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ABSTRACT A novel method for ab initio predic-
tion of protein tertiary structures, PROFESY (PRO-
File Enumerating SYstem), is proposed. This method
utilizes the secondary structure prediction informa-
tion of a query sequence and the fragment assembly
procedure based on global optimization. Fifteen-
residue-long fragment libraries are constructed us-
ing the secondary structure prediction method
PREDICT, and fragments in these libraries are as-
sembled to generate full-length chains of a query
protein. Tertiary structures of 50 to 100 conforma-
tions are obtained by minimizing an energy func-
tion for proteins, using the conformational space
annealing method that enables one to sample di-
verse low-lying local minima of the energy. We apply
PROFESY for benchmark tests to proteins with
known structures to demonstrate its feasibility. In
addition, we participated in CASP5 and applied
PROFESY to four new-fold targets for blind predic-
tion. The results are quite promising, despite the
fact that PROFESY was in its early stages of develop-
ment. In particular, PROFESY successfully pro-
vided us the best model-one structure for the target
T0161. Proteins 2004;56:704-714. o 2004 Wiley-Liss, Inc.
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INTRODUCTION

Determination of the unique tertiary (three-dimen-
sional) structure of a protein from its amino-acid sequence
alone is one of the most important and challenging prob-
lems in modern biology. The information on the tertiary
structure of a protein is quite crucial in understanding the
function and biological role of the protein. Currently,
genome-sequencing projects are producing an unprec-
edented amount of linear amino-acid sequences. An expo-
nential growth of protein sequence database in recent
years by far outpaces the experimental determination of
protein tertiary structures. Therefore, in the field of pro-
tein structure investigation, it becomes increasingly more
popular to resort to computational methods as a comple-
mentary approach to the experimental structure determi-
nation. However, prediction of protein tertiary structures
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still remains as a long-standing challenge in computa-
tional biology.'—3

The most successful methods for protein structure predic-
tion are the so-called knowledge-based methods such as
comparative (or homology) modeling and fold recognition
(or threading).’® These methods make direct use of experi-
mentally determined structures, for example, those in the
protein data bank (PDB). When the amino-acid sequence
of a target protein with an unknown structure is related to
those of one or more proteins with known structures, the
structures are similar. To find this relation, the first step
in protein structure prediction is to find out if the sequence
of the target protein is homologous to other sequences in a
sequence database. Next, if homologous sequences are
found, then multiple sequence alignment procedure is
performed with these homologues plus the target se-
quence. The multiple sequence alignment defines a posi-
tion-specific scoring matrix (PSSM), which facilitates the
search of sequences that have weak homology with the
target protein sequence.*

If there is an experimental structure (that is, a tem-
plate) for a homologue with a relatively high sequence
similarity (typically more than 30% of sequence identity),
comparative modeling methods®°*€ are applied for predict-
ing the tertiary structure of the target protein. In compara-
tive modeling, the target sequence is aligned to tem-
plate(s), and then all atom structures of the target protein
are produced after filling in alignment gaps and properly
orienting side chains.

If there exist no obvious homologues, fold recognition
methods'”27 can be used to search for a distant homo-
logue or an analogous fold. In a fold recognition approach,
the tertiary structure of the target protein is predicted by
threading the target sequence through each of the struc-
tures in a database of known folds. Each sequence struc-
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ture alignment is assessed by a specially designed se-
quence structure fitness function (often called a pseudo-
energy function). The necessary condition for a reasonable
performance of knowledge-based methods is that there
should exist a sequence with a known structure that is
related to the target sequence.

When homologous or weakly homologous sequences
with known structures are not available, we turn to ab
initio methods (or new fold methods).??#~4° The ab initio
protein structure prediction is based on the thermody-
namic hypothesis*! that states that the native structure of
a protein corresponds to the global minimum of its free
energy for its physiological environment. However, ab
initio methods based on the thermodynamic hypothesis
can be truly successful only when both an accurate energy
function and an efficient global-optimization method for
searching the energy landscape are simultaneously avail-
able. Although much progress has been made in this
field,?° 32 successful ab initio prediction still remains a
challenging and unsolved problem.'~3?® For this reason,
most ab initio methods use information on known struc-
tures to some degree. To refer to these methods, Moult et
al.2 have suggested to use the term “new fold methods”
rather than using the traditional term “ab initio methods.”

