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Design of a Protein Potential Energy Landscape by Parameter Optimization

I. Introduction
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We propose an automated protocol for designing the energy landscape of a protein energy function by
optimizing its parameters. The parameters are optimized so that not only the global minimum-energy
conformation becomes nativelike but also the conformations distinct from the native structure have higher
energies than those close to the native structure. We classify low-energy conformations into three groups:
supernative, nativelike, and non-native. The supernative conformations have all backbone dihedral angles
fixed to their native values, and only their side chains are minimized with respect to energy. However, the
nativelike and non-native conformations all correspond to the local minima of the energy function. These
conformations are ranked according to their root-mean-square deviation (rmsd) of backbone coordinates from
the native structure, and a fixed number of conformations with the smallest rmsd values are selected as nativelike
conformations, whereas the rest are considered to be non-native conformations. We define two energy gaps

Ela,andES; The energy gaf ., (E%) is the energy difference between the lowest energy of the non-native

conformations and the highest energy of the nativelike (supernative) conformations. The parameters are modified
to decrease both,, andEY), In addition, the non-native conformations with larger rmsd values are made

to have higher energies relative to those with smaller rmsd values. We successfully apply our protocol to the
parameter optimization of the UNRES potential energy using the training set of betanova, 1fsd, the 36-
residue subdomain of chicken villin headpiece (PDB ID 1vii), and the5Bresidue fragment of staphylococcal
protein A (PDB ID 1bdd). The new protocol of the parameter optimization shows better performance than
earlier methods where only the difference between the lowest energies of nativelike and non-native
conformations was adjusted without considering various nativelike degrees of the conformations. We also
perform jackknife tests on other proteins not included in the training set and obtain promising results. The
results suggest that the parameters we obtained using the training set of the four proteins are transferable to
other proteins to some extent.

of protein folding by these methods will lead not only to a
successful structure prediction, especially for proteins having

The prediction of the 3D structure and the folding pathway ¢ similar sequences in the PDB, but also to a clarification of
of a protein solely from its amino acid sequence is one of the ¢ protein-folding mechanism.

most ch_allenging problems in bioph_ysical chemistry._Tr_]ere ar'®  However, there have been several major obstacles to the
twﬁ r(?eEor a||opdroacg1es LO thehprgteln (sjtructure pgredlc(:jtlon. hsod_ successful application of energy-based methods to the protein-
C";‘] ek nciwde gt?' a(sje mhe;}jg Sh‘,'jmh .enle(rigy- ased methodsy ging problem. First, there are inherent inaccuracies in

The knowledge-based met ,Which include comparative potential energy functions that describe the energetics of

[)nodelmg ﬁnd fold recogn|t|3n,hu§e tge statlst|cal_relﬁnogsmp_ roteins. Second, even if the global minimum-energy conforma-
etween the sequences and their 3D structures in the Proteiryjo, s nativelike, this does not guarantee that a protein will

Data Bank (PDB), without a deep understanding of the ¢, 4 jntg its native structure on a reasonable timescale unless
interactions governing the protein folding. Th_er_efore, although hq energy landscape is properly designed, as summarized in
these methods can be very powerful for predicting the structure i« | evinthal paradox

of a protein sequence that has a certain degree of similarity to

g:gﬁgir']n t:fet;; DEsrbirgﬁ])ffg%?:otrﬁégxfﬁs?nfundamental under- guantum mechanical calculations and experimental data on
9 P 9 - model systems. However, such calculations and data do not

However, the energy-based meth&ds,which are also called  getermine the parameters with perfect accuracy. The residual

the physics-based methods, are based on the thermodynamigors in potential energy functions may have significant effects

hyp_othe3|s that_ proteins adopt_nat|ve structures that minimize oy simulations of macromolecules such as proteins, where the

their free energie¥ Understanding the fundamental principles (g4 energy is the sum of a large number of interaction terms.

