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INTRODUCTION

The proportion of proteins that template-based modeling can generate

reasonably accurate models is rapidly increasing due to the continuous

growth of both structure and sequence databases. In many cases, how-

ever, we need more accurate protein structure models than possible with

the current state-of-the-art modeling techniques for practical applica-

tions including structure-based drug design and identification of molecu-

lar mechanisms behind biological functions. For this reason, subsequent

refinement of protein three-dimensional models generated by template-

based methods is particularly important.1 For example, in recent CASP

(Critical Assessments of techniques for protein Structure Prediction)

experiments refinement methods have been evaluated both by consider-

ing the extent of model quality improvement over the best available

templates for template-based modeling (TBM) targets2,3 and by consid-

ering the degree of improvement over provided initial models in the

‘‘refinement category.’’4

Various refinement strategies have been proposed to improve homol-

ogy models, and they can be categorized into three types. First, a group

of studies have focused on refining local structures to obtain physically

more realistic local geometry. In this type of approach, atomic positions

are modified with minimal change in the backbone structure by fixing

errors in stereochemistry, by relieving steric clashes, or by maximizing

side chain packing and/or hydrogen bond interactions.5–7 This type of

refinement methods is useful when the backbone structure is highly

accurate.

Second, refinement methods that reorganize the overall structure have

also been reported.8–12 In this type of approach, movements of back-

bone atoms from the initial model obtained from template proteins are

attempted. Search methods such as local minimization, Monte Carlo, or
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ABSTRACT

The rapid increase in the number of experi-

mentally determined protein structures in

recent years enables us to obtain more reli-

able protein tertiary structure models than

ever by template-based modeling. However,

refinement of template-based models beyond

the limit available from the best templates is

still needed for understanding protein func-

tion in atomic detail. In this work, we

develop a new method for protein terminus

modeling that can be applied to refinement

of models with unreliable terminus struc-

tures. The energy function for terminus

modeling consists of both physics-based and

knowledge-based potential terms with care-

fully optimized relative weights. Effective

sampling of both the framework and termi-

nus is performed using the conformational

space annealing technique. This method has

been tested on a set of termini derived from

a nonredundant structure database and two

sets of termini from the CASP8 targets. The

performance of the terminus modeling

method is significantly improved over our

previous method that does not employ ter-

minus refinement. It is also comparable or

superior to the best server methods tested

in CASP8. The success of the current

approach suggests that similar strategy may

be applied to other types of refinement

problems such as loop modeling or second-

ary structure rearrangement.
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molecular dynamics simulations have been applied to

optimize various energy functions. Several studies have

shown successful refinements over starting models. The

most successful cases are those in which initial structures

for refinement are moderately different from the native

structures.8,13,14 However, refining near-native models

better than the best templates with this type of approach

still remains a challenge.

Lastly, refinement techniques concentrating on regions of

large variability among templates have been intensively

investigated.15–17 Such variable local regions often contrib-

ute to the functional specificity of the target protein. The

target regions for refinement typically correspond to inser-

tions in sequence alignments or to the regions for which

inconsistent structural information is provided from various

templates. Once such regions are identified, refinement

efforts are focused on these variable local regions.

In this article, we report a new development that

belongs to the third type of the approaches mentioned

above. We first predict unreliable local regions that are

relatively less accurate than the rest of the model struc-

ture. We then focus on refining unreliable ‘‘termini’’

