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We develop a parallel algorithm that calculates the exact partition function of a lattice polymer, by
enumerating the number of conformations for each energy level. An efficient parallelization of the
calculation is achieved by classifying the conformations according to the shape of the box spanned by a
conformation, and enumerating only those in a given box at a time. The calculation time for each box is
reduced by preventing the conformations related by symmetries from being generated more than once.
The algorithm is applied to study the collapse transition of a lattice homopolymer on a square lattice, by
calculating the specific heat for chain lengths up to 36.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Polymers on discrete lattices serve as a simple toy model of a
polymer [1–6]. By introducing hydrophobic inter-monomer inter-
action, the lattice model can be used to study the collapse tran-
sition of a polymer [7–26]. Various quantities such as radius of
gyration, end-to-end distance, and specific heat have been calcu-
lated, both using Monte Carlo samplings [8,11,16–22,24–26] and
exact enumeration [9,12,14,23]. Although the length of chain that
can be studied using exact enumeration is much less than that of
the Monte Carlo sampling methods, the exactness of the calcula-
tion enables one to use powerful extrapolation methods to study
the behavior of the lattice polymers in the limit of infinite chain
length.

In the current study, we develop a method for calculating the
exact partition function of a lattice polymer. The partition function
is the most basic quantity from which all the important thermody-
namic properties can be calculated. The number of states for each
energy E , Ω(E), contains all the information needed for the calcu-
lation of the partition function Z , which is given by

Z(β) =
∑

E

Ω(E)e−βE , (1)

where β ≡ 1/kB T with the Boltzmann constant kB and tempera-
ture T . In particular, it can be used for studying the collapse phase
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transition of the lattice polymer by observing behaviors of various
quantities such as the specific heat,

C(T , N) = ∂ E

∂T
= β2 ∂2 ln Z

∂β2
, (2)

with increasing N .
Since the number of conformations is finite in the case of a

lattice polymer, the partition function can be made a polynomial in
e−β by considering models with integer values of E . To elaborate,
we consider a polymer on regular lattice such as two-dimensional
square or three-dimensional cubic lattices. Then the Hamiltonian
for a heteropolymer is given by

H = −
∑
i< j

ε(ai,a j)�(ri, r j), (3)

where

�(ri, r j) =
{

1 (|i − j| > 1 and |ri − r j| = 1)

0 (otherwise),
(4)

ai is the type of the i-th monomer, and ε(a,b) is the interaction
energy between the monomers of type a and b. By taking ε(a,b)

to be integer multiples of a unit energy ε , ε(a,b) = n(a,b)ε , the
partition function is expressed as a polynomial:

Z =
∑

{κ(a,b)}
Ω̃

({
κ(a,b)

})
z
∑

a,b n(a,b)κ(a,b) =
∑

K

Ω(K )zK , (5)

where z ≡ exp(βε), Ω̃({κ(a,b)}) is the number of polymer confor-
mations with contact numbers {κ(a,b)}, and
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Ω(K ) ≡
∑

∑
n(a,b)κ(a,b)=K

Ω̃
({

κ(a,b)
})

(6)

is the number of conformations with energy E = −Kε . The ho-
mopolymer composed of only one kind of monomers is a special
case where n(a,b) = 1 regardless of a, b, with K now being the
number of intra-chain contacts.

In this work, we develop an efficient parallel algorithm for cal-
culating the exact partition function of a lattice polymer by enu-
merating Ω(K ). The parallelization is implemented by classifying
the conformations by the shape of the box enclosing a confor-
mation. Only the conformations corresponding to a given box are
enumerated at a time by pruning partial conformations incompat-
ible with the box, and the tasks of enumerating the conformations
for the boxes are distributed among computational nodes. Since no
communications are required during the calculation, the computa-
tional speed scales well with the number of CPUs. The calculation
time for each box is reduced by exploiting the symmetries of the
system. A conformation, its rotations by multiples of 90◦ , and their
mirror images are considered equivalent and prevented from being
generated more than once. For a generic conformation, the discrete
rotations and reflections form an 8-fold and 48-fold symmetries in
two and three dimensions, respectively. Exceptions are the cases of
lower-dimensional conformations embedded in higher-dimensional
spaces. In two dimensions, a straight chain is the one-dimensional
conformation, invariant with respect to reflection perpendicular to
the chain, so the discrete rotations and reflections form a 4-fold
symmetry. Similarly, in three dimensions, only 6-fold and 24-fold
symmetries exist for the linear and planar conformations, since
they are invariant under transformation perpendicular to the un-
derlying plane and straight line.