One of the popular trends in the new-fold methods is to
determine the tertiary structure of a target protein by
assembling fragments generated from the protein data
bank (PDB). The effect of the short-range interactions are
incorporated by using the fragments from the PDB, and
only long-range interaction terms are included in the
energy function, which are minimized in order to find
conformations with optimal tertiary packing.®3-36 In this
report, we introduce an approach based on fragment
assembly, PROFESY (PROFile Enumerating SYstem).
This method utilizes the information obtained from the
secondary structure prediction method PREDICT (PRofile
Enumeration DICTionary).*? For a given protein se-
quence, PREDICT uses a sequence comparison method,
PSI-BLAST,* to generate its profile, which defines pat-
terns for its amino acid residues. Each pattern spanning
fifteen residues is compared with those in the pattern
database generated from the PDB, and the patterns close
to the query pattern are selected to determine the second-
ary structure of the query residue. In order to construct the
tertiary structure, we collect the backbone dihedral angles
of these patterns, which constitute the fragment library of
the residue under consideration. Tertiary structures of a
given sequence can be generated from these libraries by
fragment assembly.

The energy function we use includes the number of
long-range hydrogen bonds, the radius of gyration, and the
Lennard-Jones interactions for avoiding steric clashes.
Replacement of fragments is carried out so that the energy
function is locally minimized (see Methods). The global
minimization of the energy function is performed by the
conformational space annealing (CSA) method*?~*® that
has played an integral role in the recent success of the
hierarchical energy-based approach to protein structure
prediction.?° 32 The CSA method enables one to sample
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diverse low-lying local minima of a given function. There-
fore, PROFESY is in contrast to other fragment-based
prediction methods®33® where only the simulated anneal-
ing (SA) method has been applied instead of more rigorous
conformational search methods. Although the SA is easier
to be implemented to a particular system, its sampling
efficiency is far less powerful compared to CSA.*%*7 The
PROFESY is unique in that the procedure of local energy
minimization by fragment replacement is defined, so that
a powerful global optimization method CSA can be readily
utilized.

As benchmark tests, we applied PROFESY to proteins
with known structures, and we found that the results are
quite promising. In addition, we participated in the CASP5
experiment (http:/predictioncenter.llnl.gov/casp5/) and ap-
plied PROFESY to four new-fold targets for blind predic-
tion. The results are promising, despite the fact that
PROFESY was in its very early stages of development. In
particular, PROFESY has provided us the best model-one
structure for the target T0161.

METHODS
Construction of Fragment Libraries

The fragment libraries used in PROFESY are con-
structed using the recently proposed secondary structure
prediction method PREDICT.*?> For each residue of a
query sequence, a window of size fifteen is considered,
where the center of the window is located on the residue
under consideration. The fragment library of this residue
is the collection of 20 backbone structures of the correspond-
ing 20 nearest patterns in the pattern database of
PREDICT. After constructing fragment libraries for all
residues of a query sequence, full-length chain conforma-
tions can be constructed by assembling fragments in these
libraries. Since the only selection criterion for fragments in
a library is the similarity of their profile patterns to that of
the corresponding query residue, the amino acid composi-
tion of fragments does not agree with that of the query
sequence. Therefore, at this stage of the current method,
side-chains are not constructed and we cannot blindly add
explicit solvation energy terms at an atomic level.

Generation of Random Conformations

Random conformations are built from N- to C-terminal.
Since the size of each fragment is 15 residues, we first
consider fragment library corresponding to the eighth
residue, and pick a fragment randomly from it. Next we
randomly pick a second fragment from the library corre-
sponding to the ninth residue. The first and second frag-
ments have 14 overlapping residues. Among these resi-
dues, we inspect whether there is any residue whose
dihedral angles are similar to each other in these two
fragments. Two sets of dihedral angles (¢, U;) and (b, )
are considered to be similar to each other if either

b1 — sl = 30° and |g, — @5 = 30° (1)
or

|b1 — dof + @1 — @9 = 45° (2)
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If we find such a residue, then the second fragment is
joined smoothly to the first one starting from this residue.
If we cannot find such a residue, then another fragment is
picked from the library, and this process is repeated until
we find a fragment that can be joined smoothly to the first
fragment. The third fragment is picked from the library
corresponding to the tenth residue, and the whole process
of picking and smoothly joining fragments continues until
a full-length chain is constructed up to the C-terminal end.
If, at any stage of the chain buildup process, we cannot find
a fragment that can be joined smoothly to the previous one,
then the previous fragment is replaced by another one in
the corresponding library, and the process of fragment
assembly is continued.

Fragment Replacement and the Local Minimization
of the Energy

A conformation is locally minimized with respect to the
energy (see The Energy Function) by randomly selecting a
residue and attempting to replace a part of the 15-residue-
long fragment of the chain by another one in the correspond-
ing library. A new fragment can be inserted smoothly to
the existing chain if at least two residues RI, R2 in this
fragment (one from the N-terminal end and another one
from the C-terminal end) have their dihedral angles
similar to those of their neighboring fragments, where the
criterion of the similarity is again the satisfaction of either
Eq. 1 or Eq. 2. In this case, the part of the new fragment
from the residue R1 to the residue R2 replaces the
corresponding part of the existing chain to generate a
conformation. If this conformation is lower in energy than
the existing one, the former replaces the latter. This
process is continued either for 10 Nseq times, where Nseq
is the length of the protein, or until the update attempts
fail for Nseq consecutive times, whichever is encountered
first.