based on our previous work on template-based model

building.18 Modeling of protein terminus is important

since protein termini are known to be involved in a vari-

ety of biological processes due to their sequence diver-

sity.19,20 A new energy function is developed to refine

unreliable termini that do not have proper template in-

formation. While considering the conformational spaces

of both the template and terminus simultaneously, low

energy conformations are searched utilizing the global

optimization method of conformational space anneal-

ing.21 The proposed terminus refinement method was

tested on a set of 16 termini derived from a nonredun-

dant structure database and two sets of protein termini

from the CASP8 targets each containing 16 and 15 ter-

mini. The results of the current method show significant

improvement over our previous method, the template-

based modeling method of LEE-server in CASP8, which

did not employ terminus refinement. Although the ULR

detection step resulted in application of the current

method to the particular cases in which LEE-server was

not successful, it is notable that the results are compara-

ble to Zhang-server, whose performance was assessed to

be the best, but statistically indistinguishable from that of

LEE-server.22

METHODS

Prediction of unreliable local regions

To refine a given protein model, we first identify local

regions that are relatively less accurate than the rest of

the model. In template-based modeling (TBM), these

unreliable local regions (ULRs) often occur in the regions

for which templates do not provide adequate structural

information. To detect ULRs, we employ a method simi-

lar in spirit to model-consensus methods, which have

been widely used to assess the quality of local structures

of protein models.23,24

We predict ULRs based on the multiple sequence align-

ment (MSA) between a target protein and its templates

used for generation of the model. First, a sufficient number

of initial models, say 100, are built for a given MSA by

using MODELLER.25 The root-mean-square fluctuations

(RMSFs) of each model from the average of the 100 mod-

els are then calculated at the residue level. Up to this point,

the procedure is similar to typical model-consensus meth-

ods. A unique feature of our method is that the criterion

to determine ULRs is adjusted depending on the overall

quality of the model. A measure of the overall model quality,

called base_dev, is defined as the average RMSF of the resi-

dues corresponding to the lowest 40% of residual RMSF. The

residues with RMSF > Max (Scut 3 base_dev, 0.6) and any

single residues sandwiched by such residues are considered as

candidate residues that may belong to ULRs. The value of

Scut was set to 2.5. The lower bound of 0.6 was introduced to

prevent over-prediction of ULRs for highly accurate protein

models. Finally, stretches of three or more consecutive candi-

date residues are predicted as ULRs.

To assess the accuracy of the ULR prediction method,

we define the ‘‘true’’ ULRs for a protein model as the

regions of three or more consecutive residues that have

Ca deviations from the native structure above qcut 5
1 1 0.08 3 (100 2 GDT-TS) Å after superposition of

the protein model to its native structure. GDT-TS is a

standard measure used in the CASP for assessment of

global model quality and defined as the percentage of the

aligned residues within 1, 2, 4, and 8 Å divided by 4.22

For a highly accurate model, qcut approaches 1 Å. For a

model with GDT-TS 5 80, which is a rough boundary

to define high-accuracy TBM targets in the CASP, qcut
becomes 2.6 Å. An example of true ULRs and predicted

ULRs is illustrated in Figure 1.

The energy function for unreliable termini

The ULR prediction method introduced above can be

applied to identify any types of ULRs such as loops or

termini. In this work, we focus on developing an energy

function specific for ‘‘terminus’’ ULRs.

The energy function we adopt for protein terminus

modeling is expressed as a weighted sum of both

physics-based and knowledge-based potential terms as

follows:

E ¼ Ebonded þ Esoft�sphere þ w1EDFIRE þ w2EdDFIREþ
þ w3Eneighbor: ð1Þ

The first two terms Ebonded and Esoft-sphere are physics-

based potential terms used in MODELLER25 to maintain

the proper stereochemistry of proteins. Ebonded refers to

H. Park et al.
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the bonded energy with modified CHARMM22 parame-

ters,26 and it consists of the energy terms for bond

lengths, bond angles, torsion angles, and improper tor-

sion angles. Esoft-sphere refers to the soft-sphere potential

that prevents steric clashes. The weights of these two

terms are fixed at unity, and the other three weights

(w1,w2,w3) are optimized relative to these terms. The

component EDFIRE is the DFIRE statistical potential,27,28

and EdDFIRE1 represents the additional orientation-de-

pendent terms of dDFIRE.29 The original dDFIRE poten-

tial is EDFIRE 1 EdDFIRE1, but we treat the weights w1

and w2 independently here. The knowledge-based poten-

tials DFIRE and dDFIRE were shown to be efficient in

discriminating native structures from decoys in recent

studies,30,31 but it was suggested that the implicit treat-

ment of solvation effect in DFIRE32 may have limited

the performance. In this study, we incorporate the addi-

tional energy term Eneighbor, called ‘‘neighbor energy’’, for

more proper consideration of the solvation effect.

The neighbor energy Eneighbor effectively estimates the

solvation free energy as a function of solvent accessibility

of each residue measured by the number of its neighboring

residues. This kind of energy has already been applied to

protein structure prediction with various functional

forms,33–35 and we adopt a functional form similar to

that proposed by Sasaki et al.33 In addition, we introduce

a modification by categorizing the 20 amino acids into

three types, hydrophobic (t 5 h), polar (t 5 p), and aro-

matic (t 5 a), and consider the number of neighbors for

each type. In this way, hydrophobicity of local chemical

environment is considered in addition to solvent accessi-

bility. The numbers of neighboring residues in four spheri-

cal shells, 0–4 Å (k 5 1), 4–6 Å (k 5 2), 6–8 Å (k 5 3),

and 8–10 Å (k 5 4) from the Ca atom of a given residue,

are considered following Sasaki et al.33

Another important feature of the neighbor energy is that

sequence-specific information derived from a fragment

library is utilized.33 For each residue position, protein ‘‘frag-

ments’’ of nine residues similar in local sequence features to

the position are derived from the structure database.36 A

conformation has favorable neighbor energy if the hydro-

phobic environment of each residue is similar to that of the

corresponding residues in the fragment library. The neighbor

energy is expressed as a sum of the contributions Et,jk esti-

mated from the number of neighboring amino acids of type

t in the kth shell around the jth residue, Nt,jk, as follows:

Eneighbor ¼
X
jk

ðEh;jk þ Ea;jkÞ; ð2Þ

Et ;jk ¼ �kBT log

P
i

expf�cijðNt ;jk � ðN 0
t ;ijk þ atN

0
ijkÞÞ2g

P
i

cij

2
64

3
75:

ð3Þ

The contribution from polar neighboring residues

(t 5 p) is not included in Eq. (2) because it did not

improve the overall results. N0
t,ijk is the number of neigh-

boring residues of type t in the kth shell around the jth

residue for the ith fragment. cij is the similarity between

the local sequence features of the ith fragment centered at

the jth residue and the target protein. at is a coefficient

used to enforce hydrophobic packing in proportion to the

total number of neighboring residues, N0
ijk, found in the

fragment. These parameters are set to (ah, aa) 5 (1, 1/3).

We emphasize that all energy components described

above are differentiable, and a gradient-based quasi-New-

ton method L-BFGS37 was used for efficient local energy

minimization. In particular, a continuous, analytic ver-

sion of dDFIRE was devised by interpolating discrete

regions of the original potential using a cubic-spline

method.38 To further improve the efficiency of energy

evaluation, the distance cut-off value for interacting atom

pairs in dDFIRE was reduced from the original value of

15 Å to 10 Å.

Energy parameter optimization for terminus
modeling

The energy parameters (w1,w2,w3) introduced in

Eq. (1) were optimized by requiring that native-like confor-

mations are energetically more favored than non-native

decoy conformations for a training set of protein termini.

Figure 1
True ULRs of a model (GDT-TS 5 75.23) for the CASP8 target T0415-

D1 are defined as the three regions (residues 8–13, 54–56, 80–82) for

which stretches of three or more residues have Ca deviations from the

native (shown as the red solid line) greater than qcut 5 2.98 Å

(indicated as the blue horizontal line). The predicted ULRs are the four

regions of three or more consecutive residues (residues 10–12, 53–56,

77–83, 105–109) in which RMSFs of 100 models from the average

model (shown as the green dotted line) are above (the pink horizontal

line). The value of base_dev is 0.51 for this example. [Color figure can

be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Refinement of Protein Termini
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The training set was constructed by selecting protein

termini in a non-redundant structure database (called Set

1) whose sequences are not aligned to any sequences in a

larger second structure database (called Set 2). Set 1 and

Set 2 consist of X-ray structures from PISCES39 with

maximum mutual sequence identity of 25% and 90% and

resolution better than 1.6 Å and 2.5 Å, respectively. An

in-house method FoldFinder40 was used for sequence

alignment. After filtering out protein termini at interchain

interfaces or longer than 30 residues, the final training set

of 27 protein termini was obtained. The training set is listed

in Supporting Information, Table S1.

Next, an ensemble of conformations that contains

both native-like and non-native conformations was gen-

erated for each protein terminus in the training set. To

cover the conformational space effectively, conformations

were built by using three separate methods: (1) assembly

of fragments from the fragment library without using the

crystal structure information,36 (2) large perturbations

to the crystal structure, and (3) small perturbations to

the crystal structure. During generation of conforma-

tions, only the terminus was sampled, and the non-ULR

regions, called framework, were fixed at the native struc-

ture. The numbers of initial conformations generated by

the three methods for a single terminus are (1) 2000, (2)

2000, and (3) 300. The conformations were then refined

by MD simulations with simulated annealing (SA), fol-

lowed by local minimization, as in MODELLER. After

the refinement, redundant decoys were removed by using

1.0 Å RMSD cut-off. A set of random energy parameters

within preset bounds was used to generate each confor-

mation to avoid bias to particular initial weight parame-

ters and to cover the conformational space more broadly.

