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Abstract

We propose a novel method for ab-initio prediction of protein tertiary structures based on the fragment assembly and global optimization.

Fifteen residue long fragment libraries are constructed using the secondary structure prediction method PREDICT, and fragments in these

libraries are assembled to generate full-length chains of a query protein. Tertiary structures of 50 to 100 conformations are obtained by

minimizing an energy function for proteins, using the conformational space annealing method that enables one to sample diverse low-lying

local minima of the energy. Then in order to enhance the performance of the prediction method, we optimize the linear parameters of the

energy function, so that the native-like conformations become energetically more favorable than the non-native ones for proteins with known

structures. We test the feasibility of the parameter optimization procedure by applying it to the training set consisting of three proteins: the

10–55 residue fragment of staphylococcal protein A (PDB ID 1bdd), a designed protein betanova, and 1fsd.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The prediction of the unique tertiary (three-dimensional)

structure of a protein from its amino-acid sequence alone is

one of the most important and challenging problems in

biophysical chemistry today. The information on the tertiary

structure of a protein is quite crucial in understanding the

function and biological role of the protein. Popular

approaches to this problem include comparative modeling

[1–5] and fold recognition [6–9], which are classified as

knowledge-based methods [5,10,11]. These methods use

statistical information on sequences and their three-dimen-

sional structures, in structural databases such as Protein

Data Bank (PDB), to predict the unknown structure of a

protein. Obviously, these methods can be used only when

the amino-acid sequence of a target protein with unknown
0301-4622/$ - see front matter D 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.bpc.2004.12.046

* Corresponding author.

E-mail address: jlee@kias.re.kr (J. Lee).
structure is related to those of one or more proteins with

known structures.

On the other-hand, when homologous or weakly homol-

ogous sequences with known structures are not available,

we turn to new fold (or ab initio) methods [5,13–26], which

include energy-based methods. Energy-based methods are

based on the thermodynamic hypothesis [27] that the native

structure of a protein corresponds to the global minimum of

its free energy for its physiological environment. However,

although much progress has been made in energy-based

methods [14–17], successful prediction of protein structure

solely from the potential energy function still remains as a

challenging problem. For this reason, most of recent new

fold prediction methods use information on known struc-

tures to some degree. One of the popular trends among such

methods is to determine the tertiary structure of a target

protein by assembling fragments generated from the protein

data bank (PDB). The effect of the short-range interactions

is incorporated by using fragments from the PDB, and only

long-range interaction terms are included in the energy
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function, which are minimized in order to find conforma-

tions with optimal tertiary packing [18–21].

As in pure energy-based methods, there are two crucial

elements for successful application of the fragment-based

method for structure prediction, which are an accurate

energy (or score) function and a powerful optimization

algorithm for finding low-energy conformations. In a

previous paperprofesy, we have introduced a fragment-

based protein structure prediction method PROFESY

(PROFile Enumerating SYstem), which utilizes the frag-

ment library obtained from the secondary structure pre-

diction method PREDICT (PRofile Enumeration

DICTionary) [28,29]. In contrast to earlier methods where

only simple sampling algorithms such as the simulated

annealing method are used for generating low-energy

conformations, PROFESY applies a powerful global opti-

mization algorithm, conformational space annealing (CSA)

[30–34], sykim, jul1 for sampling low-energy conforma-

tions. However, the energy function used was rather

primitive partly due to the fact that the solvent effect was

not properly incorporated. Moreover, various parameters in

energy terms were set by crude guesses. Although some

promising results were obtained from the benchmark tests of

PROFESY, which is believed to be mainly due to the high

efficiency of the sampling method, it is necessary to

construct a reasonably accurate energy function for suc-

cessful application of PROFESY to the protein structure

prediction.

In this work, we address this problem by incorporating

the solvation effect indirectly, by building Ch atoms and

introducing a pairwise interaction term between them,

whose strength depends on the types of the amino-acids in

contact. Also, various parameters of the energy function are

optimized in a systematic manner.