Global Search Using Conformational Space
Annealing Method

Low-lying local minimum-energy conformations are ob-
tained by a powerful global optimization algorithm, a
conformational space annealing (CSA) method**~*5 that
has played an integral role in the recent success of the ab
initio energy-based approach for protein structure predic-
tion.?° 32 The uniqueness of the CSA method lies in the
way it controls the diversity of the conformations in the
bank. In order to efficiently find the global minimum
without getting trapped in local minima, it is important to
sample wide regions of the conformational space with less
emphasis on obtaining low-energy conformations in early
stages. We gradually shift the emphasis from maintaining
the diversity of the sampling to obtaining low-energy
conformations. For this, we introduce an annealing param-
eter Dcut (a cutoff distance in the conformational space)
that plays the role of temperature in simulated annealing,
hence the name “conformational space annealing.” The
diversity of sampling is directly controlled in CSA by
introducing a distance measure D(A,B) between two confor-
mations A and B and comparing it with Dcut. As a CSA
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TABLE 1. PROFESY Prediction Results for Proteins With
Known Structures'
betanova
Protein
Model 1 2 3 4 5
RMSD (A) 3.6 3.1 32 5.7 6.8
1fsd
Protein
Model 1 2 3 4 5
RMSD (A) 42 4.7 46 40 6.6
1bdd
Protein
Model 1 2 3 4 5
RMSD (A) 8.9 9.0 44 75 48
1bk2
Protein
Model 1 2 3 4 5
RMSD (A) 2.3 25 5.0 3.7 3.6

"The model numbers are the ranks of these conformations in terms of
the score function.

run proceeds, the value of Dcut is slowly reduced just as in
the simulated annealing.

Here, we briefly mention how a CSA run proceeds. We
first randomly generate a certain number of initial confor-
mations (for example, 100) whose energies are subse-
quently minimized by the fragment replacement proce-
dure described earlier. We call the set of these
conformations the first bank. We make a copy of the first
bank and call it the bank. The conformations in the bank
are updated in later stages, whereas those in the first bank
are kept unchanged. Also, the number of conformations in
the bank is kept unchanged when the bank is updated. We
then choose a certain number of conformations (seeds)
from the bank and perturb them by replacing parts by the
corresponding parts of conformations randomly chosen
from the first bank or the bank. The energies of these
conformations are subsequently minimized in order to
obtain new trial conformations that can be used to update
the bank. A newly obtained local minimum-energy confor-
mation « is compared with those in the bank to decide how
the bank should be updated. One first finds the conforma-
tion A in the bank that is the closest to the conformation «
with the distance D(«,A). If D(«,A) < Dcut, the conforma-
tion a is considered as being more or less similar to the
conformation A. In this case, the conformation with
the lower energy among A and « is kept in the bank and
the other one is discarded. However, if D(a,A) >
Dcut, the conformation « is regarded as being distinct from
all the other conformations in the bank. Therefore, the
conformation with the highest energy among the bank
conformations plus the conformation « is discarded and
the rest are kept in the bank.

The Dcut is reduced, and seeds are selected from the
bank conformations that are not used as seeds yet, to
generate new trial conformations. When all the conforma-
tions in the bank are used as seeds, one round of iteration
is completed. We remove the record of bank conformations
having been used as seeds, and start a new round of
iteration. After these steps are repeated for a preset
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b

Fig. 1. The superposition of a-carbon traces of PROFESY results (gray) with their native structures (red). They are the closest conformation among
the five prediction candidates, and also the closest conformations among the 100 bank conformations sampled from CSA except for 1bk2 (see text). The
results are shown for (a) betanova, (b) 1fsd, (¢) 1bdd, and (d) 1bk2. Prepared with the program MOLMOL.5'
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Figure 1. (Continued)

number of iterations, we conclude that our procedure has
reached a deadlock. When this happens, we enlarge the
search space by adding more random conformations into
the bank. We repeat the whole procedure until a conforma-
tion with lower energy than a preset value is found.

The Energy Function

The energy function used for the global optimization
(and for local minimization) is given by E = Evdw -100Nhb
when the radius of gyration Rg is below the radius cutoff
Rcut and E = Rg otherwise. Here, Evdw is the Lennard-
Jones 6-12 van der Waals energy of the CHARMM force-
field*® in the TINKER package (http:/dasher.wustl.edu/
tinker/), introduced in order to avoid steric clashes. Nhb is
the number of hydrogen bonds between residues, which
are at least five residues apart in sequence. It should be
noted that short-range hydrogen bonds are already fa-
vored by the fact that they are present in a-helical
fragments. Therefore, it is not necessary to include short-
range hydrogen bond energy terms. A hydrogen bond is
assumed to exist when an amide hydrogen atom and a
carboxyl oxygen atom are placed within 2.24 A from each
other. We used the value of radius cutoff®® Rcut = (3Nseq/
0.026)Y3/1.2.