Moreover, these terms are known to cancel each other to a high
¥ Corresponding author. E-mail: jlee@kias.re.kr. . degree, making their systematic errors even more significant.
! Department of Bioinformatics and Life Sciences, Soongsil University. Ty it is crucial to refine the parameters of a potential energy
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Soongsil University. func_tlon before it can be successfully applied to the protein-
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Physics-based potentials are generally parametrized from
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An iterative procedure that systematically refines the param- Enodiiea = E + 0.3 rmsd 2
eters of a given potential energy function was recently pro-

posed® and successfully applied to the parameter optimiz&tiéh

of an UNRES potential enerdy.1° The method exploits the
high efficiency of the conformational space annealing (CSA)
method® 24 in finding distinct low-energy conformations. For

when calculating the energy gaps. The numerical value of 0.3
is chosen empirically as an optimal value by inspecting the
performance of the parameter-optimization protocol for one

h ' ' ,_ protein—betanova-although performances with other values
a given set of proteins whose low-lying local minimum-energy g,ch as 0.1 or 0.5 are also reasonably good for this protein.

conformations fora_given energy function is found by the_CS_A The parameters of an UNRES energy function were also
method, one modifies the parameter set so th_at nativelike successfully optimized by Liwo et &f.using energy gaps that
conformations of these proteins have lower energies than Non-gepend on the nativelikeness of the conformations. However,
native ones. The method consists of the following steps: whereas these authors used the secondary structure contents for
(1) Low-lying local minimum-energy conformations are he criterion of nativelikeness of a conformation, we use rmsd.
searched with no constraints, which is called the global CSA The idea of correlating rmsd to energy was also used in
search. For many proteins, the conformations resulting from the o htimizing a contact potentifor the study of fold recognition,
global CSA are non-native conformations for parameters that \yhere the distance rmsd was used instead of the coordinate-

are not yet optimized. based rmsd used in this work.
(2) Nativelike conformations are searched by the local CSA 1o new method is more natural than previous meth&dé

search, where low-lying local minimum-energy conformations, \here non-native conformations were treated equally regardless
among those whose root-mean-square deviation (rmsd) of they¢ heir rmsd values. It also turns out that the new method is

backbone € coordlnlates from the native structure is below a 1, ch more efficient than the previous ones and allows us now

given cutoff V_alu_eR(cu)t' are sampled. ) to optimize the parameters for a training set containing a
(3) The nativelike and non-native conformations from steps protein. Additional new features are introduced in the current

1 and 2 are added to the S'[fUC'[ul’a| database Of eaCh pl’Otem. method to overcome severa' major drawbacks of the previous
(4) Among the conformations in the structural database, those methods, as discussed below.

with rmsd values below a given cutoff val&g) are defined as First, in previous methodS; 15 arbitrarily chosen values of
nativelike conformations, whereas the rest are defined as non-ymsq cutoffs RY, and R?, were used as the criteria for

native ones. The parameters are optimized in such a way as toseparating nativelike conformations from non-native ones, which

minimize the energy gaps were set at each iteration by inspecting the distribution of rmsd
values of conformations. This rather arbitrary procedure made

Egap= Emin — Enin 1) it difficult to automate the optimization procedure. Moreover,

for some proteins, the value &) had to be taken as a large
for all proteins in the training set, wheigy, (ENN) is the number to have a nonzero number of nativelike conformations,
m|n|mum energy among the energies Of the natlve“ke (non_ n WhICh case the |Oca| CSA SearCh. |.S.n0t mear”ngful. ThIS
native) conformations in the structural database. can happen for a protein where the initial parameter set is so

(5) After the parameters are modified in step 4, the conforma- bad that there exist no local minimum-energy conformations
tions in the structural database are not local minimum-energy that. are natlyellke. This problem is solved |n.the current mgthod
conformations anymore. Therefore, it is necessary to reminimize Py introducing what we call the supernative conformations,
these conformations using the potential energy with the new whose backbone angles are fixed to the values of the native
parameters. structure and only side-chain angles are minimized with respect

