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We propose an automated protocol for designing the energy landscape of a protein energy function by
optimizing its parameters. The parameters are optimized so that not only the global minimum-energy
conformation becomes nativelike but also the conformations distinct from the native structure have higher
energies than those close to the native structure. We classify low-energy conformations into three groups:
supernative, nativelike, and non-native. The supernative conformations have all backbone dihedral angles
fixed to their native values, and only their side chains are minimized with respect to energy. However, the
nativelike and non-native conformations all correspond to the local minima of the energy function. These
conformations are ranked according to their root-mean-square deviation (rmsd) of backbone coordinates from
the native structure, and a fixed number of conformations with the smallest rmsd values are selected as nativelike
conformations, whereas the rest are considered to be non-native conformations. We define two energy gaps
Egap

(1) andEgap
(2) . The energy gapEgap

(1) (Egap
(2) ) is the energy difference between the lowest energy of the non-native

conformations and the highest energy of the nativelike (supernative) conformations. The parameters are modified
to decrease bothEgap

(1) andEgap
(2) . In addition, the non-native conformations with larger rmsd values are made

to have higher energies relative to those with smaller rmsd values. We successfully apply our protocol to the
parameter optimization of the UNRES potential energy using the training set of betanova, 1fsd, the 36-
residue subdomain of chicken villin headpiece (PDB ID 1vii), and the 10-55 residue fragment of staphylococcal
protein A (PDB ID 1bdd). The new protocol of the parameter optimization shows better performance than
earlier methods where only the difference between the lowest energies of nativelike and non-native
conformations was adjusted without considering various nativelike degrees of the conformations. We also
perform jackknife tests on other proteins not included in the training set and obtain promising results. The
results suggest that the parameters we obtained using the training set of the four proteins are transferable to
other proteins to some extent.

I. Introduction

The prediction of the 3D structure and the folding pathway
of a protein solely from its amino acid sequence is one of the
most challenging problems in biophysical chemistry. There are
two major approaches to the protein structure prediction: so-
called knowledge-based methods and energy-based methods.
The knowledge-based methods,1-4 which include comparative
modeling and fold recognition, use the statistical relationship
between the sequences and their 3D structures in the Protein
Data Bank (PDB), without a deep understanding of the
interactions governing the protein folding. Therefore, although
these methods can be very powerful for predicting the structure
of a protein sequence that has a certain degree of similarity to
those in the PDB, they cannot provide a fundamental under-
standing of the protein-folding mechanism.

However, the energy-based methods,5-11 which are also called
the physics-based methods, are based on the thermodynamic
hypothesis that proteins adopt native structures that minimize
their free energies.12 Understanding the fundamental principles

of protein folding by these methods will lead not only to a
successful structure prediction, especially for proteins having
no similar sequences in the PDB, but also to a clarification of
the protein-folding mechanism.

However, there have been several major obstacles to the
successful application of energy-based methods to the protein-
folding problem. First, there are inherent inaccuracies in
potential energy functions that describe the energetics of
proteins. Second, even if the global minimum-energy conforma-
tion is nativelike, this does not guarantee that a protein will
fold into its native structure on a reasonable timescale unless
the energy landscape is properly designed, as summarized in
the Levinthal paradox.

Physics-based potentials are generally parametrized from
quantum mechanical calculations and experimental data on
model systems. However, such calculations and data do not
determine the parameters with perfect accuracy. The residual
errors in potential energy functions may have significant effects
on simulations of macromolecules such as proteins, where the
total energy is the sum of a large number of interaction terms.
Moreover, these terms are known to cancel each other to a high
degree, making their systematic errors even more significant.
Thus, it is crucial to refine the parameters of a potential energy
function before it can be successfully applied to the protein-
folding problem.

* Corresponding author. E-mail: jlee@kias.re.kr.
† Department of Bioinformatics and Life Sciences, Soongsil University.
‡ Bioinformatics and Molecular Design Technology Innovation Center,

Soongsil University.
§ Korea Institute for Advanced Study.