Therefore, the number of conformations with discrete rota-
tions and reflections considered distinct in D dimensions, Ω(D)(K ),
can be easily obtained from the reduced number of conforma-
tions ω̃(D)(K ) where symmetrically related conformations are
counted only once and the lower-dimensional conformations are
not counted:

Ω(1)(K ) = 2ω̃(1)(K ) = 2δK ,0,

Ω(2)(K ) = 8ω̃(2)(K ) + 4ω̃(1)(K ),

Ω(3)(K ) = 48ω̃(3)(K ) + 24ω̃(2)(K ) + 6ω̃(1)(K ). (7)

On the other hand, the reduced numbers of conformations ω(D)(K )

where only symmetries are eliminated, are expressed in terms of
ω̃(D)(K ) as

ω(1)(K ) = ω̃(1)(K ) = δK ,0,

ω(2)(K ) = ω̃(2)(K ) + ω̃(1)(K ),

ω(3)(K ) = ω̃(3)(K ) + ω̃(2)(K ) + ω̃(1)(K ). (8)

From Eqs. (7) and (8), we see that Ω(D)(K ) are expressed in terms
of ω(D)(K ) as:

Ω(2)(K ) = 8ω(2)(K ) − 4δK ,0,

Ω(3)(K ) = 48ω(3)(K ) − 24ω(2)(K ) − 18δK ,0. (9)

It is to be noted that the enumeration in two dimensions must be
performed before enumerating those in three dimensions.

Although the current algorithm may be used for both ho-
mopolymer and heteropolymer in any dimension, as a simple ex-
ample of the application, we calculate the exact partition function
for a homopolymer on a two-dimensional square lattice, for chain
lengths up to 36. By analyzing the behavior of the specific heat,
we could estimate the temperature of polymer collapse transition.
Fig. 1. Sample conformations for N = 20 on (a) 5 × 3 rectangle and (b) 4 × 4 rectan-
gles. Circles are monomers of a lattice polymer and the arrow indicates the direction
of the chain.

2. The method

The crucial ingredients in the current method are (1) classifying
conformations according to the boxes they span, and enumerating
only those for the given box at a time by pruning partial conforma-
tions incompatible with the box, and (2) preventing symmetrically
related conformations from being generated more than once. The
arguments are almost the same for both two and three dimensions,
but more detailed illustration will be given for two dimensions
which is easier to visualize.

2.1. The classification of the conformations according to the spanning
boxes

For each conformation, we construct a rectangular box enclos-
ing it, whose sides are touched. The conformations can then be
classified according to the shapes of such boxes, since the box is
uniquely determined for each conformation. The shape of a box
can be described by the width w and height h in two dimen-
sions, and the depth d is added for three dimensions. We use the
convention that these numbers are measured in the unit of the lat-
tice spacing, so the number of lattice sites spanned by the box is
(w +1) · (h +1) · (d +1). For simplicity of the discussion, we keep d
regardless of the dimensions, which is 0 for two dimensions. As an
illustration, conformations with box sizes 5 × 3 and 4 × 4 in two
dimensions are depicted in Fig. 1. There is an intrinsic direction
in the polymer chain, and a conformation for N monomers can be
considered as a self-avoiding walk of N −1 steps, starting from the
first monomer.

Since the area or volume of a box should be large enough to
accommodate a conformation, w , h, and d should satisfy the lower
bound (w + 1) · (h + 1) · (d + 1) � N for a chain with N monomers.
Also, since the perimeter of the box should be small enough so
that all sides touch the conformation, they should also satisfy the
upper bound w + h + d � N − 1. Due to discrete symmetries, it
is enough to consider only the boxes with w � h � d. Also, the
conformations for boxes with w , h, and d that saturate the upper
bound, w +h +d = N − 1, do not have to be enumerated explicitly,
since they can be obtained from a simple analytic formula. Consid-
ered as self-avoiding walks, these are the conformations where the
steps are taken in a fixed direction along each axis, without turn-
ing back, making no intra-chain contact at all. Since there are D
possible directions for each step in D dimensions, the total num-
ber of such conformations for all possible boxes is simply DN−1/D!
when rotational and reflectional symmetries are eliminated. There-
fore, the values of w , h, and d that have to be included in the
explicit enumeration are integers bounded by the following in-
equalities:

w � h � d,

(w + 1) × (h + 1) × (d + 1) � N,
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Fig. 2. The values of the box width w and height h for which the explicit compu-
tations are performed in two dimensions, are the points with integer coordinates
inside the shaded area. The dashed line and the intersection point denoted by the
white circle is not included (see text).