(6) In general, with the new parameters, there may exist many {0 the energy. In the current method, the local CSA search is
additional low-lying local minima of the potential energy, which _deflned as the restr_lcted s_earch for supernative conformations
are absent in the structural database. Therefore, it is necessar{! the space of the side-chain angles. Becaus€thiesd values
to go back to step 1 and perform CSA searches with the new f0r the supernative conformations are zero by definition, an
parameters. These steps are repeated until the performance ddrbitrary cutoff valueR}) is no longer necessary. Also, the
the optimized parameters is satisfactory (i.e., the global CSA supernative conformations can be found for any parameter set.
search finds nativelike conformations with reasonably small Although supernative conformations are unstable with respect
values of rmsd from their corresponding native structures). to energy, minimizing the energy gap between their highest
Because the size of the structural database of local minimum-energy and the lowest energy of non-native conformations
energy conformations grows after each iteration, the efficiency stabilizes their energies. Therefore, because of the reminimi-
of the parameter optimization increases as the algorithm zation procedure with new optimized parameters, the supernative
proceeds. conformations would furnish low-lying local minima with small

It would be desirable to include many proteins in the training rmsd values that accumulate as the iteration proceeds. This
set that represent many structural classes of proteins. Themakes the current method more efficient than the earlier
optimization method was successfully applied to the parameter methods, where it was difficult to optimize the parameters unless
optimization of the UNRES potential for a training set consisting local minimum-energy conformations with small values of rmsd
of three proteins of structural classesand o/f * without exist with the initial parameters. In addition to the supernative
introducing additional multibody terni$.14.16.2%owever, it was conformations, we define nativelike conformations as the 50
still difficult to optimize the parameters of the UNRES potential conformations with the smallest rmsd values in the structural
for a training set containing proteins. database. Although 50 is an arbitrary number, it can be kept as

In this work, we propose a new protocol where the parametersa fixed number, and again the cutoff valﬁiézu)t is set auto-
are modified so as to make conformations with larger rmsd matically. Also, because the size of the structural database grows
values have higher energy values relative to those with smallerafter each iteration of the parameter optimization, the total
rmsd values. This goal is achieved by using the following number of local minimum-energy conformations becomes as
modified energy, large as several thousand, and the 50 nativelike conformations
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Figure 1. United-residue representation of a protein. The interaction
sites are side-chain ellipsoids of different sizes (SC) and peptide-bond
centers (p) indicated by shaded circles, whereas that@ns (small
empty circles) are introduced to define the backbeloeal interaction
sites and to assist in defining the geometry. The virtuat C* bonds
have a fixed length of 3.8 A, corresponding to a trans peptide group;
the virtual bond @) and dihedral ) angles are variable. Each side
chain is attached to the correspondimgcarbon with a different but
fixed bond lengthly, and variable bond angley, formed by S€and

the bisector of the angle defined by:¢ C, and G,, and with a
variable dihedral anglgs; of counterclockwise rotation about the
bisector, starting from the right side of the" ¢ C?, C%,, frame.

A

RMSD

Non—native
Conformations

R

Native—like
Conformations

Energy

Figure 2. Schematic of the old method in terms of the energy and
rmsd. The conformations in the structural database are divided into
nativelike and non-native conformations with an arbitrary rmsd cutoff

f}t The minimum energies of these two families define the energy
gap. (See the text.) The arrows indicate the direction of the optimization.

comprise only about 1% of them at the final stage of the
parameter optimization. Therefore, we expect that the perfor-

mance of our procedure is not sensitive to the precise number

of nativelike conformations. As mentioned above, the low-lying
local minima with small rmsd values can be provided from the
reminimization procedure of the supernative conformations.
Generally, the rmsd values of these nativelike conformations
become smaller as the iteration of the parameter optimization
continues. Both supernative and nativelike conformations are
used to calculate the energy gaps.

Second, we introduce linear programming to perform the
parameter optimization systematically on the basis of linear
approximation. This allows one to optimize the parameters so

J. Phys. Chem. B, Vol. 108, No. 14, 2004527
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Figure 3. Schematic of the new method in terms of the energy and
rmsd. The energy along the vertical axis is the one without the 0.3
rmsd term. Among the conformations with nonzero rmsd's, 50
conformations with the smallest rmsd values are selected as the
nativelike conformations, and the rest are considered to be the non-
native conformations. Supernative conformations are those with zero
rmsd. The supernative conformations furnish the candidates for the low-
lying nativelike local minima after the reminimization procedure with
new optimized parameters. The lowest modified energy of the non-
native family and the highest modified energies of nativelike and
supernative families define the energy gaps. (See the text.) The arrows
indicate the direction of the optimization.