The energy parameters were optimized by minimizing

the following objective function

F ¼ hZnati3hCorri; ð4Þ

where Znat is the Z-score of the average energy of the 100

conformations closest to the native structure in the

energy distribution of the conformational ensemble, Corr

is the Pearson correlation coefficient between the energy

and S-score,23 and hi denotes average over the 27 train-

ing termini. S-score is a measure of conformational devi-

ation from the native defined as

S � score ¼ 1

n

Xn
i¼1

1

1þ di=d0ð Þ2 ; ð5Þ

where i is the residue index, n is the number of residues

in the terminus, di is the deviation of the ith residue

from the native. The parameter d0 is set to 5 Å to con-

sider the effect of large structural diversity of termini.

S-score is used instead of the frequently used root mean

square deviation (RMSD) because RMSD tends to exag-

gerate incorrectness in local structure and has strong size

dependency.23 Expressing the objective function for

energy parameter optimization as a multiplication of two

terms as in Eq. (4) was inspired by the work of Zhang

et al.34 The energy parameters (w1,w2,w3) were deter-

mined by a grid-search starting from a coarse grid and

subsequently focusing on finer grids near promising

regions.

Test sets for ULR terminus modeling

We first selected 16 protein termini from Set 2 used

for energy parameter training, after eliminating 11 ter-

mini that interact with other chains in the crystal struc-

tures. It should be noted that the decoy training dis-

cussed above was performed on Set 1. We call this set

‘PISCES test set’ (listed in Supporting Information, Table

S2). This set can be used to assess the performance of

the terminus modeling procedure when the framework

structure is exact because the framework structure is

fixed at the native during terminus modeling for this set.

We also selected unreliable protein termini from the

CASP8 targets. Two test sets of CASP8 targets were gen-

erated, by predicting terminus ULRs using our ULR pre-

diction method and by collecting the true ULRs using

the native structure. The first set, called ‘‘predicted ULR

set,’’ consists of 16 targets (listed in Supporting Informa-

tion, Table S3). The modeling results for these targets

can be compared in a fair manner to the methods of

other prediction groups in CASP8 because the whole

procedure including prediction of ULRs was executed in

a blind fashion. The second set, referred to as ‘‘assigned

ULR set,’’ was obtained by applying the definition of

ULR to our models submitted in CASP8 as LEE group.

This set consists of 15 template-based modeling (TBM)

targets (listed in Supporting Information, Table S4).

Eight targets are also included in the predicted ULR set

and out of which four share the terminus regions to be

modeled. We can evaluate the accuracy of the energy

function and the efficiency of the sampling method from

the results on this set.

Conformational search by global
optimization

Low energy structures of the terminus ULRs were

searched for using an extended version of MODEL-

LERCSA.18 MODELLERCSA is a method that builds

homology models using conformational space annealing

(CSA)21 by optimizing the MODELLER energy derived

from template structures and a multiple sequence align-

ment of the template and target sequences.41 The energy

terms for terminus ULR as expressed in Eq. (1) were

implemented into MODELLERCSA, which we call MOD-

ULR-CSA. Compared with the previous version of MOD-

ELLERCSA where local energy minimization was carried

out using the MODELLER program as a black box and

H. Park et al.
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CSA was performed at a script level, computational effi-

ciency has improved by integrating CSA with the ULR

energy into one program.

The ULR region and the rest of protein, called frame-

work, are modeled simultaneously for the two CASP8

test sets. During the modeling procedure, the new energy

terms are applied to intra-ULR and ULR-framework

interactions, while MODELLER restraints derived from

templates are applied only to intra-framework interac-

tions. This allows structural changes of the framework

region due to ULR-framework interactions. Exceptionally

for the PISCES test set, the framework is fixed at the

native structure by strong restraints. The procedure of

MODULR-CSA follows that of MODELLERCSA with

identical CSA parameters except for two differences: (1)

preparation of the ‘‘first bank’’ and (2) the inclusion of

additional CSA ‘‘crossover operators.’’

The first bank of CSA provides a source of conforma-

tional diversity that is exploited in CSA iterations. To

achieve sufficient structural diversity of the framework, 100

separate conformations were first generated using MODEL-

LER, as in MODELLERCSA. To introduce additional struc-

tural diversity to terminus, 20 terminus conformations were

generated by fragment assembly for each framework model.

The resulting 2000 structures were refined using MD with

simulated annealing and subsequently clustered into

100 groups by K-means clustering. The 100 cluster center

structures were selected as the first bank.

CSA generates trial conformations by crossovers and

mutations as in genetic algorithms. For effective sampling

of the ULR regions, additional operators specific for

ULRs were introduced. The relative frequency of the

applications of the standard and new operators was set

to 5:7 in this work.