4525J. Phys. Chem. B2004,108,4525-4534

10.1021/jp037076c CCC: $27.50 © 2004 American Chemical Society
Published on Web 03/17/2004



An iterative procedure that systematically refines the param-
eters of a given potential energy function was recently pro-
posed13 and successfully applied to the parameter optimization13-16

of an UNRES potential energy.17-19 The method exploits the
high efficiency of the conformational space annealing (CSA)
method20-24 in finding distinct low-energy conformations. For
a given set of proteins whose low-lying local minimum-energy
conformations for a given energy function is found by the CSA
method, one modifies the parameter set so that nativelike
conformations of these proteins have lower energies than non-
native ones. The method consists of the following steps:

(1) Low-lying local minimum-energy conformations are
searched with no constraints, which is called the global CSA
search. For many proteins, the conformations resulting from the
global CSA are non-native conformations for parameters that
are not yet optimized.

(2) Nativelike conformations are searched by the local CSA
search, where low-lying local minimum-energy conformations,
among those whose root-mean-square deviation (rmsd) of the
backbone CR coordinates from the native structure is below a
given cutoff valueRcut

(1), are sampled.
(3) The nativelike and non-native conformations from steps

1 and 2 are added to the structural database of each protein.
(4) Among the conformations in the structural database, those

with rmsd values below a given cutoff valueRcut
(2) are defined as

nativelike conformations, whereas the rest are defined as non-
native ones. The parameters are optimized in such a way as to
minimize the energy gaps

for all proteins in the training set, whereEmin
N (Emin

NN) is the
minimum energy among the energies of the nativelike (non-
native) conformations in the structural database.

(5) After the parameters are modified in step 4, the conforma-
tions in the structural database are not local minimum-energy
conformations anymore. Therefore, it is necessary to reminimize
these conformations using the potential energy with the new
parameters.

(6) In general, with the new parameters, there may exist many
additional low-lying local minima of the potential energy, which
are absent in the structural database. Therefore, it is necessary
to go back to step 1 and perform CSA searches with the new
parameters. These steps are repeated until the performance of
the optimized parameters is satisfactory (i.e., the global CSA
search finds nativelike conformations with reasonably small
values of rmsd from their corresponding native structures).
Because the size of the structural database of local minimum-
energy conformations grows after each iteration, the efficiency
of the parameter optimization increases as the algorithm
proceeds.

It would be desirable to include many proteins in the training
set that represent many structural classes of proteins. The
optimization method was successfully applied to the parameter
optimization of the UNRES potential for a training set consisting
of three proteins of structural classesR and R/â 15 without
introducing additional multibody terms.11,14,16,25However, it was
still difficult to optimize the parameters of the UNRES potential
for a training set containingâ proteins.

In this work, we propose a new protocol where the parameters
are modified so as to make conformations with larger rmsd
values have higher energy values relative to those with smaller
rmsd values. This goal is achieved by using the following
modified energy,

when calculating the energy gaps. The numerical value of 0.3
is chosen empirically as an optimal value by inspecting the
performance of the parameter-optimization protocol for one
proteinsbetanovasalthough performances with other values
such as 0.1 or 0.5 are also reasonably good for this protein.

The parameters of an UNRES energy function were also
successfully optimized by Liwo et al.16 using energy gaps that
depend on the nativelikeness of the conformations. However,
whereas these authors used the secondary structure contents for
the criterion of nativelikeness of a conformation, we use rmsd.
The idea of correlating rmsd to energy was also used in
optimizing a contact potential26 for the study of fold recognition,
where the distance rmsd was used instead of the coordinate-
based rmsd used in this work.

The new method is more natural than previous methods,13-15

where non-native conformations were treated equally regardless
of their rmsd values. It also turns out that the new method is
much more efficient than the previous ones and allows us now
to optimize the parameters for a training set containing aâ
protein. Additional new features are introduced in the current
method to overcome several major drawbacks of the previous
methods, as discussed below.