We also used an additional solvent accessible surface
area solvation energy term®® to the CHARMM forcefield
for CASP5 target T0129. Since proteins do not have
side-chains in our method, blindly adding the solvation
term to our models had a disastrous effect of exposing
naked hydrophilic backbone atoms to the surface of a
protein. We realized this only after submitting models for
T0129 and did not use this solvation term for the other
targets.

Clustering and Ranking Conformations for
Structure Prediction

The CASP allows predictors to submit up to five models
as prediction. Therefore, we select five distinct low-lying
local minimum-energy conformations by grouping the

final bank conformations into five clusters and choosing
their representative conformations. We have used our own
source code for this purpose, where the k-mean clustering
algorithm®® was implemented. To choose the representa-
tive conformation for each cluster, all bank conformations
are ranked according to a score function based on the
exposed volume with reduced radius independent Gauss-
ian sphere approximation.®® This score function is differ-
ent from the energy function used in the CSA search, and
favors the burial of hydrophobic residues and the exposure
of hydrophilic residues. This score function is introduced to
complement the weakness of our procedure, that the effect
of solvent-side chain interaction is not incorporated into
the energy function used in the conformational search by
CSA. Throughout this report, the function used in the
conformational search by CSA is called “energy,” and the
one used for ranking the final conformations obtained by
CSA is called “score.”

For each cluster, the conformation with the best score is
chosen as its representative. However, for the CASP5
targets T0129, T0161, and T0162, the conformations at the
centers of clusters are selected instead.

RESULTS AND DISCUSSION

To test the performance of PROFESY, we have applied
it both to the calculation of the tertiary structures
of proteins with known structures, and to the blind
prediction of proteins from the recent CASP5 targets
(http://predictioncenter.llnl.gov/casp5/; group ID: 531).
Since the application to the CASP5 targets had to be
performed within a deadline and since the procedures of
PROFESY were being developed during the CASP5
experiments, relatively primitive versions of our proto-
col were applied to CASP5 targets, whereas for the
proteins with known structures, we applied an improved
one. In particular, the hydrogen bond term was absent
in the energy for CASP5 targets of T0129, T0161, and
T0162.
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Fig. 2. The maximum number of residues that can be superposed with the native structure (horizontal axis) versus the distance cutoff for the
superposition, in angstrom (vertical axis), for the CASP5 target T0O161 (http:/predictioncenter.linl.gov/casp5/pubResultS/CASP_PLOTS/GDT/
T0161TS531_1.html). The blue and cyan lines are the results for model one and the other four models predicted by PROFESY, respectively, whereas
the orange lines are from the other predictors. The PROFESY model-one structure ranks as the third overall. When only model ones are considered, it is
the best (http://predictioncenter.linl.gov/casp5/pubResultS/CASP_BROWSER/DATA.html/3d_T0161.html).

Test Results on Proteins With Known Structures

We first discuss the performance of the PROFESY for
proteins with known structures. They are betanova (20
residues),?! 1fsd (28 residues),?® the fragment B of staphy-
lococcal protein A (PDB ID 1bdd, 46 residues),”® and
A-Spectrin Sh3 Domain D48G Mutant (PDB ID 1bk2, 57
residues).’* The a-carbon root-mean-square deviation
(RMSD) of the representative conformation of each cluster
from the native structure is shown in Table I. However, for
1bdd, the conformation with the best score, model one, has
quite a large RMSD value of 8.9 A, due to the fact that the
parameters in the score function were determined by
crude guesses without optimization. The closest predic-
tions among the five candidates are of RMSD values 3.1,
4.0, 4.4, and 2.3 A from their native structures for bet-
anova, 1fsd, 1bdd, and 1bk2, respectively. These struc-
tures are also the closest conformations among the final
bank conformations (100 of them in this work) sampled by
the CSA search, except for 1bk2 where a structure with the
RMSD value of 1.1 A exists in the final bank. The a-carbon
traces of these models are compared with those of the
native structures in Figure 1. As seen from Figure 1, the
predictions are quite close to their native structures,
demonstrating the performance of PROFESY.