ES'N
E=E"' + 0.3RMSD
—

TABLE 1. rmsd Values of the GMECs Found from the
Global CSA Search Using the Initial Parameters along with

tg\e Optimized Parameters after the 28th and 40th Iterations
(A2
protein Oth 28th 40th

betanovaf: 20 aa) 6.6 (5.1) 4.1(1.6) 1.5(1.5)
1fsd (@/p: 28 aa) 5.6 (3.6) 1.9(1.7) 1.7 (1.3)
1vii (o 36 aa) 6.3(4.9) 2.7 (1.6) 1.7 (1.2)
1bdd @ 46 aa) 9.6 (4.0) 3.1(1.6) 1.9(1.7)
1bbg @/f5: 40 aa) 8.7 (6.3) 7.9 (5.3) 7.3(5.9)
lcen @Uf: 46 aa) 7.7 (6.4) 9.5(7.0) 6.5 (6.0)
lhnr @/f: 47 aa) 9.9 (5.1) 9.7 (5.9) 9.2(5.2)
1kbs (3: 60 aa) 11.2 (9.5) 11.3(10.0) 10.1 (7.6)
1neb f3: 60 aa) 10.9 (9.3) 11.3(8.8) 9.6 (9.1)
1bba (u: 36 aa) 8.9(8.1) 8.1(6.8) 12.0 (10.7)
lidy (o: 54 aa) 11.9 (6.6) 11.6 (7.4) 7.5(6.2)
1prb (@: 53 aa) 10.2(7.0)  11.1(5.4) 7.1(5.1)
1pru @: 56 aa) 8.4 (7.1) 11.3(6.4) 8.4 (7.6)
1zdb @: 38 aa) 7.7 (6.3) 7.6 (4.9) 5.0 (4.5)

2 The numbers inside the parentheses are the smallest values of rmsd
found. The structural class and the chain length of each protein are
also shown inside the parentheses next to the protein name. The energies
are not displayed because their numerical values have no physical
meaning because of the fact that the overall scale of the linear
parameters is not fixed in our protocol.

of that protein was reduced without imposing any constraint
on the energy gaps of the other proteins in the set. Because
linear programming has the effect of simultaneously decreasing
the energy gaps of all of the proteins in the training set, it is
especially powerful when there are many proteins in the training
set.

Third, we use the highest energies of the nativelike and

that the energy gap of a protein is minimized while imposing Supernative conformations to calculate the energy gaps. This is
the constraint that the other energy gaps, including those of thein contrast to earlier work in which the lowest energy of the
other proteins, do not increase if they are positive and do not nativelike conformations was used instead. The old procedures
become positive if they are negative. This is in contrast to the may result in lowering only the nativelike conformation with
optimization method of earlier work, where the protein with the lowest energy. The current procedure lowers the energies
the largest energy gap was selected in turn, and the energy gapf all nativelike conformations and is more efficient.
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Figure 4. Plots of the UNRES energy and*@nsd (from the native structure) of four proteins obtained from a global CSA search using the initial
and refined parameters. The red, green, and blue crosses denote the results obtained using the parameters before the optimization, after the 28th
iteration, and after the 40th iteration, respectively. The results are shown for (a) betanova, (b) 1fsd, (c) 1vii, and (d) 1bdd.

E= Zuscsc(i! i+ ZUSCp(i’ i+

In this work, we successfully apply this method to the

< Z|
optimization of linear parameters in the UNRES potential energy - -
for a training set consisting of betanova, 1fsd, the 36-residue Z Upp(i1 )+ zUb(i) +
subdomain of chicken villin headpiece (PDB ID 1vii), and the iS-1 :
10-55 residue fragment of staphylococcal protein A (PDB ID zUmr(i) + ZUrot(i) +
1bdd). We obtain the global minimum-energy conformations | |
(GMECsS) of these proteins with rmsd values of 1.5, 1.7, 1.7, @ o
and 1.9 A, respectively. The proteins in the training set/are Ugis z Uermiocls 1) 3)
(betanova)p/f (1fsd), anda (1vii and 1bdd) proteins, which =

cover representative structural classes of small proteins in nature. . . . )