w + h + d < N − 1, (10)

where again d is set to 0 in two dimensions. The region of w and
h where explicit enumeration is performed is shown in Fig. 2 for
the two-dimensional homopolymer along with the boundaries.

Only the conformations for a given box are enumerated at a
time, and parallel computation is performed by distributing the
boxes to the computational nodes. Since the number of boxes Nbox
is generally larger than the number of computational nodes NCPU,
the simplest method of distribution would be to assign the same
number of boxes to each node. However, this method turns out not
to be so efficient since certain nodes finish jobs earlier and become
free while others keep enumerating, due to the fact that the num-
ber of conformations and the computation time vary widely among
the boxes. Therefore, the most efficient way of job distribution is to
make enumeration for each box a separate task that can be taken
up by any free node. Since a computational node that finishes the
enumeration takes over a job in the queue, there is no idle time for
any of the nodes. The total number of boxes for each chain length
must be precalculated in order for this efficient distribution, which
can be performed in a practically negligible amount of time. Abso-
lutely no communication is needed between the nodes during the
enumeration, and it is only after all the computations are finished
that the results from all the nodes are added to obtain Ω(K ). The
current algorithm can be used in a single CPU as well, by requiring
it to enumerate conformations for all possible boxes.

2.2. Self-avoiding walk and pruning

The conformations are enumerated by generating self-avoiding
walks. This is most easily achieved by recursively calling a subrou-
tine that makes one step into a given direction [27]. The number
of sites n occupied by the current partial conformation is kept as
a global variable, which is equivalent to the number of lattice sites
visited by the walk so far. From the given position, the next step
is made for each of the neighboring lattice sites not occupied by
a monomer. For each step of the walk, the current lattice site is
marked as occupied, and the contribution of the current monomer
is added to the number of contacts K . When n reaches N , the
contribution of the final monomer is added to K and ω(K ) is in-
cremented by one.

In order to ensure that the computation time is spent only for
enumerating the conformations spanning a given box, any partial
conformation incompatible with the current box is pruned out at
an early stage. This is done by keeping the record of whether each
side of the box has already been touched by the walk generated
so far. If there is a boundary that has not been touched as yet,
whose distance from the current position is l, then the next step
in the opposite direction to this boundary is forbidden unless there
are sufficient number of remaining monomers N − n. Assuming
the untouched boundary is at x = 0 and the current position is
at x = l and the next step is in the positive x direction, at least 3
monomers are needed to make a U -turn and get back to x = l, and
l monomers are needed to reach the boundary x = 0, leading to
the inequality

l + 3 � N − n, (11)

which should hold for any step in the opposite direction from the
untouched boundary, whose distance from the current position is
l. Similarly, the next step in the direction orthogonal to the un-
touched boundary is forbidden unless

l + 1 � N − n. (12)

2.3. Elimination of discrete symmetries

The speed of enumeration is increased by generating symmet-
rically related conformations only once. Since the discrete symme-
tries of rotation and reflection are 8-fold and 48-fold in two and
three dimensions respectively, the enumeration time is reduced
by nearly the same factor by calculating the reduced number of
conformations ω(K ) instead of the full number Ω(K ). For a rect-
angular box where w , h, and d are all different, 90◦ rotational sym-
metry is removed by considering only the box with w > h > d. In
order to remove the remaining 4-(8-)fold symmetry in two (three)
dimensions, we divide the rectangular box into 4 (8) equivalent
quadrants (octants) containing each corner of the box, and con-
sider only the chain that starts inside one quadrant (octant), given
by:

1 � x � w

2
+ 1,

1 � y � h

2
+ 1,

1 � z � d

2
+ 1, (13)

where x, y, and z are integer coordinates for the lattice sites. The
quadrant described by Eq. (13) in the case of two-dimensions is
shown as gray area in Fig. 3(a). Since symmetries are not com-
pletely eliminated for conformations starting at the boundaries,
where any of the conditions, Eq. (13), is satisfied as an equality,
additional constraints are imposed, so that the first step along the
axis corresponding to an equality is in the positive direction. For
example, when w is an even number and if the starting position
of the chain is at x = w

2 +1, we require that the first step along the
x-axis should be positive. Examples in two dimensions are shown
in Figs. 3(b) and (c).