Blind Prediction on CASP5 Targets

In order to obtain the performance of PROFESY in blind
tests on sequences with unknown structures, we partici-
pated in CASP5 (group ID: 531) and applied the PROFESY
procedure to four new-fold targets, and obtained rather
promising results. According to the CASP5 assessment,
which was performed after the experimental structures of
target proteins had been provided, there are five new-fold
targets, which are T0129 (HI0187, H. influenzae, 182
residues), T0149_2 (domain 2 of yjiA, Escherichia coli,
residues 203-318), T0161 (HI1480, H. influenzae, 156
residues), T0162_3 (domain 3 of 286-residue protein F
actin capping protein a1 subunit, chicken, residues 114—
281), and T0181 (Hypothetical protein YHR087w, S. cerevi-
siae, 111 residues). Among them, the target T0161 is the
most difficult one to predict according to the CASP5
evaluators, having no homologues of any kind, even in
sequence databases. For multi-domain proteins, it would
be ideal that we first split the proteins into domains and
calculate the structure of each domain separately. How-
ever, we could not implement this procedure in time for
CASP5, and we applied our procedure to the whole se-
quences of target proteins. Since rigorous conformational
search of proteins over 300 residues was not feasible due to
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Fig. 3. The conformation from PROFESY (model one) for the CASP5 target T0161 is shown. When only model ones are considered, it is the best.
The native structure is not shown because it is not yet publicly available. Prepared with the program MOLMOL.®"

practical reasons, we did not attempt to calculate the
structures of 318-residue protein T0149. Even though we
submitted models for the remaining four new-fold targets,
our method has illustrated quite promising performance
as a whole, as shown by the evaluation at the CASP5
meeting (http://predictioncenter.llnl.gov/casp5/; group ID:
531).

The results for the target T0161 are especially promis-
ing, as shown in Figure 2, where the maximum number of
residues that can be superposed with the native structure
is plotted as a function of the cutoff defining the superposi-
tion. Among the five models we submitted, the model one is
closest to the native structure, and it ranks as the third
among all the models submitted by predictors, which is
about one thousand models. If only the model ones are
considered, our model one is the best (http:/prediction-
center.llnl.gov/casp5/pubResultS/CASP_BROWSER/
DATA html/3d_T0161.html). However, this result is far
from satisfactory in an absolute sense; the C* RMSD of the
whole chain is 16.5 A. The conformation of the model one is
shown in Figure 3. The native structure is not shown since
it is not yet publicly available. The native secondary
structures of residues 15-18, 115, 116, 119, 120, 123-128,
146-148 are assigned as extended according to the three-
state classification. In our prediction, they appear as
extended segments that are not close enough to be paired.
In fact, we need long-range hydrogen bonds between
fragments in order to obtain conformations with B-strands,
which were absent in the energy terms used for this target.

We also obtained relatively good results for the target
T0162. The results for the target T0129 are not as good,
probably due to the fact that we included an additional
solvent accessible surface area solvation term®® in the
energy function used in the CSA search, only for this
target (see Methods). The results for T0181 are not as good
as others. In this case, most of the bank conformations
were similar to each other after the CSA search was
terminated. We think that since the energy terms we used
during the CSA run were rather incomplete due to the fact
that they did not incorporate the effect of hydrophobic
burial and hydrophilic exposure of side chains, most of the
good conformations were removed in the early stages of the
CSA calculation.

PDB CAFASP

We have performed additional test runs on eight PDB
CAFASP targets (http://bioinfo.pl/PDBCafasp/). We have
selected targets that are monomers, since our methods do
not yet include the effect of intermolecular interactions.
We also restricted our study to the proteins less than 110
amino acid long, since rigorous application of PROFESY to
larger proteins requires a huge amount of computational
resources. In addition, we selected proteins with e-values
for both PSI-BLAST and BLAST greater than 0.1, in order
to concentrate on low sequence-homology targets. They are
1kkg (108aa), 1kwi (101laa), Imfw (107aa), 1ny4 (82aa),
107b (98aa), lowt (66aa), 1gxf (66aa), and 1lucp (91aa). The
results are shown in Figures 4 and 5, where the minimum
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Fig. 4. The minimum value of RMSD in angstrom (vertical) versus the number of contiguous residues superposed with the native structure
(horizontal). We compare the results of PROFESY (red) with those of the state-of-the-art method ROBETTA (green). We see that PROFESY shows a
promising performance. The results are shown for (a) 1kkg (5 models), (b) 1kwi (4 models), (¢) 1mfw (5 models), and (d) 1ny4 (10 models).

value of RMSD is plotted as a function of the number of
continuous residues superposed with the native structure.
We compare the results with those of ROBETTA.?® We
chose the same number of models as the ROBETTA
results, being five for 1kkg and 1mfw, four for 1kwi and
1lo7b, and ten for the rest. Although ROBETTA outper-
forms PROFESY in six out of eight cases, the overall
performance of PROFESY is quite promising, considering
the fact that the energy and score functions used in
PROFESY are still in their early stages of development.