The basic form of the UNRES potential that we use, where the /S described in fetall in the Appendix of ref MSCS? USCP
only multibody term is the four-body term, is the one that was Usp Utor, and U)o, can be further decomposed into linear
used for the successful prediction of unknown structures of COmbinations of smaller parts, whose coefficients are refined
proteins in CASP3:1027 With the optimized parameters, we N this work. Here Uscsdi, j) represents the mean free energy

have performed jackknife tests on various proteins not included ©f the hydrophobic (hydrophilic) interaction between the side
in the training set, and we find promising results. chains of residuesandj, which is expressed by the Lennard-

Jones potentialJscdi, j) corresponds to the excluded-volume
interaction between the side chain of residw@ad the peptide
Il. Methods group of residug, and the potentialUp(i, j) accounts for the
electrostatic interaction between the peptide groups of residues
A. Potential Energy Function. We use the UNRES force i andj. The termsUio(i), Up(i), and Uix(i) denote the short-
field,1-19 where a polypeptide chain is represented by a range interactions corresponding to the energies of virtual
sequence ofi-carbon (@) atoms linked by virtual bonds with ~ dihedral angle torsions, virtual angle bending, and side-chain
attached united side-chains (SC) and united peptide groups (p)rotamers, respectivelylqis denotes the energy term that forces

located in the middle between consecutivesgFigure 1). All two cysteine residues to form a disulfide bridge. Finally, the
of the virtual bond lengths are fixed: the*€C® distance is four-body interaction ternU%, . results from the cumulant

taken to be 3.8 A, and the®€ SC distance is given for each  expansion of the restricted free energy of the polypeptide chain.
amino acid type. The energy of the chain is given by The functional form, as well as the initial parameter set that we
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Figure 5. Plots of the UNRES energy and*@nsd (from the native structure) of local minimum-energy conformations in the structural database

of four proteins accumulated after the 40th iteration of parameter optimization (red) and the new conformations obtained from the global CSA
using these parameters (green). The results are shown for (a) betanova, (b) 1fsd, (c) 1vii, and (d) 1bdd.

the side-chain angles are minimized with respect to the energy.
We call the resulting conformations the supernative. The other
conformations are obtained from an unrestricted conformational
search that we call global CSA. The conformations obtained
from the local and global searches are added to the structural
database of local minimum-energy conformations for each
protein.

C. Parameter Refinement Using Linear Programming.
The changes in energy gaps are estimated by the linear
approximation of the potential energy in terms of the parameters.
Among the conformations with nonzero rmsd values in the
structural database, 50 (an arbitrary number) conformations with
the smallest rmsd values are selected as the nativelike confor-
mations, and the rest are considered to be the non-native ones.
Figure 6. Cc trace of GMEC found with the optimized parameters Because a potential can be considered to describe the nature
shown together with the native structure for each of the four proteins correctly if nativelike structures have lower energies than non-

in the training set. The native structure is shown in red, and the GMEC . L. 2
is shown in yellow. The GMECs are shown for (a) betanova, with a native ones, the parameters are optimized to minimize the energy

rmsd value of 1.51 A, (b) 1fsd, with a rmsd value of 1.65 A, (c) 1vii, g&lpSE&a)p and Ega)p
with a rmsd value of 1.73 A, and (d) 1bdd, with a rmsd value of 1.89

A. Plots were prepared with the program MOLMGL. Eéla)pz gN — gWN
use, is the one used in the CASP3 exeré&dhe total number @ =N - g™ (4)

of linear parameters that we adjust is 7%5.
B. Global and Local CSA. To check the performance of a for each protein in the training set, whe® andESN are the

potential energy function for a given set of parameters, one hashighest energies of the nativelike and supernative conformations,
to sample supernative, nativelike, and non-native conformationsrespectively, andENN is the lowest energy of the non-native
for each protein in the training set. For this purpose, we perform conformations. The energies are the modified ones that are
two types of conformational searches: local and global CSA. weighted with the rmsd values of the conformations as in eq 2.
In the local CSA, the backbone angles of the conformations Weighting the energies with the rmsd values makes the large
are fixed to the values of the native conformations, and only rmsd conformations have high energies compared to the ones
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Figure 7. Results of the jackknife test. Plots of the UNRES energy versusr@d (from the native structure) of the low-lying local-energy-
minimum conformations. Conformations obtained from the global CSA using initial parameters and parameters obtained after the 28th and 40th
iterations of optimization are shown in red, green, and blue, respectively. The results are shown for (a) 1bbg, (b) 1ccn, (c) 1hnr, (d) 1kbs, (e) 1neb,
(f) 1bba, (g) lidy, (h) 1prb, (i) 1pru, and (j) 1zdb.