In fact, an iterative procedure which systematically

refines the parameters of a given potential energy function

was recently proposed [35] in the context of the energy-

based method of protein structure prediction, and it was

successfully applied to the parameter optimization of a

coarse-grained potential energy function [35–39]. The

method exploits the high efficiency of the CSA method

in finding distinct low energy conformations. For a given

set of proteins, whose low-lying local minimum-energy

conformations for a given energy function is found by the

CSA method, values of the parameters are modified so that

native-like conformations of these proteins would have

lower energies than those of non-native ones. Since the

CSA method is also used for sampling the low energy

conformations in PROFESY, it is straightforward to apply

the above-mentioned parameter optimization procedure to

PROFESY. In this work, in order to test the feasibility of

such an idea, we optimize the parameters of the energy

terms of PROFESY for the training set consisting of three

proteins, the 10–55 residue fragment of staphylococcal

protein A (PDB ID 1bdd), a designed protein betanova,

and 1fsd.
2. Fragment assembly

We first briefly describe the way one generates con-

formations using fragment assembly PROFESY. The frag-

ment libraries used in PROFESY are constructed using the

recently proposed secondary structure prediction method

PREDICT [28,29]. For each residue of a query sequence, a

window of size fifteen is considered, where the center of the

window is located on the residue under consideration. The

fragment library of this residue is the collection of twenty

backbone structures of the corresponding twenty nearest

patterns in the pattern database of PREDICT. After

constructing fragment libraries for all residues of a query

sequence, full-length chain conformations can be con-

structed by assembling fragments in these libraries.
3. Energy function

The energy function is given by

U ¼
X
i; j

A

r12ij
� B

r6ij

!
� whNhb þ

X
i; j

wa ið Þ;a jð ÞEa ið Þ;a jð Þ;

 

ð1Þ

where the summation index i, j are residue indices, a(i)

indicates the amino-acid type of the i-th residue, and rij is

the Ch�Ch distance between i-th and j-th residues. The first

term is the Lennard–Jones 6–12 Van der Waals energy

introduced to avoid steric clashes. In order to incorporate

possible quantum effects, we use separate values of the Van

der Waals interaction strength between the neighboring

residues, which we call AV and BV. In the second term, Nhb

is the number of hydrogen bonds between residues, which

are at least five residues apart in sequence. This term is

introduced to facilitate the h-strand pairing between

extended fragments. A hydrogen bond is assumed to exist

when an amide hydrogen atom and a carboxyl oxygen atom

are placed within 2.24 from each other. The last term is a

Miyazawa–Jernigan type contact term [40,41] between Ch

atoms, introduced to incorporate the solvation effect in an

indirect manner. Its functional form is given by

Ea ið Þa jð Þ ¼ f
rij � r
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is a smoothed step function defining the contact. We used

this function instead of the sharp step function, so that we

can take the derivative with respect to the parameters, which

is required for optimizing parameters. The numerical
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coefficients in the polynomial are determined so that the

function f(x) and its derivative become continuous up to

second order.

The first and second term in the energy function (1) are

the same as those in Ref. [26], whereas the last term is the

one we introduce in this work in order to account for the

effect of solvation properly. We optimize the parameters A,

B, AV, BV, wh, wab, rab
(c), and Dab, total number of them

being 5+210�3=635.
4. Local minimization

In order to apply the CSA method to the fragment

assembly of protein tertiary structure prediction method

such as PROFESY, one must define the concept of local

minimization. In PROFESY, a conformation generated from

a fragment assembly is locally minimized with respect to the

energy by randomly selecting a residue and attempting to

replace a part of the fifteen residue long fragment of the

chain by another one in the corresponding library. If the new

fragment can be inserted smoothly into the existing chain

and if the new conformation is lower in energy than the

existing one, the former replaces the latter. This process is

continued either for 10 Nseq times, where Nseq is the length

of the protein, or until the update attempts fail for Nseq

consecutive times, whichever is encountered first, which

completes the local minimization.