CONCLUSION

In this work, we have introduced a novel method
PROFESY for the prediction of protein tertiary structure,
based on the fragment assembly and the rigorous conforma-
tional search by the conformational space annealing
method. We applied this method to four new-fold targets in
CASP5 for blind tests, which clearly demonstrates the
promising performance of PROFESY. The PROFESY is

also applied to proteins with known structures where 2—4
A structures from the native structures are obtained.
Although the method is in its early stages of development,
these results illustrate quite a promising performance of
PROFESY. The method is still under development and
there exists much room for further improvement.

First of all, due to the fact that our models do not have
side-chains, we could not use all-atom solvation terms
directly. We have to incorporate solventside chain interac-
tion terms indirectly. This goal may be achieved by build-
ing CPatoms and introducing a pairwise interaction term
between them, whose strength depends on the types of
amino acids. We have not implemented this term directly
in the energy function used in the CSA procedure, but used
them only in the score function to select five best conforma-
tions from the final bank. In the case of the target T0181,
the absence of solvent side-chain interaction had a disas-
trous effect that good conformations were removed from
the bank during the early stages of the CSA procedure. We
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Fig. 5. The minimum value of RMSD in angstrom (vertical) versus the number of contiguous residues superposed with the native structure
(horizontal). We compare the results of PROFESY (red) with those of the state-of-the-art method ROBETTA (green). We see that PROFESY shows a
promising performance. The results are shown for (a) 107b (4 models), (b) 1owt (10 models), (c) 1gxf (10 models), and (d) 1ucp (10 models).

will have to incorporate the indirect solvation term into
the energy used in the CSA.

Secondly, the relative weights of various energy terms
were set in a totally arbitrary fashion. We have to optimize
the values of these parameters using proteins with known
structures, in such a way that our method predicts correct
native structures for as many proteins as possible with
optimized parameters.®”~¢°

Admittedly, despite recent rapid progresses of fragment-
based methods, the performance of ab initio protein struc-
ture prediction is currently far behind that of knowledge-
based methods such as comparative modeling, which are
the methods of choice when target proteins are homolo-
gous to those in the PDB. We believe that one of the main
limitations of current fragment-based methods in the
literature is that the conformational sampling is per-
formed by algorithms that can be rather inefficient for
complicated systems. PROFESY is the method that incor-
porates a powerful global optimization algorithm, CSA

method, into a fragment-based method. It shows promis-
ing performances despite the fact that the energy and score
functions are extremely crude. This suggests that by com-
bining an accurate energy function and the CSA search
method, one may develop a powerful structure prediction
method for new-fold targets, bringing us one step closer to
biologically useful applications.

ACKNOWLEDGMENTS

This work was supported by grant R01-2003-000-
11595-0 (Jooyoung Lee) and R01-2003-000-10199-0 (Julian
Lee) from the Basic Research Program of the Korea
Science & Engineering Foundation.

REFERENCES

1. Moult J, Hubbard T, Fidelis K, Pedersen JT. Critical assessment
of methods of protein structure prediction (CASP): round III.
Proteins 1999;(Suppl)3:2—6.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

PROTEIN STRUCTURE PREDICTION USING PROFESY

. Moult J, Fidelis K, Zemla A, Hubbard T. Critical assessment of

methods of protein structure prediction (CASP): round IV. Pro-
teins 2001;(Suppl)5:2-7.

. Baker D, Sali A. Protein structure prediction and structural

genomics. Science 2001;294:93-96.

. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller

W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res 1997;25:
3389-3402.

. Browne WJ, North ACT, Phillips DC, Brew K, Vanaman TC, Hill

RL. A possible three-dimensional structure of bovine alpha-
lactalbumin based on that of hen’s egg-white lysozyme. J Mol Biol
1969:42;65-86.

. Greer J. Comparative model building of the mammalian serine

proteases. J Mol Biol 1981;153:1027-1042.

. Blundell TL, Sibanda BL, Sternberg MJE, Thornton JM. Knowl-

edge-based prediction of protein structures and the design of novel
molecules. Nature 1987;326:347-352.

. Havel TF, Snow ME. A new method for building protein conforma-

tions from sequence alignments with homologues of known struc-
ture. J Mol Biol 1991;217;1-7.

. Levitt M. Accurate modeling of protein conformation by automatic

segment matching. J Mol Biol 1992;226:507-533.

Sali A, Blundell TL. Comparative protein modeling by satisfaction
of spatial restraints, J Mol Biol 1993;234:779-815.

Bower M, Cohen FE, Dunbrack RL. Sidechain prediction from a
backbonedependent rotamer library: a new tool for homology
modeling. J Mol Biol 1997;267:1268-1282.

Yang AS, Honig B. Sequence to structure alignment in compara-
tive modeling using PrISM. Proteins 1999;(Suppl)3:66-72.

Fiser A, Do RKG, Sali A. Modeling of loops in protein structures.
Protein Sci 2000;9:1753-1773.