with small rmsd values. This idea is somewhat similar to the (@ — @ (rpremy _ @) (rpold

hierarchical optimization method proposed in ref 16, where the AFgep Egap({pJ R Egap({ B )

secondary structure contents were used as the criterion for = (ESN({pJF‘e‘N}) — ENN(¢ pj”e"‘})) -
ranking the nativeness of the conformations. In this work, we SN, ¢ old NN, ¢ old
simply use the rmsd values. The rmsd value is easier to calculate; (E7( P N-ET( Y 1)
consequently, it becomes easier to automate the procedure. _ SN _ NNy, new _ old 8
Parameter optimization is carried out by minimizing the energy o ]Z (% § )(pj P ) ®)

gapsEéla)p and nga)p of each protein in turn, while imposing the
constraints that all of the other energy gaps, including those The magnitude of the parameter chanige = pJ.”eW — pj‘"d is
from the other proteins, do not increase. bounded by a certain fractianof p”. We uses = 0.01 in this

In this work, we adjust only the linear parameters for stydy. First, the vectaip, is chosen within the bound to decrease
simpliqity, the total number of them being 715 f_or_ the UNRES  he energy gapAE(Q of the selected protein as much as
potential. Therefore, the energy of a local minimum-energy possible while impc?s?ng the constraint that any positive values
conformation can be written as amongEgza)p and the energy gaps of the other proteins do not
E= zp%(xm' ) ) increase and negative values do not bgcome positive. Denoting
T min the energy gaps of thkth protein asE® (k) and assuming
that theith protein is selected for the decrease in the energy
where theg’s are the energy components evaluated with the gap, this problem can be phrased as follows:

coordinatesxyin of a local minimum-energy conformation. Minimize
Because the positions of local minima also depend on the
parameters, the full parameter dependence of the energy gaps AE&) i)= Z(ejN(i) - ejNN(i))(pj”eW— pj°'d) 9)
is nonlinear. However, if the parameters are changed by small ]
amounts, then the energy with the new parameters can be . .
estimated by the linear approximation with constraints
lop| = € (10)

B B S (01— ") (i) ©)

new

AEGHD) = (&0 — M O)E™ - p) =
where thep”® and p™" terms represent the parameters before T
and after the modification, respectively. The parameter depen-
dence of the position of the local minimum can be neglected in
the linear approximation because the derivative in the confor-
mational space vanishes at a local minimt#ithe additional
0.3 rmsd term of eq 2 vanishes in these expressions for the  AEP=12)(| = j) = z(‘%-(S)N(k) - eiNN(k))(pT‘ew_ p?% <
same reason. The changes of the energy gaps are estimated to gap 7 ! !

0 it E2i) > o} an

—EZ (i) otherwise

e 0 if ED (k) > 0
I Ega >
12
AED, = EDMAR™) — EQr™) {—E;e;p(k) otherwise ] (12)
— N NN
=(E( pjnew}) —E7({ pjnew})) - This is a global optimization problem where the linear
ENEP™) — ENV{ p2')) parameterg, are the variables. The object function to minimize
! J and the constraints are all linearpp This type of optimization
= z € — ™@E - p™ 7 problem is called linear programming. It can be solved exactly,
]

and many algorithms have been developed to solve the linear
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programming problem. We use the primal-dual method with betanova is # protein, 1fsd is am/f protein, and the rest are
supernodal Cholesky factorizati®rin this work, which finds o proteins that represent structural classes of small proteins.
an accurate answer with reasonable computational cost. The initial parameter set is the one used in CASP3.