First, in previous methods,13-15 arbitrarily chosen values of
rmsd cutoffs Rcut

(1) and Rcut
(2) were used as the criteria for

separating nativelike conformations from non-native ones, which
were set at each iteration by inspecting the distribution of rmsd
values of conformations. This rather arbitrary procedure made
it difficult to automate the optimization procedure. Moreover,
for some proteins, the value ofRcut

(1) had to be taken as a large
number to have a nonzero number of nativelike conformations,
in which case the local CSA search is not meaningful. This
can happen for a protein where the initial parameter set is so
bad that there exist no local minimum-energy conformations
that are nativelike. This problem is solved in the current method
by introducing what we call the supernative conformations,
whose backbone angles are fixed to the values of the native
structure and only side-chain angles are minimized with respect
to the energy. In the current method, the local CSA search is
defined as the restricted search for supernative conformations
in the space of the side-chain angles. Because theCR rmsd values
for the supernative conformations are zero by definition, an
arbitrary cutoff valueRcut

(1) is no longer necessary. Also, the
supernative conformations can be found for any parameter set.
Although supernative conformations are unstable with respect
to energy, minimizing the energy gap between their highest
energy and the lowest energy of non-native conformations
stabilizes their energies. Therefore, because of the reminimi-
zation procedure with new optimized parameters, the supernative
conformations would furnish low-lying local minima with small
rmsd values that accumulate as the iteration proceeds. This
makes the current method more efficient than the earlier
methods, where it was difficult to optimize the parameters unless
local minimum-energy conformations with small values of rmsd
exist with the initial parameters. In addition to the supernative
conformations, we define nativelike conformations as the 50
conformations with the smallest rmsd values in the structural
database. Although 50 is an arbitrary number, it can be kept as
a fixed number, and again the cutoff valueRcut

(2) is set auto-
matically. Also, because the size of the structural database grows
after each iteration of the parameter optimization, the total
number of local minimum-energy conformations becomes as
large as several thousand, and the 50 nativelike conformations

Emodified ) E + 0.3 rmsd (2)

Egap) Emin
N - Emin

NN (1)
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comprise only about 1% of them at the final stage of the
parameter optimization. Therefore, we expect that the perfor-
mance of our procedure is not sensitive to the precise number
of nativelike conformations. As mentioned above, the low-lying
local minima with small rmsd values can be provided from the
reminimization procedure of the supernative conformations.
Generally, the rmsd values of these nativelike conformations
become smaller as the iteration of the parameter optimization
continues. Both supernative and nativelike conformations are
used to calculate the energy gaps.

Second, we introduce linear programming to perform the
parameter optimization systematically on the basis of linear
approximation. This allows one to optimize the parameters so
that the energy gap of a protein is minimized while imposing
the constraint that the other energy gaps, including those of the
other proteins, do not increase if they are positive and do not
become positive if they are negative. This is in contrast to the
optimization method of earlier work, where the protein with
the largest energy gap was selected in turn, and the energy gap

of that protein was reduced without imposing any constraint
on the energy gaps of the other proteins in the set. Because
linear programming has the effect of simultaneously decreasing
the energy gaps of all of the proteins in the training set, it is
especially powerful when there are many proteins in the training
set.

Third, we use the highest energies of the nativelike and
supernative conformations to calculate the energy gaps. This is
in contrast to earlier work in which the lowest energy of the
nativelike conformations was used instead. The old procedures
may result in lowering only the nativelike conformation with
the lowest energy. The current procedure lowers the energies
of all nativelike conformations and is more efficient.