RESULTS AND DISCUSSION

Prediction of unreliable local regions

CASP experiments make it possible to assess perform-

ances of state-of-the-art protein structure prediction

techniques in a blind fashion. We analyzed the quality of

the TBM models submitted during CASP8 for 48 high-

accuracy TBM targets and 104 regular TBM targets for

their accuracies in local regions (See Supporting Informa-

tion, Figs. S1 and S2 for details). There are many exam-

ples of unreliably modeled regions even when the best

models (not the models of the best group) are consid-

ered. For example, about 30% of the residues in the best

models in the TBM category deviate by more than 2.5 Å

from the native structures. The proportion of unreliably

modeled terminus residues is about the same if the 20

residues from the N- and C-terminus residue are consid-

ered as terminus residues. In this work, we aim to

improve unreliably modeled protein termini.

We applied the ULR prediction method to the CASP8

targets and compared the results with those obtained by

a simple sequence-based method which selects the

regions that are not aligned to templates. In the

sequence-based method, a residue is predicted as a ULR

residue if the fraction of the aligned templates at the resi-

due position is less than a preset cut-off value. We used

the multiple sequence alignments (MSA) of LEE group

for the CASP8 targets. With the sequence-based method,

accuracy of ULR prediction is quite high (92.5%), but

coverage is rather low (8.8%) if the cut-off value of 0 is

used even with two-residue offset (see Table I). Accuracy

is defined as the percentage of the correctly predicted

ULR residues out of all predicted residues, and coverage

is defined as the percentage of the correctly predicted

ULR residues out of the true ULR residues. The accuracy

decreases to 69.9% and the coverage increases to 26.1%

if the cut-off value is increased to 0.5.

The current model-consensus ULR prediction method
is superior to the simple sequence-based method with
the accuracy of 75.9% and the coverage of 49.9% when
Scut 5 2.5 and two-residue offset is used, as presented
in Table I. This is due to the fact that the model-
consensus method takes account of structural diversity
among templates, which is neglected in the sequence-
based method. For the modeling tests presented below,
we used Scut 5 2.5, emphasizing accuracy over
coverage considering the current status of the modeling
accuracy.

Table I
Prediction Accuracy and Coverage for a Simple Sequence-Based ULR Prediction Method and the Model-Consensus ULR Prediction Method are

Shown

Prediction method Parameter in the method

No offset allowed Two-residue offset alloweda

Accuracy Coverage Accuracy Coverage

Sequence-based
ULR prediction

Cut-off for the fraction of
the aligned templates

0 0.830 0.082 0.925 0.088
0.2 0.694 0.121 0.790 0.131
0.5 0.594 0.224 0.699 0.261

Model-consensus
ULR prediction method

Scut 1.5 0.534 0.501 0.658 0.564
2.0 0.585 0.472 0.720 0.537
2.5 0.619 0.434 0.759 0.499
3.0 0.642 0.396 0.780 0.453

aThose residues that are incorrectly predicted as ULR but are within two residues from the actual ULR are excluded from the statistics.
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Energy parameter optimization for terminus
modeling

We determine the three weight factors for the energy

components, DFIRE energy EDFIRE, additional orientation-

dependent dDFIRE terms EdDFIRE1, and the neighbor

energy Eneighbor. The objective function for parameter opti-

mization was designed to increase the correlation between

total energy and structural deviation from the native and

to lower the energy of native-like structures relative to the

non-native ones, as described in the Methods section.

Before considering the above three parameters, the pa-

rameters inside the Eneighbor term were first determined to

give improved correlation and Z-score for the identical

training set of decoys (See Supporting Information, Table

S5 for details). Eneighbor with the parameters, (ah, aa) 5 (1,

1/3), shows the improved average correlation coefficient of

0.27, and the average Z-score of 20.76, compared with the

corresponding values of 0.18 and 20.46 from the original

form of neighbor energy proposed by Sasaki et al.33

By a grid search, the three weight parameters for the

three energy components were determined as (w1, w1,

w1) 5 (22.0, 12.0, 8.7). The average correlation coeffi-

cients and average Z-scores for each energy component

and the total energy are displayed in Table II. Results for

the secondary structure classes (helix, extended, and coil)

are also shown. The DFIRE energy contributes the most

to the correlation and Z-score, and the neighbor energy

follows. The contribution from the additional dDFIRE

term is the least, but still meaningful, and this is repre-

sented in the smaller weight of 12.0 relative to the

DFIREs 22.0. The correlation and the Z-score improve

the most for strands when all three terms are combined.

Energy landscapes for each energy component as well

as for the total energy with the optimized parameters are

shown in Figure 2 for a member of the training set, 2arz.