4.1. Conformational sampling

The CSA [30–32] is a powerful global optimization

algorithm that has played the integral role in the recent

success of the energy-based method for protein structure

prediction [14–17]. A population of local minimum-energy

conformations is maintained in the CSA method, which is

called the bank. The diversity of the bank is directly

controlled in CSA by introducing a distance measure

D(A,B) between two conformations A and B, and compar-

ing it to a cutoff value, Dcut. As the algorithm proceeds, Dcut

is gradually reduced, playing the role of temperature in

simulated annealing. Hence the name bconformational space

annealingQ. The annealing of Dcut amounts to shifting the

emphasis from diversity of sampling at the early stage of the

algorithm, to obtaining low-energy conformations at later

stages, enabling efficient sampling of low-lying local

minimum-energy conformations.

In order to check the performance of a potential energy

function for a given set of parameters, one has to sample

native-like and non-native conformations for each protein in

the training set. To obtain native-like conformations, we

have performed local energy minimization of the exper-

imental native structure, and we have collected all the

conformations obtained by successful fragment replace-

ments during this local minimization. It should be noted that

most of these native-like conformations are not local
minimum-energy conformation. The conformations

obtained from CSA search and local minimization of the

native conformation are added to the structural database of

local minimum-energy conformations for each protein.
5. Parameter refinement using linear programming

The procedure of the parameter optimization, which is

described in this section, is almost the same as described in

Ref. [39]. First, the changes of energy gaps are estimated by

the linear approximation of the potential energy in terms of

parameters. Since a potential can be considered to describe

the nature correctly if the native-like structure has lower

energy than non-native ones, the parameters are optimized

to minimize the energy gap Egap,

Egap ¼ EN � ENN ð4Þ

for each protein in the training set, where EN and ENN are

the energy of the native conformation and the lowest energy

of the non-native conformations, respectively. We add to the

energy a term proportional to the RMSD values of the

conformations:

E ¼ U þ wRMSD RMSD: ð5Þ

The additional term is introduced in order to make the

conformations with large RMSD to have high energies

compared to ones with small RMSD values after the

parameter optimization [39]. However, in contrast to Ref.

[39] where the numerical value of wRMSD was fixed to an

arbitrary value of 0.3, in this work we determine its value at

the initial stage of every iteration of the parameter

optimization, which depends on the energy scale of the

conformations:

wRMSD ¼ 0:5 RMSD0=jEgapj; ð6Þ

where RMSD0 is the RMSD value of the conformation with

the lowest energy.

The parameter optimization is carried out by minimizing

the energy gap Egap of each protein in turn, while imposing

the constraints that the energy gaps of the other proteins do

not increase. Changing the parameters by small amounts,

the energy with the new parameters can be estimated by the

linear approximation:

E xmin;p
newð ÞcE xmin;p

old
� 

þ
X
i

pnewi � poldi

� BE xmin;p
old

� 
Bpi

where the pi
old and pi

new terms represent the parameters

before and after the modification, respectively. The

parameter dependence of the position of the local

minimum can be neglected in the linear approximation,

since the derivative in the conformational space vanishes

at a local minimum [35]. The additional term wRMSD

RMSD of Eq. (5) vanishes in these expressions due to the

same reason. The magnitude of the parameter change
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Fig. 1. Plots of the energy function and Ca RMSD (from the native

structure) of three proteins obtained from CSA search using the initial and

refined parameters. The crosses and squares denote the results obtained

using the parameters before the optimization and after the 27-th iteration,

respectively. The numerical values of energies are not displayed since they

have no physical meaning, due to the fact that the overall scale of the

energy is arbitrary in our procedure. The results are shown for (a) betanova,

(b) 1fsd, and (c) 1bdd.