When any two of the three numbers w , h, and d are equal, for
example w = h, there remains a reflection symmetry with respect
to plane x = y, which is eliminated by imposing an additional con-
straint that among the steps parallel to the x–y plane, the first
one must be along the x direction. Similarly, when h = d we break
the symmetry by requiring that among the steps parallel to the
y–z plane, the first step must be along the y axis. Again the two-
dimensional example is given in Fig. 3(d).

3. Result

The method developed in the current work can be applied to
either heteropolymer or homopolymer in any dimension, but as
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Fig. 3. (a) Because of the symmetries, only chains starting from the sites in a shaded
area at the lower left corner are considered. (b) In the special case of chains starting
at the boundary line y = h

2 + 1, an additional constraint is imposed so that the
first vertical step is in the upper direction. A similar constraint is imposed for a
chain that starts at the boundaries x = w

2 + 1 so that the first horizontal step is
in the right direction. (c) For a chain starting at the center point with x = w

2 + 1

and y = h
2 + 1 the two constraints for the horizontal and vertical boundary are

imposed simultaneously. (d) For a square box, the additional reflectional symmetry
with respect to the line y = x is eliminated by requiring that the first step is in the
horizontal direction.

a simple example of the application, we study the homopolymer
in the two-dimensional square lattice. Since a monomer cannot
make a contact with itself, as well as the nearest and next-nearest
neighbors along the chain, the upper limit of the K summation in
Eq. (5), denoted as Kmax, satisfies the upper bound

Kmax � N(N − 5)nmax

2
+ 3nmax, (14)

where nmax is the maximum value of n(a,b). In the absence of an
additional information, we may take this value as the size of the
array to store the values of ω(K ), but for the special case of the
homopolymer in two dimensions, we have the exact formula for
Kmax [28]:

Kmax =
{

N − 2m for m2 < N � m(m + 1),

N − 2m − 1 for m(m + 1) < N � (m + 1)2,
(15)

where m is a positive integer.
We calculated the number of states ω(K ) for N � 36. The same

quantities for N � 28 have been calculated in earlier works [1,
28,29]. Our calculation reproduce these results in the appropriate
ranges. The new results for 29 � N � 36 are presented in Tables 1
and 2. The CPU time using Intel Xeon CPUs (2.8 GHz) is plotted in
logarithmic scale as the function of N in Fig. 4, for 15 � N � 30
where time data are available. As expected, the CPU time grows
exponentially as N increases:

t � AλN (16)

where values of A = 1.64(2) × 10−8 and λ = 2.43(2) are obtained
by taking the log of Eq. (16) and performing the least square fit.
The total number of conformations as well as the computational
Fig. 4. The CPU time in log scales, plotted as a function of the chain length N .

Fig. 5. The computational speed as the function of the number of computational
nodes. The computational speed is defined as the inverse computational time, nor-
malized so that its saturated value is 1.00.

times of many enumeration algorithms are known to grow expo-
nentially as μN where μ = 2.638 is the connective constant for the
self-avoiding walks [30], so the computational time of the current
algorithm grows at somewhat slower rate than this. Although al-
gorithms for enumerating the total number of conformations have
been developed [31,32] whose computation time grows at rates
slower than the current one, it must be noted that the current
method not only calculates the total number but also the number
of conformations for each energy value, leading the calculation of
the exact partition function at arbitrary temperature.

By the efficient distribution of the enumeration tasks among
the computational nodes, the computational speed scales linearly
with the number of computational nodes until the saturation oc-
curs. It is obvious that the number of nodes used, NCPU, cannot
exceed the number of boxes, but the saturation occurs at a smaller
value of NCPU because the enumeration time varies widely among
the boxes. A few nodes enumerating the box with large number
of conformations tend to keep computing even after most of the
nodes have completed computations, causing the deviation from
the linear scaling of computation speed with NCPU. By recording
the computation times for each boxes and assuming the most ef-
ficient distribution of tasks between the nodes, the computation
time could be calculated as a function of NCPU. The speed of com-
putation, the inverse of the computation time, is plotted in Fig. 5
for various values of N , where the saturated value of the speed is
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Table 1
The number of conformations ω(K ) on a square lattice as a function of the chain length 29 � N � 32 and the number of contacts K .