After minimizing AEG) (i), we solve the same form of linear Fifty conformations were sampled in each CSA search, and
programming problem where\Ega);{i) is now the objective the global minimum-energy conformations (GMECs) found with
function and the other energy-gap changes become constrainedthe initial parameters have rmsd values of 6.6, 5.6, 6.3, and 9.5
Then we select another protein and repeat this procedure (3004, respectively. The smallest values of rmsd found from the
times in this work) of minimizingAEéQp and AE&?F, in turn. CSAsearch are 5.1, 3.6, 4.9, and 4.0 A. After the 28th iteration

It should be noted that we do not put any constraints on the of the parameter refinement, the conformations with smaller
overall scale of the parameters. Because the energies arevalues of rmsd are found from the global CSA search. The
proportional to the overall parameter scale and because this scal&MECs have rmsd values of 4.1, 1.9, 2.7, and 3.1 A, and the
changes freely during the optimization process, the overall smallest values of rmsd that are found are 1.6, 1.7, 1.6, and 1.6
energy scale is not determined in our protocol. Therefore, the A. The rmsd values become even smaller after the 40th iteration,
numerical value of the energy has no physical meaning in our with rmsds of GMECs being 1.5, 1.7, 1.7, and 1.9 A and the
work. smallest values of rmsd being 1.5, 1.3, 1.2, and 1.7 A. The rmsds

The current parameter-optimization procedure is different of the GMECs and the smallest rmsds for these parameters are
from the one used in earlier wotk; 1> where the optimization ~ shown in the Table 1. Their energies are not displayed because
was performed without using supernative conformations and their numerical values have no physical meaning, which is due
energy was not weighted with the rmsd value. The earlier to the fact that the overall scale of the linear parameters is not
procedure and the current one are shown schematically infixed in our protocol. The results of the global search with the
Figures 2 and 3, respectively, in terms of the energy and rmsd. initial and optimized parameter set for the four proteins are also

D. Reminimization and New Conformational Search. plotted in different colors in terms of energy and rmsd in Figure
Because the procedure in the previous section was based oy, The local minimum-energy conformations accumulated in
linear approximation equations (egs 7 and 8), we now have to the structural databases after the 40th iteration of the parameter
evaluate the true energy gaps using the newly obtained refinement are shown in Figure 5 along with the global CSA
parameters. The breakdown of the linear approximation may search results. The°Graces of the GMECs of the four proteins
come from two sources. First, the conformations corresponding found using the parameters obtained after the 40th iteration of

to the local minima of the potential for the original set of gptimization are shown in Figure 6 along with the native
parameters are no longer necessarily valid for the new parameteionformations.

set. For this reason, we reminimize the energy of these

. . - We also observe a linear slope of 0.3 in the energy versus
conformations with the new parameters. Because supernative .

. . . rmsd plot for the low-lying states. It turns out that the energy
conformations are not local minimum-energy conformations,

even with the original parameters, the unconstrained remini- landscape designed in this way ensures good foldability. In fact,

mization of these conformations with the new parameters may we_observe s_,uccess_ful folding of all four_protf_eins in_to th?ir
furnish low-lying local minima with small values of rmsd. native states in the gllrect Monte Carlo folding simulation with
Second, the local minima obtained using the CSA method with _the l'_JNRES pote_ntlal, using the parameters after the 40th
the original parameter set may constitute only a small fraction iteration of the refinemerft

of low-lying local minima. After the modification of the B. Jackknife Tests. We have performed conformational
parameters, some of the local minima that were not consideredsearches for proteins not contained in the training set, which
because of their relatively high energies can now have low are usually called jackknife tests. We selected proteins of various
energies for the new parameter set. It is even possible thatstructural classes, composed of no more than 60 amino acids
entirely distinct low-energy local minima appear. Therefore, residues. We find that the performance of the optimized
these new minima are taken into account by performing parameters is reasonably good and that the optimized parameter
subsequent CSA searches (see section B) with the newlyset provides better performance compared to the results from

obtained parameter set.
E. Update of the Structural Database and lterative
Refinement of ParametersThe low-lying local-energy minima

the initial parameter set. This implies that the optimized
parameters are not overfitted to the four proteins in the training
set but are transferable to other proteins to some extent.

