvious that, for
a residue whose experimental secondary structure agrees
with the prediction, both g1 and g2 are negative. Here,
we want to change the parameters so that many residues
in the training set are predicted correctly. We first select
residues whose correct secondary structures differ from
the prediction, and call the resulting subset set A. We de-
fine g = max(g1, g2), and choose the lowest 10 % (in the
value of g) of the residues in set A. We call the resulting
subset set B. The residues in set B are considered as the
ones whose gaps can be easily converted into negative
values by parameter optimization. We then minimize g
for all residues in set B, one by one. For each residue,
the gaps are linear functions of the weight parameters,

g1 =
∑
k

Wkd
k
1 , g2 =

∑
k

Wkd
k
2 , (6)

where the components dkj can be easily calculated from
the pattern elements. If g1 > g2, we increase the param-
eters {Wk} by the amount of δWk:

δWk = −ε sign(dk1)Wk, (7)

where ε is a small positive number. Similarly, for g1 < g2,

δWk = −ε sign(dk2)Wk. (8)

We repeat this procedure 50 times for each residue in set
B. When all residues in set B have been used for param-
eter optimization, one iteration is completed. We start
the next iteration by evaluating the gaps of all residues
in the training set, selecting the residues with incorrect
secondary structure prediction results, selecting the 10 %
among them with the smallest gaps and minimizing these
gaps. We have performed 300 iterations, and call the re-
sulting parameters {W 300

k }. We have used ε = 0.2/Np,
where Np = 84, 119 is the number of patterns in the
training set. After the parameter optimization, the frac-
tion of residues with negative gaps has increased to Q3

= 73.1 % from the initial value of Q3 = 71.0 %.
It should be noted that, as we modify parameters to

minimize gaps for a particular residue, the gaps for other
residues might increase as a result. For this reason we
use a very small value of ε, inversely proportional to
Np. Of course, to treat the problem more rigorously, we
might consider optimizing gaps for a particular residue
while imposing (linear) constraints on the gaps of other
residues. This results in an optimization problem where
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Table 1. Prediction results on the CB513 set (averaged
over 84,199 residues). Q0

3 and Q300
3 denote the Q3 scores

for predictions by using the initial parameters W 0 and the
optimized parameters W 300, respectively. N is the number
of nearest patterns utilized for prediction by the majority
rule.

layer first layer second layer

N 100 200 300 400 500 100 200 300 400 500

Q0
3 74.3 73.1 72.3 71.8 71.6 80.3 77.9 76.5 75.8 75.2

Q300
3 75.4 74.3 73.6 73.2 73.0 80.6 78.3 77.2 76.5 76.1

Fig. 3. Q3 scores as a function of the length of protein
sequences (the number of residues) for all 513 proteins in the
CB513 set. We have used N = 100 and the optimized weight
parameters W 300

k .

the object function and constraints are all linear func-
tions, called linear programming. We could not pursue
this line of investigation, due to the large computer mem-
ory requirement. Also, in principle, one might consider a
training set containing a more extensive number of pro-
teins than is included in the CB513 set. This would
require more extensive computational resources.

III. SECONDARY STRUCTURE
PREDICTION

In order to test the performance of our method, we
have applied it to secondary structure prediction on the
CB513 set. Since most proteins in the CB513 set are in-
cluded in the pattern database, we paid special attention
to the exclusion of the patterns coming from the query
sequence in the pattern database, for fair benchmarking.
The benchmark results for the CB513 set are shown in
Table 1, where {W 300

k } is used for the first-layer calcu-
lation. All second-layer calculations are carried out by
using {W 0

k }.
We observe that the performance of the second-layer

prediction is consistently better than that of the first-
layer one by about 5 %. It should be noted that, even

Table 2. Prediction results on 29 CASP5 targets.

Target Length Q3(Total) Q3(C) Q3(H) Q3(E)

T0129 170 76.47 75.00 77.27 100.00

T0130 100 82.00 65.85 92.31 95.00

T0133 293 77.47 67.86 81.64 50.00

T0137 133 91.73 97.22 75.00 93.51

T0138 135 74.07 61.90 91.67 70.83

T0139 62 62.90 63.64 62.50 100.00

T0141 187 72.19 81.25 70.45 41.94

T0142 280 73.21 70.80 89.36 68.75

T0146 299 63.21 62.15 77.05 52.46

T0147 244 85.66 80.18 96.70 76.19

T0148 162 79.63 75.51 87.69 72.92

T0149 317 79.50 85.16 82.11 69.15

T0150 97 79.38 76.47 75.00 94.74

T0153 134 83.58 80.00 50.00 90.91

T0159 309 79.61 88.50 78.68 65.00

T0160 126 81.75 84.75 58.33 83.64

T0165 318 83.96 88.46 82.11 78.46

T0169 156 75.64 71.88 84.09 72.92

T0170 69 88.41 77.78 95.24 100.00

T0172 295 77.63 75.68 86.23 56.52

T0182 249 85.94 94.39 94.67 62.69

T0183 247 78.14 73.49 83.46 70.27

T0184 240 82.50 82.54 84.97 66.67

T0185 457 81.84 79.80 94.87 66.02

T0186 363 74.66 78.34 84.85 59.81

T0187 417 82.01 75.98 88.89 81.58

T0188 107 83.18 88.64 80.65 78.12

T0189 319 84.33 81.75 90.52 79.22

T0190 111 92.79 90.74 100.00 94.00

Mean (by chain) 79.77

Mean (by residue) 79.50

with the initial parameters {W 0
k }, the performance is

quite excellent. In fact, based on the results of the CB513
set and the CASP5 targets, the efficiency of the param-
eters {W 300

k } is only slightly better than that of {W 0
k }.

As a whole, we find that the second-layer prediction with
N = 100 using the optimized parameters {W 300

k } in the
first-layer calculation gives the best performance of the
Q3 score (80.6 %). Fig. 3 shows the Q3 scores as a func-
tion of the length of protein sequences (the number of
residues) for all 513 proteins in the CB513 set. The
query patterns of the proteins with the low Q3 score are
generally located rather far from those in the pattern
database, implying that these patterns are relatively iso-
lated in the pattern space. That is, the local environ-
ments of these residues are quite different from those in
the pattern database.

We also worked in CASP5 and applied our method
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to predict the secondary structure of CASP5 targets in
blind fashion. The results are summarized in Table 2.
We used the optimized parameters {W 300

k } with N =
100. The average Q3 score (averaged by the number
of chains) for 29 targets is 79.77 %, with a standard
deviation of 6.8 %.

IV. CONCLUSION

We have presented a nearest neighbor method for pat-
tern recognition based on a weighted distance measure
between patterns generated from profiles. By imple-
menting the second-layer pattern space and profiles, the
performance of the prediction is shown to increase signif-
icantly. We have also optimized the weight parameters
used for the definition of the distance measure, which
slightly enhances the performance of the method. We
applied this method to the secondary structure predic-
tion of proteins. The performance on the CB513 set and
the CASP5 targets is quite impressive, and almost com-
parable to the state-of-the-art method based on neural
network methods [9].
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