K N

29 30 31 32

0 7 689 321 701 17 982 126 658 42 108 189 098 98 421 806 691
1 23 540 565 448 56 977 682 194 137 862 646 874 332 762 640 146
2 40 085 909 835 100 142 920 787 249 700 259 569 620 847 470 396
3 49 071 555 164 126 359 874 347 324 279 253 784 829 487 165 382
4 48 771 398 860 129 152 420 800 340 420 363 856 894 055 572 891
5 41 585 979 484 113 114 869 570 305 828 397 226 823 666 234 004
6 31 508 871 807 87 958 369 563 243 684 809 928 672 408 321 619
7 21 617 211 324 61 936 948 230 175 770 392 578 496 787 988 274
8 13 642 191 086 40 119 932 593 116 592 999 110 337 522 862 616
9 7 980 014 626 24 122 755 170 71 817 661 842 213 018 321 049

10 4 362 872 816 13 562 820 674 41 372 702 687 125 886 832 996

11 2 226 147 024 7 152 132 929 22 391 023 650 69 957 624 306
12 1 065 063 681 3 542 639 525 11 397 385 748 36 690 896 460
13 475 157 642 1 646 914 139 5 456 762 684 18 158 394 435
14 194 929 001 716 011 778 2 455 124 926 8 476 869 526
15 72 870 960 286 636 733 1 024 918 738 3 722 404 274
16 24 595 083 104 686 477 393 687 071 1 519 486 734
17 6 751 332 34 676 719 136 943 328 571 834 936
18 899 613 9 090 306 41 715 633 194 513 054
19 16 294 1 005 977 8 866 818 57 891 860
20 13 498 636 771 11 290 845
21 656 376

Total 293 922 322 781 784 924 528 667 2 092 744 741 919 5 584 227 078 870

Table 2
The number of conformations ω(K ) on a square lattice as a function of the chain length 33 � N � 36 and the number of contacts K .

K N

33 34 35 36

0 230 322 480 773 538 091 763 166 1 258 493 243 324 2 938 908 879 305
1 802 996 241 232 1 933 501 499 531 4 654 740 470 620 11 183 769 131 112
2 1 541 179 904 025 3 815 982 548 374 9 435 546 145 403 23 276 263 902 178
3 2 115 681 496 986 5 380 293 120 526 13 648 570 547 310 34 530 182 956 163
4 2 338 726 472 743 6 097 828 689 993 15 844 205 741 060 41 046 002 582 789
5 2 206 962 182 754 5 892 600 481 193 15 663 662 724 418 41 502 969 876 897
6 1 843 564 131 938 5 035 936 926 127 13 681 123 644 389 37 041 494 009 397
7 1 393 031 891 232 3 891 460 627 050 10 798 327 608 646 29 859 153 057 072
8 967 612 822 630 2 763 594 584 708 7 829 412 575 160 22 103 175 375 035
9 624 333 988 838 1 823 442 056 984 5 273 396 514 658 15 198 342 307 484

10 377 300 221 611 1 127 227 716 216 3 327 749 067 600 9 793 121 298 664

11 214 525 075 976 656 411 900 406 1 978 790 499 320 5 948 956 055 099
12 115 237 903 606 361 505 461 087 1 113 409 518 803 3 422 967 752 173
13 58 512 766 632 188 687 694 809 594 317 169 744 1 870 659 345 753
14 28 078 596 777 93 399 109 108 301 280 956 584 972 915 151 671
15 12 713 385 376 43 768 480 489 144 908 527 014 481 649 031 145
16 5 394 346 351 19 397 612 212 66 030 540 012 226 685 149 424
17 2 118 111 650 8 050 408 136 28 387 608 698 101 251 448 207
18 763 529 938 3 106 194 291 11 380 453 744 42 658 656 267
19 244 420 464 1 095 275 398 4 222 218 392 16 800 266 331
20 64 896 504 342 819 455 1 417 505 104 6 127 509 709