Figure 1. United-residue representation of a protein. The interaction
sites are side-chain ellipsoids of different sizes (SC) and peptide-bond
centers (p) indicated by shaded circles, whereas the CR atoms (small
empty circles) are introduced to define the backbone-local interaction
sites and to assist in defining the geometry. The virtual CR-Ca bonds
have a fixed length of 3.8 Å, corresponding to a trans peptide group;
the virtual bond (θ) and dihedral (γ) angles are variable. Each side
chain is attached to the correspondingR-carbon with a different but
fixed bond length,bi, and variable bond angle,Ri, formed by SCi and
the bisector of the angle defined by Ci-1

R , Ci
R, and Ci+1

R and with a
variable dihedral angleâi of counterclockwise rotation about the
bisector, starting from the right side of the Ci-1

R , Ci
R, Ci+1

R frame.

Figure 2. Schematic of the old method in terms of the energy and
rmsd. The conformations in the structural database are divided into
nativelike and non-native conformations with an arbitrary rmsd cutoff
Rcut

(2). The minimum energies of these two families define the energy
gap. (See the text.) The arrows indicate the direction of the optimization.

Figure 3. Schematic of the new method in terms of the energy and
rmsd. The energy along the vertical axis is the one without the 0.3
rmsd term. Among the conformations with nonzero rmsd’s, 50
conformations with the smallest rmsd values are selected as the
nativelike conformations, and the rest are considered to be the non-
native conformations. Supernative conformations are those with zero
rmsd. The supernative conformations furnish the candidates for the low-
lying nativelike local minima after the reminimization procedure with
new optimized parameters. The lowest modified energy of the non-
native family and the highest modified energies of nativelike and
supernative families define the energy gaps. (See the text.) The arrows
indicate the direction of the optimization.

TABLE 1: rmsd Values of the GMECs Found from the
Global CSA Search Using the Initial Parameters along with
the Optimized Parameters after the 28th and 40th Iterations
(Å)a

protein 0th 28th 40th

betanova (â: 20 aa) 6.6 (5.1) 4.1 (1.6) 1.5 (1.5)
1fsd (R/â: 28 aa) 5.6 (3.6) 1.9 (1.7) 1.7 (1.3)
1vii (R: 36 aa) 6.3 (4.9) 2.7 (1.6) 1.7 (1.2)
1bdd (R: 46 aa) 9.6 (4.0) 3.1 (1.6) 1.9 (1.7)
1bbg (R/â: 40 aa) 8.7 (6.3) 7.9 (5.3) 7.3 (5.9)
1ccn (R/â: 46 aa) 7.7 (6.4) 9.5 (7.0) 6.5 (6.0)
1hnr (R/â: 47 aa) 9.9 (5.1) 9.7 (5.9) 9.2 (5.2)
1kbs (â: 60 aa) 11.2 (9.5) 11.3 (10.0) 10.1 (7.6)
1neb (â: 60 aa) 10.9 (9.3) 11.3 (8.8) 9.6 (9.1)
1bba (R: 36 aa) 8.9 (8.1) 8.1 (6.8) 12.0 (10.7)
1idy (R: 54 aa) 11.9 (6.6) 11.6 (7.4) 7.5 (6.2)
1prb (R: 53 aa) 10.2 (7.0) 11.1 (5.4) 7.1 (5.1)
1pru (R: 56 aa) 8.4 (7.1) 11.3 (6.4) 8.4 (7.6)
1zdb (R: 38 aa) 7.7 (6.3) 7.6 (4.9) 5.0 (4.5)

a The numbers inside the parentheses are the smallest values of rmsd
found. The structural class and the chain length of each protein are
also shown inside the parentheses next to the protein name. The energies
are not displayed because their numerical values have no physical
meaning because of the fact that the overall scale of the linear
parameters is not fixed in our protocol.
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In this work, we successfully apply this method to the
optimization of linear parameters in the UNRES potential energy
for a training set consisting of betanova, 1fsd, the 36-residue
subdomain of chicken villin headpiece (PDB ID 1vii), and the
10-55 residue fragment of staphylococcal protein A (PDB ID
1bdd). We obtain the global minimum-energy conformations
(GMECs) of these proteins with rmsd values of 1.5, 1.7, 1.7,
and 1.9 Å, respectively. The proteins in the training set areâ
(betanova),R/â (1fsd), andR (1vii and 1bdd) proteins, which
cover representative structural classes of small proteins in nature.
The basic form of the UNRES potential that we use, where the
only multibody term is the four-body term, is the one that was
used for the successful prediction of unknown structures of
proteins in CASP3.7,10,27 With the optimized parameters, we
have performed jackknife tests on various proteins not included
in the training set, and we find promising results.