We observe that the decoys cover the conformational

space quite broadly. The energy landscapes show some

degree of correlation for each of the three components,

and the best correlation is achieved from the combined

total energy using the optimized parameters.

Performance of MODULR-CSA on the
PISCES test set

We first applied the MODULR-CSA method to the PIS-

CES test set. As mentioned above, this set can be used to

check the performance of the method when the frame-

works are exact. The results are summarized in Table III.

We have succeeded in generating terminus models with

better than 10 Å accuracy in 11 of 16 cases. If the lowest

energy structure is selected as the single answer, 6 out of 16

termini are modeled within 10 Å. Modeling worked partic-

ularly well for the termini of helical structure. Among the

eight helical termini, six termini were sampled with better

than 2 Å accuracy. Termini containing strands and coils

were predicted poorly. We attribute this failure to the

energy function rather than to the sampling method

because more native-like terminus models sampled by

CSAwere not favored by their energy values.

Interestingly, several protein termini successfully mod-

eled here were previously proposed to be involved in

protein function. For example, synaptotagmin I C2B do-

main (PDB ID 1tjx) shows strikingly different C-termi-

nus structure from its homologs, and this terminus struc-

ture is relevant to endocytosis.42 N-terminus of 5-formyl

tetrahydrofolate cycloligase (PDB ID 2jcb), having

extended helical structure unlike its homologs, tightly

interacts with ADP. Although the above examples are on

already known cases, our approach can be potentially

applied to other unknown cases, providing molecular-

level understanding on function.

Performance of MODULR-CSA on termini of
CASP8 targets

MODULR-CSA was also tested on the terminus ULRs

selected from the CASP8 targets. For the framework

Table II
The Average Correlation Coefficient and the Average Z-Score (Inside Parenthesis) for the Three Energy Terms (EDFIRE, EdDFIRE1, and Eneighbor), for

the Optimized Energy with only Two Terms (EDFIRE and EdDFIRE1, EDFIRE and Eneighbor, EdDFIRE1 and Eneighbor), and for the Total Energy (E) with

the Optimized Parameters are Shown

Energy

Corr.a (Z-scoreb)

EDFIRE EdDFIRE1 Eneighbor
EDFIRE and
EdDFIRE1

EDFIRE and
Eneighbor

EdDFIRE1 and
Eneighbor E

SSc Helix (15) 0.411 (21.728) 0.207 (21.094) 0.272 (20.828) 0.475 (21.896) 0.466 (21.746) 0.346 (21.202) 0.478 (21.906)
Strand (5) 0.342 (21.501) 0.090 (20.758) 0.344 (21.031) 0.429 (21.767) 0.469 (21.782) 0.366 (21.200) 0.440 (21.789)
Coil (7) 0.211 (20.904) 20.014 (20.196) 0.212 (20.472) 0.240 (20.939) 0.301 (21.057) 0.231 (20.638) 0.269 (20.983)

Overalld

(27)
0.339 (21.442) 0.120 (20.766) 0.267 (20.756) 0.397 (21.588) 0.416 (21.515) 0.331 (20.987) 0.409 (21.611)

cThe average correlation coefficient between the energy and S-score, a measure of structural deviation from the native, for training set decoys is shown.
dThe average Z-score of the average energy of the 100 conformations closest to the native structure in the energy distribution of the training set decoys is shown.
cThe results are shown for the three secondary structure types of the termini. The number in the parenthesis for each secondary structure type is the number of training

termini of the type.
dThe overall results are averaged over the whole training terminus set.
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regions, the same MODELLER restraint energy used for

homology modeling by LEE group in CASP8 was used.

MODELLERCSA optimizes the restraint energy obtained

from templates with CSA, while MODULR-CSA opti-

mizes the energy function developed in this work with

more intensive sampling on termini. Comparison

between the results of MODELLERCSA and MODULR-

CSA allows us to evaluate the performance of the new

energy and the sampling method for termini because the

same restraint energy for the framework is used.

The results of MODELLERCSA and MODULR-CSA

for the 16 termini of the predicted ULR set are compared

in Table IV. MODULR-CSA provides three more termini

within 3 Å RMSD, two more within 5 Å, and four more

within 10 Å than MODELLERCSA. Since wrong orienta-

tion of a long terminus can cause a large RMSD value,

we use RMSD <10 Å as a criterion for acceptable termi-

nus orientation. Significant improvements are found in

the terminus modeling results of T0414, T0457, T0462,

and T0477. The orientations of these termini were

wrongly predicted by MODELLERCSA, but they are fixed

by the current procedure. Figure 3 illustrates the success-

ful example of T0457. The termini of T0408 and T0449

show RMSDs of only 3.03 and 1.74 Å with MODEL-

LERCSA, meaning that they are obviously mispredicted

as ULRs. However, these termini are accurately modeled

by MODULR-CSA, too.