(a)

(b)

(c)

Fig. 2. The Ca trace of GMEC found with the optimized parameters is

shown together with the native structure for each of the three proteins in the

training set, (a) betanova, (b) 1fsd, and (c) 1bdd. The native structure is

shown in grey, the GMEC in red, and the conformation with the smallest

RMSD value in yellow. The figures are prepared with the program

MOLMOL [43]. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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ypjupj
new�pj

old is bounded by a certain fraction e of pj
old.

We use e=0.001 for linear parameters and e=0.00001 for

nonlinear parameters in this study. The resulting optimiza-

tion problem is a Linear Programming [39], which is solved

by the primal-dual method with supernodal Cholesky

factorization [42]. We select each protein in the training

set in turn, and repeat this procedure (300 times in this

work) of minimizing DEgap.

It should be noted that we do not put any constraints on

the overall scale of the parameters. Since the energies are

proportional to the overall parameter scale, and since this
scale changes freely during the optimization process, the

overall energy scale is not determined in our protocol.

Therefore the numerical value of energy has no physical

meaning in our work.
6. Iterative refinement of parameters

Since the change of energy gaps after the parameter

change was estimated using the linear approximations, we

now have to evaluate the true energy gaps using the newly

obtained parameter set. Therefore, we reminimize the

conformations in the structural database with the new

parameter set. We also perform the CSA search with the

new parameters [38,39]. The low-lying local energy minima

found in the new conformational searches are added into the
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structural database of local energy minima. The conforma-

tions in the database are used to obtain the energy gaps,

which are used for the new round of parameter refinement.

As the procedure of [CSAYparameter refinementYenergy

reminimization] is repeated, the number of conformations in

the structural database increases [38,39]. This iterative

procedure is continued until sufficiently good native-like

conformations are found from the CSA search.
7. Results

We have applied our protocol to a training set consisting

of three proteins. They are the designed protein betanova,

1fsd, and the 10–55 fragment of the B-domain of staph-

ylococcal protein A (1bdd), which are 20, 28, and 46

residues long, respectively. The betanova is a h protein, 1fsd

is an á/h protein, and 1bdd is an á protein, which represent

structural classes of small proteins. The initial parameter set

is the one used in CASP5 [26] except those for the contact

terms. The initial parameters for the contact terms are those

obtained by Miyazawa and Jernig [41].

Fifty conformations were sampled in each CSA search,

and the global minimum-energy conformations (GMECs)

found with the initial parameters have RMSD values of 5.6,

6.9, and 10.0 2, respectively, and the smallest values of

RMSD found from the CSA search are 3.4, 3.4 and 5.1 2,
respectively. After the 27-th iteration of the parameter

refinement, the conformations with smaller values of RMSD

are found from the global CSA search. The GMECs have

RMSD values of 2.9, 3.1, and 3.8 2 and the smallest values

of RMSD found are 2.8, 2.5, and 3.1 2, respectively. The
results of the global search with the initial and optimized

parameter set for the three proteins are plotted using

different symbols in terms of energy and RMSD in Fig. 1.

The Ca traces of the GMECs of the three proteins found

using the parameters obtained after the 27-th iteration of

optimization are shown in Fig. 2 along with the native

conformations.
8. Discussion

In this work, we have improved PROFESY, a novel

method for the prediction of protein tertiary structure based

on the fragment assembly, by introducing solventation

energy terms and systematically optimizing the energy

parameters. The parameter optimization was performed by

applying the general protocol for the force field parameter

optimization and landscape design which have been used

previously only in the context of the pure energy-based

method. Using this procedure, we optimized the 635

parameters so that they correctly describe the energetics of

three selected proteins simultaneously. This optimized

parameter set yielded GMECs with RMSD values of 1.9,

3.1, and 3.8 2 for betanova, 1fsd, and 1bdd, respectively.
Further tests of parameter optimization on training sets

containing a larger number of proteins, as well as jackknife

tests on proteins not included in the training sets, are

necessary for successful application of our method to the

structure prediction of unknown proteins. These are

currently under investigation.
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