found in the new conformational searches are added to the \We have considered proteins 1bbg, 1ccn, 1hnr, 1kbs, 1neb,
energy-reminimized conformations to form a structural database 1pba, lidy, 1prb, 1pru, and 1zdb, with the number of amino
of local-energy minima. The conformations in the database are acid residues being 40, 46, 47, 60, 60, 36, 54, 53, 56, and 38,
used to obtain the energy gaps, which are used for the new roundtespectively. 1bbg, 1ccn, and 1hnr a8 proteins, 1kbs and

of parameter refinement. As the procedure of [CSAarameter
refinement— energy reminimization] is repeated, the number
of conformations in the structural database incredsdshis
iterative procedure is continued until sufficiently good nativelike
conformations are found from the global CSA search.

Ill. Results
A. Four Proteins in the Training Set. We apply our protocol

1neb ares proteins, and the rest aseproteins. The rmsd values

of the GMECs and the best structures found with the initial
and optimized parameter sets are summarized in Table 1. The
results of the global CSA search with these parameters are
shown in Figure 7 in terms of energy and rmsd. We find that
the results for protein 1zdb are particularly notable. In Figure
8, the ¢ traces of the GMECs found with the initial and
optimized parameters are shown together with the native

to a training set consisting of four proteins. They are the structure. We see that although this protein is not included in
designed protein betanova, 1fsd, the 36-residue subdomain ofthe training set the GMEC becomes more and more similar to

chicken villin headpiece (HP36 or 1vii), and the-1%b fragment

the native structure as the parameter-optimization procedure is

of the B domain of staphylococcal protein A (1bdd), which are continued. These results suggest that the parameters we obtained
20, 28, 36, and 46 residues long, respectively. The protein from the training set of the four proteins perform better than



Protein Potential Energy Landscape Design J. Phys. Chem. B, Vol. 108, No. 14, 2004533

In contrast to earlier protocold'®> where the value of the
rmsd cutoff was manually specified for each protein at each
iteration to define nativelike conformations, we now have
defined 50 conformations with the smallest rmsd values in the
structural database for each protein as the nativelike conforma-
tions and have used supernative structures, which have zero rmsd
values by definition, to furnish candidates for low-lying na-
tivelike conformations with small values of the rmsd. This
enabled us to automate the whole procedure using a shell script.
However, there is still some arbitrariness in our protocol, such
as choosing 50 nativelike conformations and giving the slope
of 0.3 in eq 2. Although 0.3 is chosen as an optimal value by
examining the performance of our protocol for one protein
betanova-this criterion is rather arbitrary because the overall
performance of the protocol is not sensitive to the precise
numerical value of the coefficient. In fact, one can obtain
reasonably good results using other values such as 0.1 and 0.5.
In addition, the optimal value may depend on the proteins that
we use for the training. Therefore, one should consider a more
systematic way of determining the value of the slope. Finally,
it should be noted that although we have considered only the
Figure 8. C° traces of the GMECs of 1zdb for various parameter sets. UNRES potential for parameter optimization in this work it is
The native structure is shown in red, and the GMECs found with the straightforward to apply the procedure to other potentials such

optimized parameters are shown in yellow. It should be noted that there 35 ECEPP2 AMBER,33 and CHARMMB* with various solva-
are conformations with even smaller values of rmsd among those found ; 536 ;

from the Csel\search. The results are shown with (a) initial parameters tion terms™* All of these points are left for future study.
(rmsd of 7.7 A), (b) parameters after the 28th iteration of optimization . .
(rmsd of 7.6 A), and (c) parameters after the 40th iteration of Acknowledgment. We thank Ki Hyung Joo and IIl-Soo Kim
optimization (rmsd of 5.0 A). We observe that the GMEC becomes for useful discussions and help in carrying out this work. This
more and more similar to the native structure as the parameter work was supported by grants R01-2003-000-11595-0 (J.L.) and
optimization continues, although this protein is not included in the R01-2003-000-10199-0 (J.L.) from the Basic Research Program
training set. This strongly suggests that the optimized parameters areqgf the Korea Science & Engineering Foundation. The calcula-
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with the program MOLMOL%’
processors at KIAS.
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