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RNA secondary structure is predicted by computing the structure with the
minimum free energy. Although RNA structure without pseudoknots can
be found using dynamic programming algorithms, finding general
structures with pseudoknots is a nondeterministic polynomial-time (NP)
hard problem. Several methods, such as recursive simple pseudoknots, have
been developed in the past for obtaining a conformation with globally
minimal energy among the restricted class of pseudoknots. In this work, we
develop a new method for approximating a conformation with low energy,
posing no restrictions on type of pseudoknots contained in the RNA
secondary structure. In our method, the low-energy RNA secondary
structure is obtained by repeatedly removing helices and performing
dynamic programming to obtain the structure with energy lower than that
obtained in the previous iteration. This method can be considered as a local
minimization, and can be combined with any global optimization method
that takes advantage of local minimization. We tested performance and
convergency of the method by predicting a secondary structure of several
RNA sequences, which is a priori known to contain pseudoknots.

Keywords: RNA; secondary structure; pseudoknot

AMS Subject Classifications: 92B05; 90C10; 90C39

1. Introduction

1.1. The central dogma of molecular biology

The flow of (genetic) information in the cell is described by the central dogma of
molecular biology. The genome (DNA) encodes the sequence information for all the
proteins synthesized by the cell. A segment of DNA holding construction
information of a protein is called a protein coding gene. However, DNA is not the
direct template for protein synthesis, since it is transcribed by an enzyme, due to
RNA polymerase, into a messenger RNA (mRNA) carrying the same information as
the transcribed gene.
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The mRNA is then translated into protein by the ribosome. A gene can also be
transcribed into an RNA that is never translated into a protein. Such genes are called
non-coding genes and the RNAs are called functional RNAs, as they are not
translated into protein, but they have functions themselves.

1.2. RNA

An RNA is one of the two type of nucleic acids (deoxyribo nucleic acid (DNA)
and ribonucleic acid (RNA)) found in living organisms. RNA plays many roles
within cells. An RNA molecule is a sequence of nucleotides, or bases of four
possible types, denoted by the letters A, C, G and U (for Adenine, Cytosine,
Guanine and Uracil) connected by a backbone. The function of an RNA within
the cell is determined in large part by the three-dimensional structure of the RNA
molecule, when it folds. In turn, the three-dimensional structure is partly
determined by the secondary structure of the molecule. The secondary structure
is simply a list of the bonds that are formed between the individual bases within
the molecule. Determining the secondary structure of an RNA molecule is an
integral part of understanding the function of the RNA molecules. Several
secondary structure prediction methods are available today, that predict secondary
structure from a single RNA sequence or from a set of homologous RNA
sequence. The methods that predict structure from a single sequence usually
maximize the number of base pairs [1] or minimize the free energy [2–8]. RNA
structure prediction is a typical global optimization problem [9]. Although RNA
structure without pseudoknots can be found using dynamic programming
algorithms, finding general structures with pseudoknots is a nondeterministic
polynomial-time (NP) hard problem. In this work, we develop a new method for
approximating a conformation with low energy, posing no restrictions on the type
of pseudoknots contained in the RNA secondary structure.

2. RNA secondary structure

2.1. RNA secondary structure without pseudoknots

A single-stranded RNA folds into a functional shape by forming intramolecular
base pairs among some of its bases. The set of these base pairs is known as the
secondary structure of RNA. For a molecule with n nucleotides, we index the
nucleotides from 1 to n, starting at the 50 end. We write i.j if the nucleotide with
index i is paired with the nucleotide with index j, and i5 j. Then a secondary
structure R is a set of base pairs such that if i.j and i 0.j 0 are distinct base pairs in R,
then i, j, i 0, and j 0 are distinct.

Definition 2.1 (RNA sequence) An RNA sequence is a string s2
P

*,
s¼ r1 r2 . . . rn, ri2

P
, where alphabet is

P
¼ {A,C,G,U} Each of the ri is

called a base with position i in the sequence. The length of s, noted as jsj,
is n.

Definition 2.2 (Base pair) A base pair in an RNA sequence, typed as (i, j), i 6¼ j,
is a pair of bases with positions i and j in the sequence.
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In RNA the bases corresponding to the positions i and j are usually the Watson

Crick base pairs (G,C) and (A,U) and the non-canonical base pair (G,U).