21 9 564 594 87 997 218 412 844 504 2 004 417 664
22 306 498 11 551 406 89 824 129 573 845 730
23 265 502 8 277 188 118 501 239
24 105 265 9 156 136
25 57 337

Total 14 879 374 739 128 39 675 824 783 385 105 659 884 331 089 281 566 759 719 981
normalized to one. We see that the linear scaling holds for up to
NCPU = N(max)

CPU which increases with N .
As an example of the application of our method, we calculate

the specific heat per monomer,

C(T , N)/ε2N = 1

ε2N

∂ E

∂T
= β2

ε2N

∂2 ln Z

∂β2

= (ln z)2

N

[∑
k k2Ω(k)zk∑

Ω(p)zp
−

(∑
k kΩ(k)zk∑

Ω(p)zp

)2]
(17)
p p
which is plotted in Fig. 6 as a function of z for several values of
N . The finite N approximation of the transition point, zc(N), is ob-
tained from the condition ∂C

∂z = 0. We observe a peak around z � 2,
which becomes sharper as N increases. The point of the collapse
transition is known to follow the finite-size scaling

zc(N) − zc(∞) ∼ N−φ, (18)

where φ is the crossover exponent whose exact value is believed
to be 3/7 [15]. We apply the Bulirsch–Stoer extrapolation [33–35]
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Fig. 6. The specific heat for N = 20, 28, and 36 from bottom to top.

Fig. 7. The finite value approximation of the transition point zc and its extrapolated
value at N = ∞.

to Eq. (18) and then obtain zc(∞) = 2.07(7), equivalent to Tc/ε =
1.37(7), where the data for even N with 20 � N � 36 were used.
zc(N) is displayed in Fig. 7 as the functions of 1/N , along with
the extrapolated value zc(∞). The current result is in reasonable
agreement with those from the earlier works.

4. Discussion

We developed an efficient parallel algorithm for calculating the
exact partition function of a lattice polymer. An efficient paral-
lelization of the calculation was achieved by classifying the con-
formations according to the shape of the box spanned by a confor-
mation. Only the conformations corresponding to a given box were
enumerated at a time, pruning partial conformations incompatible
with the box at an early stage. The calculation time was further
reduced by preventing the conformations related by symmetries
from being generated more than once. The parallel efficiency could
be maximized by requiring that any node that finishes the task of
enumeration for a box takes over a new task of enumeration for
another box whose conformations have not been enumerated by
any of the nodes. As an illustration of applications, we studied the
collapse transition of lattice homopolymers in square lattices, by
calculating the specific heat. The exact partition function can also
be used for calculating the partition function zeros in the com-
plex temperature plane, which is a more sensitive indicator of the
phase transition than the specific heat [36].

As mentioned in the previous section, the linear scaling of
the computation speed with the number of CPUs NCPU breaks
down well before NCPU reaches the total number of boxes, due to
the fact the computation time varies wildly depending on boxes.
However, considering the fact that NCPU cannot be made arbi-
trarily large in practice, the saturation effect can be neglected in
many situations, particularly when long chains are studied, since
the saturation limit N(max)

CPU grows with the chain length N (see
Section 3). As can be seen from Section 3 (see Fig. 5), the par-
tition function of the two-dimensional polymer chain of length
29 can be enumerated with up to 30 CPUs without saturation
of the linear scaling, and one can employ more CPUs for study-
ing chains of longer lengths. Since linear scaling becomes bet-
ter as the chain length increases, our method is a powerful tool
for studying long polymer chains with limited computational re-
sources.

An idea of classifying conformations of two-dimensional ho-
mopolymers according to spanning boxes, similar to ours in certain
aspects, has been introduced for the calculation of the partition
function of a polymer on the square lattice at infinite temper-
ature using transfer matrix formalism [32]. At least for such a
calculation the transfer matrix was claimed to be superior to the
direct counting, and it would be interesting to see whether it
can be generalized for calculating the partition function at arbi-
trary temperatures in two dimensions, without introducing much
additional computational costs. The current algorithm is more gen-
eral in that not only the partition function at arbitrary tempera-
ture can be calculated, but heteropolymers and arbitrary dimen-
sions can be treated in a straightforward manner. The explicit
applications of the algorithm to these cases are left for future
works.
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