Kolinski A, Betancourt MR, Kihara D, Rotkiewicz P, Skolnick
J. Generalized Comparative Modeling (GENECOMP): a combina-
tion of sequence comparison, threading, lattice and off lattice
modeling for protein structure prediction and refinement. Pro-
teins 2001;44:133-149.

Bates PA, Kelley LA, MacCallum RM, Sternberg MJE. Enhance-
ment of protein modeling by human intervention in applying the
automatic programs 3D-JIGSAW and 3D-PSSM. Proteins 2001;
(Suppl)5:39—-46.

Venclovas C. Comparative modeling of CASP4 target proteins:
combining results of sequence search with three-dimensional
structure assessment. Proteins 2001;(Suppl)5:47-54.

Jones DT, Taylor WR, Thornton JM. A new approach to protein
fold recognition. Nature 1992;358:86—89.

Sippl MdJ. Knowledge-based potentials for preteins. Curr Opin
Struct Biol 1995;5;229-235.

Jones DT, Thornton JM. Potential energy functions for threading.
Curr Opin Struct Biol 1996;6:210-216.

Sippl MdJ, Flockner H. Threading thrills and threats. Structure
1996;4;15-19.

Bohm G. New approaches in molecular structure prediction.
Biophys Chem 1996;59:1-32.

Jernigan RL, Bahar I. Structure-derived potentials and protein
simulations. Curr Opin Struct Biol 1996;6:195-209.

Torda AE. Perspectives in protein-fold recognition. Curr Opin
Struct Biol 1997;7:200—-205.

Koretke KK, Russell RB, Lupas AN. Fold recognition from se-
quence comparisons. Proteins 2001;(Suppl)5:68-75.

Murzin AG, Bateman A. CASP2 knowledge-based approach to
distant homology recognition and fold prediction in CASP4.
Proteins 2001;(Suppl)5:76 —85.

Karplus K, Karchin R, Barrett C, Tu S, Cline M, Diekhans M,
Grate L, Casper J, Hughey R. What is the value added by human
intervention in protein structure prediction? Proteins 2001;
(Suppl)5:86-91.

Williams MG, Shirai H, Shi J, Nagendra HG, Mueller J, Mizugu-
chi K, Miguel RN, Lovell SC, Innis CA, Deane CM, Chen L,
Campillo N, Burke DF, Blundell TL, de Bakker PIW. Sequence-
structure homology recognition by iterative alignment refinement
and comparative modeling. Proteins 2001;(Suppl)5:92-97.

Lesk AM, Conte LL, Hubbard TJP. Assessment of novel fold
targets in CASP4: predictions of three-dimensional structures,
secondary structures, and interresidue contacts. Proteins 2001;
(Suppl)5:98-118.

Lee J, Liwo A, Scheraga HA. Energy-based de novo protein folding

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

713

by conformational space annealing and an off-lattice united-
residue force field: application to the 10-55 fragment of staphylo-
coccal protein A and to apo calbindin D9K. Proc Natl Acad Sci
1999;96:2025-2030.

Lee J, Liwo A, Ripoll DR, Pillardy J, Scheraga HA. Calculation of
protein conformation by global optimization of a potential energy
function. Proteins 1999;(Suppl)3:204-208.

Lee J, Liwo A, Ripoll DR, Pillardy J, Saunders JA, Gibson KD,
Scheraga HA. Hierarchical energy-based approach to protein-
structure prediction: blind-test evaluation with CASP3 targets.
Int J Quant Chem 2000;77:90-117.

Liwo A, Lee J, Ripoll DR, Pillardy J, Scheraga HA. Protein
structure prediction by global optimization of a potential energy
function. Proc Natl Acad Sci 1999;96:5482-5485.

Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein
tertiary structures from fragments with similar local sequences
using simulated annealing and Bayesian scoring functions. J Mol
Biol 1997;268:209 -225.

Simons KT, Strauss C, Baker D. Prospects for ab initio protein
structural genomics. J Mol Biol 2001;306:1191-1199.

Bonneau R, Tsai J, Ruczinski I, Chivian D, Rohl C, Strauss CEM,
Baker D. Rosetta in CASP4: progress in ab initio protein structure
prediction. Proteins 2001;(Suppl)5:119-126.

Jones DT. Predicting novel protein folds by using FRAGFOLD.
Proteins 2001;(Suppl)5:127-132.

Standley DM, Eyrich VA, An Y, Pincus DL, Gunn JR, Friesner RA.
Protein structure prediction using a combination of sequence-
based alignment, constrained energy minimization, and struc-
tural alignment. Proteins 2001;(Suppl)5:133-139.

Xu D, Crawford OH, LoCascio PF, Xu Y. Application of PROS-
PECT in CASP4: characterizing protein structures with new folds.
Proteins 2001;(Suppl)5:140—-148.