Informally, a secondary structure is a collection of matching base pairs. Formally,

we can define it as follows.

Definition 2.3 (RNA secondary structure) A secondary structure of an RNA

sequence S is a set, R, of ordered base pairs (i, j), where 8(i, j)2R : 1� i5 j� n, and

n is the length of the sequence S. Furthermore, there is the following restrictions on

the set R of base pairs:

(1) j� i4 3, for all base pairs (i, j) in R.
(2) A base i can be part of at most one pairing (i, j),

i.e. if (i, j) and (i, j 0) are two base pairs in R, then j¼ j 0.

A pseudoknot is special substructure in the RNA secondary structure, which

consists of base pairs which cross over each other in the sequence. Some RNA

sequences have natural occurrences of this substructure, and therefore it is also of

practical interest to model them.

Definition 2.4 (RNA secondary structure without pseudoknots) A secondary

structure R (without pseudoknots) of an RNA sequence S is the same as Definition

2.3, with an extra restriction on base pairs: For all base pairs (i, j) and (i 0, j 0), assume

i5 i 0, in R : :(i5 i 05 j5 j 0),
i.e. the positions j and i 0 must not cross each other.

When RNA is folded, some bases remain unpaired, forming loops in the

molecule. A hairpin loop contains exactly one base pair. An internal loop contains

exactly two base pairs. A bulge is an internal loop with one base from each of its two

base pairs adjacent on the backbone. A stacked pair is a loop formed by two adjacent

base pair i.j and (iþ 1). ( j� 1), thus they have both ends adjacent on the backbone.

A multi-branched loop is a loop that contains more than two base pairs. An external

base is a base not contained in any loop (Figure 1).
Another representation of a secondary structure is an arc diagram. The arc

diagram of the structure of Figure 1 is given in Figure 2. In an arc diagram, points on

a line represent nucleotides in order from the 50 end, and arcs represent the base

pairs.

Hairpin loop

Multibranched loop

Stacked loop

Internal loop

Bulge

External base

Figure 1. RNA secondary structure without pseudoknots.
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Throughout the thesis, we use n to denote the length of a strand. We assume that

the bases of the RNA molecule are numbered from 1 to n, starting from the 50 end

and finishing at the 30 end.
The substructures are described further. But first, it should be defined which base

pairs are accessible from each other:

Definition 2.5 (Accessibility and loops) A base k is accessible from a base pair (i, j)

if i5 k5 j and there is no base pair between (i, j) and k, i.e. no base pair (m, n) such

that i5m5 k5 n5 j and k is accessible from (m, n). The loop closed by (i, j) is the

set of all accessible bases from the base pair (i, j). An interior base pair in a loop

closed by (i, j) is a base pair (m, n) where both m and n are accessible from (i, j).

Note, that in a loop no bases can be accessible from an interior base pair by

definition. The various parts of Figure 1 are described below:

Hairpin loop: A hairpin loop contains one closing base pair and all the bases

between the paired bases are unpaired. The hairpin marked in Figure 1 contains four

free bases. Formally, the tuple (i, j) defines a hairpin loop in a given secondary

structure if i and j are paired, and k is a free base, 8k, i5 k5 j.

Stacked loop: A stacked loop, also called stacked pair, contains two consecutive

base pairs. The tuple (i, j) defines a stacked pair if i and j are paired and iþ 1 and jþ 1

are paired. A stem or helix is made of a consecutive number of stacked loops.

Internal loop: An internal loop, sometimes called interior loop, is a loop having two

closing base pairs, and all bases between them are free. The 4-tuple (i, j, i 0, j 0), with

iþ 15 i 05 j 05 j� 1, defines an internal loop if i and j are paired, i 0 and j 0 are

paired, and k is a free base, 8k, i5 k5 i 0 and j 05 k5 j.

Bulge loop: A bulge loop, or simply bulge, is a special case of an internal loop,

which has no free base on one side, and at least one free base on the other side. Note

that, in fact, a stacked loop is also a special case of an internal loop, with no free

bases on either side. In this work, we will consider stacked loops and internal loops

to be distinct structures, but we include bulges in the internal loop case, unless

otherwise specified.