The results for the 15 termini of the assigned ULR set

are shown in Table V. This set includes more of difficult

targets that were not selected by ULR prediction (7 out

of 15 termini), and this detection failure is partly due to

our choice to increase the accuracy of ULR prediction in

sacrifice of the coverage. In addition to the targets

included in the predicted ULR set, we succeeded in refin-

ing structures for three additional termini, those of

T0423, T0501, and T0504. In particular, T0423 shows the

possibility of high-accuracy refinement. This terminus

was already in the right position with RMSD 5 3.98 Å

by MODELLERCSA. MODULR-CSA can further refine

this terminus to the accuracy of RMSD 5 1.24 Å. Ter-

mini of T0388 and T0414 in the assigned ULR set have

different ranges of residues from those in the predicted

Figure 2
The energy landscape (plot of energy vs. S-score) for each of the three energy components, EDFIRE, EdDFIRE1, and Eneighbor, and that for the total

energy with the optimized weight parameters are shown for 2arz. Conformations are generated by fragment assembly (red), large perturbations to

the native (green), and small perturbations to the native (blue). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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ULR set, but MODULR-CSA results from both sets pro-

vided similar improvement of termini as shown in Tables

IV and V.

Since we modeled the framework and termini simulta-

neously for the CASP8 targets, the framework structure

can be affected by terminus modeling. We therefore

assessed the effect of terminus modeling on the overall

structure by measuring TM-score,43 as presented in Sup-

porting Information, Tables S6 and S7. A good correla-

tion is found between the overall quality of the structure

Table III
Terminus Modeling Results for the PISCES Test Set are Summarized

PDB ID Length SSa Initb (�) CSA minc (�) CSA bestd (�)

2qml 16 H 4.51 3.87 1.48
2v9l 29 H 16.37 33.28 9.50
1eyh 22 H 7.48 2.14 1.02
2jcb 7 H 2.94 2.77 1.77
1qgi 20 H 14.65 25.63 10.30
1rtq 10 H 10.20 5.38 5.05
1tjx 10 H 4.02 1.60 1.50
1tua 17 H 6.91 13.94 1.96
2oa2N 20 H, C 7.79 7.83 7.51
2oa2C 13 H, C 15.07 18.90 18.47
1xdz 21 H, C 14.03 26.41 7.89
1tt8 20 H, C 19.09 11.96 10.28
2iuw 10 E 21.97 16.93 9.60
2gz4 24 E, C 13.64 12.07 10.68
1z6m 23 C 13.70 10.11 10.11
1j77 18 C 9.68 25.14 8.58

aSecondary structure elements of the termini are denoted as H, E, and C for helix,

extended, and coil, respectively.
bRMSD of the lowest energy conformation among the initial 2000 conformations

generated by fragment assembly followed by MD/SA is shown.
cRMSD of the lowest energy conformation among the 100 conformations in the

CSA final bank is shown.
dThe lowest RMSD value out of the 100 conformations in the CSA final bank is

shown.

Table IV
Comparison of the Terminus RMSD Values Obtained with and without

Terminus Modeling for the Predicted ULRs is Shown

Target no.a Length SSb MODELLERCSAc (�) MODULR-CSAd (�)

T0388 17 H 4.80 2.44
T0395 36 H, C 32.82 33.51
T0408 16 H 3.03 3.45
T0412 9 H 4.77 2.46
T0414 21 H 24.74 5.48
T0434e 15 H 11.83 8.89
T0435 13 H 11.24 12.37
T0438 14 H 3.82 4.46
T0449 9 E 1.74 1.63
T0451 12 C 9.69 9.76
T0457e 19 H 20.84 3.48
T0462e 10 C 15.99 3.07
T0477e 12 H 18.75 2.22
T0479 9 C 3.55 3.63
T0485 24 H 8.73 8.77
T0509 16 H 3.94 12.88

aThe CASP8 target number.
bThe secondary structure of the terminus (H: helix, E: extended, C: coil).
cThe global RMSD of the terminus of LEE model from CASP8.
dThe global RMSD of the terminus after terminus refinement by MODULR-CSA.
eThe targets for which the ULR regions are correctly predicted within one residue.

For these targets, the same ULR regions are assigned to the assigned ULR set, so

the modeling results are identical with those reported in Table V.