Skolnick J, Kolinski A, Kihara D, Betancourt M, Rotkiewicz P,
Boniecki M. Ab initio protein structure prediction via a combina-
tion of threading, lattice folding, clustering, and structure refine-
ment. Proteins 2001;(Suppl)5:149-156.

Kihara D, Lu H, Kolinski A, Skolnick J. Touchstone: an ab initio
protein structure prediction method that uses threading based
tertiary restraints. Proc Natl Acad Sci 2001;98:10125-10130.
Anfinsen CB. Studies on the principles that govern the folding of
protein chains. Science 1973;181:223-230.

Joo K, Lee J, Kim SY, Kim I, Lee SJ, Lee J. Profile-based nearest
neighbor method for pattern recognition. J Korean Phys Soc
2004;44:599-604.

Lee J, Scheraga HA, Rackovsky S. New optimization method for
conformational energy calculations on polypeptides: conforma-
tional space annealing. J Comp Chem 1997;18:1222-1232.

Lee J, Scheraga HA, Rackovsky S. Conformational analysis of the
20-residue membrane-bound portion of melittin by conforma-
tional space annealing. Biopolymers 1998;46:103-115.

Lee J, Scheraga HA. Conformational space annealing by parallel
computations: extensive conformational search of met-enkephalin
and the 20-residue membrane-bound portion of melittin. Int J
Quant Chem 1999;75:255-265.

Kim SY, Lee SJ, Lee J. Conformational space annealing and an
off-lattice frustrated model protein. J Chem Phys 2003;119:10274—
10279.

Lee J, Lee IH, Lee J. Unbiased global optimization of Lennard-
Jones clusters for N=201 using conformational space annealing
method. Phys Rev Lett 2003;91:0802011-0802014.

MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck
JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, JosephMcCarthy D,
Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T,
Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M,
Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera
dJ, Yin D, Karplus M. All atom empirical potential for molecular
modeling and dynamics studies of proteins. J Phys Chem B
1998;102:3586-3616.

McQueen J. Some methods for classification and analysis of
multivariate observations. In: LeCam LM, Neyman J, editors.
Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability. Volume I, Statistics. University of
Califormia Press.

Auspurger JD, Scheraga H. An efficient, differentiable hydration
potential for peptides and proteins. J Comp Chem 1996;17:1549—
1558.

Kortemme T, Ramirez-Alvardo M, Serrano L. Design of a 20-



714

52.

53.

54.

55.

56.

57.

amino acid, three-stranded B-sheet protein. Science 1998;281:253—
256.

Dahiyat BI, Mayo SL. De novo protein design: fully automated
sequence selection. Science 1997;278:82—87.

Gouda H, Torigoe H, Saito A, Sato M, Arata Y, Shimada I.
Three-dimensional solution structure of the B domain of staphylo-
coccal protein A: comparisons of the solution and crystal struc-
tures. Biochemistry 1992;31:9665-9672.

Martinez JC, Pisabarro MT, Serrano L. Obligatory steps in
protein folding and the conformational diversity of the transition
state. Nat Struct Biol 1998;5:721-729.

Ooi T, Oobatake M, Nemethy G, Scheraga HA. Accessible surface
areas as a measure of the thermodynamic parameters of hydra-
tion of peptides. Proc Natl Acad Sci 1987;84:3086-3090.

Chivian D, Kim DE, Malmstrom L, Bradley P, Robertson T,
Murphy P, Strauss C, Bonneau R, Rohl CA, Baker D. Automated
prediction of CASP5 structures using the Robetta server. Proteins
2003;53:524-533.

Lee J, Ripoll DR, Czaplewski C, Pillardy J, Wedemeyer WJ,

58.

59.

60.

61.

J.LEE ET AL.

Scheraga HA. Optimization of parameters in macromolecular
potential energy functions by conformational space annealing. J
Phys Chem B 2001;105:7291-7298.

Pillardy J, Czaplewski C, Liwo A, Wedemeyer WJ, Lee J, Ripoll D,
Arlukowicz P, Oldziej S, Arnautova YA, Scheraga HA. Develop-
ment of physics-based energy functions that predict medium-
resolution structures for proteins of the «, B, and o/f structural
classes. J Phys Chem B 2001;105:7299-7311.

Lee J, Park K, Lee J. Full optimization of linear parameters of a
united residue protein potential. J Phys Chem B 2002;106:11647—
11657.

Liwo A, Arlukowicz P, Czaplewski C, Oldziej S, Pillardy J,
Scheraga HA. A method for optimizing potential-energy functions
by a hierarchical design of the potential-energy landscape: applica-
tion to the UNRES force field. Proc Natl Acad Sci 2002;99:1937—
1942.

Koradi R, Billeter M, and Wuthrich K. MOLMOL: a program for
display and analysis of macromolecular structures. J Mol Graph
1996;14:51-55.