Multi-branched loop: A multi-branched loop, or multi-loop is a loop which has at

least three closing base pairs. The 2(mþ 1)-tuple (i, j, i1, j1, . . . , im, jm), with m� 2,

i5 i15 j15 � � �5 im5 jm5 j defines a multi-loop with mþ 1 branches if i pairs with

j, i1 pairs with j1, . . . , im pairs with jm and k is a free base, 8k, i5 k5 i1,

j15 k5 i2, . . . , jm5 k5 j.

Figure 2. Arc diagram for Figure 1.
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2.2. Secondary structure with pseudoknots

A folding of RNA secondary structure such as that shown in Figure 3 is
a pseudoknotted structure. A pseudoknot is an RNA secondary structure containing
two-stem loop structures in which the first stem’s loop forms part of the second stem.

Definition 2.6 (Hairpin pseudoknot) Two base pairs (i, j) and (k, l), ordered so that
i5 k, are said to form part of a pseudoknot if i5 k5 j5 l, i.e. the two base pairs
cross over each other in the sequence.

Usually, several base pairs will be involved in a cross matching (a pseudoknot).
In an arc diagram of a secondary structure with pseudoknot, at least one arc crosses
another arc in the structure. More complicated types of loop appear in
pseudoknotted structures.

3. Prediction of RNA secondary structure

3.1. Prediction of RNA secondary structure without pseudoknots

The quickest and easiest route to RNA structure prediction is through the use of
simple energy rules. One way is to assign an energy e(a, b) to base-pairing of acid
types a and b in a secondary structure. The free energy of a secondary structure
without pseudoknot for sequence S is then given by:

EðS Þ ¼
X
i, j2S

eðri, rjÞ:

Reasonable values of e are �3, �2 and �1 kcal/mole�1 for GC, AU and GU base
pairs, respectively. For base pair dependent energy rules, the minimum energy can be
easily obtained by a simple dynamic programming that recursively computes
minimum energy for sequence segment i � � � j [10]:

Eði, jÞ ¼ min

0 if j� i5 4

min

Eðiþ 1, jÞ,Eði, j� 1Þ,

Eðiþ 1, j� 1Þ þ eði, jÞ,

mini�k�jðEði, kÞ þ Eðkþ 1, jÞÞ

8>><
>>:

otherwise:

8>>>>><
>>>>>:

The minimum energy of the whole sequence is given by E(i, n), and corresponding
secondary structure is obtained by dynamic programming algorithm. Segments of
length �4 have 0 folding energy, since they cannot fold. Bases i or j either do not

Figure 3. The arc diagram for a structure with pseudoknots.

Optimization 865

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
0
6
:
3
3
 
8
 
J
a
n
u
a
r
y
 
2
0
1
1



pair, or else they pair with some bases k15 k2, respectively, so that the structure
splits in 2, or else i and j pair with each other.

3.2. Prediction of RNA secondary structure with pseudoknots

We extend the basic dynamic programming algorithm to secondary structure
containing pseudoknots. An idea is to consider pseudoknot as an interaction
between two separated helices and loops (Figure 4). Starting from a structure
without pseudoknot, if we remove a helix and run the dynamic programming again,
the helices rearrange themselves to obtain conformation with lower energy, which
was originally forbidden due to the removed helix. We put the removed helix back to
its place, and we get a secondary structure with pseudoknot that has lower energy
than the original conformation. Starting from the optimal secondary structure

without pseudoknot, one can repeat the procedure of removing helix and running
dynamic programming until there is no more helices left to remove. Then all the
removed helices are placed back to their original places.

The Algorithm for Pseudoknot: An additional parameter, Hk
minð pÞ, describes the

position of the helix that has minimum energy in the k-th iteration,

Input: RNA sequence S, S1¼S, k¼ 1.

Step 1 Build two matrices ek and Ek using Sk sequence.

Step 2 Run the dynamic programming algorithm to predict a secondary structure

as usual.