Figure 3
A successful example of terminus modeling is shown for a CASP8

target, T0457. The terminus is colored red for the native structure, cyan

for the model generated by MODELLERCSA, and green for the model

generated by MODULR-CSA. Even though the conformation of the

framework region of the model slightly deviates from the native

structure, the overall orientation of the terminus is recovered after the
terminus ULR modeling.

Table V
Comparison of the Terminus ULR RMSD Values Obtained with and

without Terminus Modeling for the Assigned ULR Set is Shown

Target no.a Length SSb MODELLERCSAc (�) MODULR-CSAd (�)

T0388 11 H 6.91 2.56
T0395 38 H 31.95 32.64
T0414 19 H 25.91 6.86
T0423 15 H 3.98 1.24
T0434e 16 H 11.83 8.89
T0435 10 H 12.81 12.56
T0457e 18 H 20.84 3.48
T0462e 10 C 15.99 3.07
T0477e 12 H 18.75 2.22
T0483N 9 C 15.21 16.59
T0483C 13 C 22.71 19.98
T0501 24 H 22.84 5.33
T0503 25 H, C 4.78 9.50
T0504 10 C 10.55 4.90
T0511 11 H 11.55 11.48

aThe CASP8 target number.
bThe secondary structure of the terminus ULR region (H: helix, E: extended, C:

coil).
cThe global RMSD values of the terminus of LEE model from CASP8.
dThe global RMSD values of the terminus after terminus modeling with MOD-

ULR-CSA.
eThe targets for which the ULR regions are correctly predicted within one residue.

For these targets, the same ULR regions as in the predicted ULR set are assigned,

so the modeling results are identical with those reported in Table IV.
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(TM-score) and the local quality of the termini (RMSD).

As terminus structures are improved, the overall model

quality also tends to be improved. The average TM-score

is improved by 0.94% and 2.22% from those obtained

with MODELLERCSA for the predicted and the assigned

terminus ULR set, respectively.

We have shown that MODULR-CSA improves the

overall quality of a three-dimensional model containing

terminus ULRs over MODELLERCSA. We also compare

the results of MODULR-CSA with those of other meth-

ods tested during CASP8. We selected five top-ranked

server methods, not human methods, because of the fol-

lowing reasons. First, the number of human targets for

terminus modeling is insufficient, only 6 out of 16 for

the predicted ULR set and 5 out of 15 in the assigned

ULR set. Second, our method is fully automatic for the

predicted ULR set, so our new method can be fairly

compared with the results of the server groups.

The results of MODULR-CSA and those of the top-

ranked server methods are compared in Figure 4. MOD-

ULR-CSA produces more models of <3 Å, <5 Å, and

<10 Å than MODELLERCSA (labeled as ‘‘LEE’’ in the

Fig. 4) for both the predicted and assigned ULR sets, as

discussed above. MODULR-CSA shows the best perform-

ance for the assigned set when compared with the five

top server methods. For the predicted ULR set, only the

number of models <3.0 Å is one less than that obtained

the Zhang server.

The performance of Zhang server is the closest to that

of MODULR-CSA. Zhang server uses a method called i-

TASSER,14 which reassembles secondary structure seg-

ments guided by contact score extracted from homolo-

gous proteins and by their own energy function. When

the contact score is unreliable, modeling relies on the

energy. Even though the details are different, both MOD-

ULR-CSA and i-TASSER share common methodological

features in that homology information and a general-

purpose energy which can be used for ab initio modeling

are combined together. This kind of efforts seems to con-

tribute to higher-accuracy modeling of structurally vari-

able regions in template-based modeling.

CONCLUSIONS

In this article, we have developed a method for

improving unreliable termini in template-based models

together with a method for predicting such regions. A

simple combination of the two knowledge-based poten-

tials, dDFIRE and neighbor energy, is shown to work

quite well. The efficiency of the search method, confor-

mational space annealing (CSA), has been demonstrated

in many previous modeling examples.18,40,41 The CSA

method developed here allows efficient simultaneous

sampling of the framework and the unreliable local

regions. The performance of the new method, MOD-

ULR-CSA, in modeling unreliable terminus is comparable

or superior to the best server methods when tested on

the CASP8 targets. There is still a room for improve-

ment, especially for terminus ULR containing strands

and/or coils.

The current method has a potential applicability to

other related studies. For example, it can be extended to

the refinement of other regions of proteins, including

loops and the packing of secondary structures. The

method can also be applied to situations in which reli-

able template-based information and local structure var-

iations should be considered simultaneously as in homol-

ogy-based protein-protein or protein-ligand docking

problems.
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