Ekðri, rjÞ ¼ min

0 if j� i5 4

min

Ekðriþ1, rjÞ,E
kðri, rj�1Þ,

Ekðriþ1, rj�1Þ þ ekðri, rjÞ,

mini�l�jðE
kðri, rlÞ þ Ekðrlþ1, rjÞÞ

8>><
>>:

otherwise

8>>>>><
>>>>>:

Step 3 Identify all helices in Sk and classify helices separated by internal and bulge
loops. If there is no base-pair identified, report list R and terminate the computation.

Step 4 Select the helix Hk
min that has minimum energy

EðHk
minÞ :¼ min EðHk

1Þ,EðH
k
2Þ, . . . ,EðHk

mÞ
� �

and put Hk
minð pÞ into the base-pairs list R to be reported.

= +
H1 H2P

Figure 4. Representation for pseudoknot.
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Step 5 Remove position of Hk
min from the initial sequence

Skþ1 :¼ Sk nH
k
minð pÞ

k :¼ kþ 1 and go to Step 1.

Output: Predicted structure list R. The fact that energy of the structure is lowered
at each iteration is formally proved as follows.

THEOREM 3.1 Let E(m) be the energy of sequence S after m-th iteration of helix
removal and dynamic programming, where we omitted the symbol S for simplicity of the
notation. Then E(mþ 1)�E(m).

Proof The position of helix is removed from the initial sequence in the every
iteration.

Hence, we can write

S ¼ S1 � S2 � � � � � Sm:

Let Sk be the sequence left after removing helicesH1
min, . . . ,Hk�1

min at k-th iteration and
V(Si) be the minimum energy obtained by dynamic programming performed on the
sequence segment Si.

Since we can write EðkÞ ¼
Pk�1

i¼1 EðHi
minÞ þ VðSkÞ such that EðHk

minÞ � 0, 8k,
15 k5m, we have

EðkÞ � Eðkþ 1Þ ¼ VðSkÞ � VðSkþ1Þ � EðHk
minÞ � VðSkÞ � VðSkþ1Þ:

Since Sk�Skþ1, we have V(Sk)�V(Skþ1)� 0 and E(k)�E(kþ 1) which completes
the proof. g

Note that our algorithm does not guarantee finding the secondary structure
corresponding to the global minimum of the energy function. We guarantee that
after each iteration conformation with pseudoknots has been found and folding
energy is decreased. Therefore our algorithm can be considered as a local
minimization algorithm. Our algorithm is reasonably efficient in terms of space
and time complexity, as shown by the following theorem.

THEOREM 3.2 An RNA secondary structure with pseudoknots which has the minimum
energy of base-pairs can be computed by the dynamic programming algorithm with the
worst case time complexity is lower than O(n4) and using O(n2) space.

Proof The basic dynamic programming algorithm [10] that takes O(n3) in time
complexity and O(n2) in space complexity is repeated m times, where m is the total
number of helices predicted by the algorithm, and since m� n� 6 the proof is
immediate from the following inequality

mOðn3Þ � ðn� 6ÞOðn3Þ ¼ nOðn3Þ � 6Oðn3Þ ¼ Oðn4Þ � 6Oðn3Þ5Oðn4Þ:
g

4. Test results

To evaluate our approach we use the set of sequence data collection in the
PseudoBase, consisting of 50 sequences with pseudoknots of variable size from 26 to
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98 nucleotides. We tested our program on the entire set and found that the program

folds 45 pseudoknots and 5 simple structures. Among those 45 pseudoknots the

structure of 39 pseudoknots were predicted correctly or almost correctly. Examples

indicating accuracy of the predictions are presented in the following table.

5. Discussion

In this work, we developed a new method for finding a RNA secondary structure

with low energy without any restriction on types of pseudoknots. The low-energy

RNA secondary structure is obtained by repeatedly removing helices and performing

dynamic programming to obtain the structure with energy lower than that obtained

in the previous iteration. Although we considered only base-pairing energy, the idea

can be generalized to the case where there are destabilization energies associated with

loops. Also, since this algorithm is a local minimization algorithm, it should be

combined with efficient global optimization algorithm that takes advantage of

a local minimization, in order to efficiently find the global minimum energy

conformation. All these issues are left for the future study.
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