II. Methods

A. Potential Energy Function. We use the UNRES force
field,17-19 where a polypeptide chain is represented by a
sequence ofR-carbon (CR) atoms linked by virtual bonds with
attached united side-chains (SC) and united peptide groups (p)
located in the middle between consecutive CR’s (Figure 1). All
of the virtual bond lengths are fixed: the CR-CR distance is
taken to be 3.8 Å, and the CR-SC distance is given for each
amino acid type. The energy of the chain is given by

As described in detail in the Appendix of ref 15,USCSC, USCp,
Upp, Utor, and Uel-loc

(4) can be further decomposed into linear
combinations of smaller parts, whose coefficients are refined
in this work. Here,USCSC(i, j) represents the mean free energy
of the hydrophobic (hydrophilic) interaction between the side
chains of residuesi and j, which is expressed by the Lennard-
Jones potential,USCp(i, j) corresponds to the excluded-volume
interaction between the side chain of residuei and the peptide
group of residuej, and the potentialUpp(i, j) accounts for the
electrostatic interaction between the peptide groups of residues
i and j. The termsUtor(i), Ub(i), andUrot(i) denote the short-
range interactions corresponding to the energies of virtual
dihedral angle torsions, virtual angle bending, and side-chain
rotamers, respectively.Udis denotes the energy term that forces
two cysteine residues to form a disulfide bridge. Finally, the
four-body interaction termUel-loc

(4) results from the cumulant
expansion of the restricted free energy of the polypeptide chain.
The functional form, as well as the initial parameter set that we

Figure 4. Plots of the UNRES energy and CR rmsd (from the native structure) of four proteins obtained from a global CSA search using the initial
and refined parameters. The red, green, and blue crosses denote the results obtained using the parameters before the optimization, after the 28th
iteration, and after the 40th iteration, respectively. The results are shown for (a) betanova, (b) 1fsd, (c) 1vii, and (d) 1bdd.

E ) ∑
i<j

USCSC(i, j) + ∑
i*j

USCp(i, j) +

∑
i<j-1

Upp(i, j) + ∑
i

Ub(i) +

∑
i

Utor(i) + ∑
i

Urot(i) +

Udis+ ∑
i<j

Uel-loc
(4) (i, j) (3)
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use, is the one used in the CASP3 exercise.7,27The total number
of linear parameters that we adjust is 715.28

B. Global and Local CSA. To check the performance of a
potential energy function for a given set of parameters, one has
to sample supernative, nativelike, and non-native conformations
for each protein in the training set. For this purpose, we perform
two types of conformational searches: local and global CSA.
In the local CSA, the backbone angles of the conformations
are fixed to the values of the native conformations, and only

the side-chain angles are minimized with respect to the energy.
We call the resulting conformations the supernative. The other
conformations are obtained from an unrestricted conformational
search that we call global CSA. The conformations obtained
from the local and global searches are added to the structural
database of local minimum-energy conformations for each
protein.

C. Parameter Refinement Using Linear Programming.
The changes in energy gaps are estimated by the linear
approximation of the potential energy in terms of the parameters.
Among the conformations with nonzero rmsd values in the
structural database, 50 (an arbitrary number) conformations with
the smallest rmsd values are selected as the nativelike confor-
mations, and the rest are considered to be the non-native ones.
Because a potential can be considered to describe the nature
correctly if nativelike structures have lower energies than non-
native ones, the parameters are optimized to minimize the energy
gapsEgap

(1) andEgap
(2) ,

for each protein in the training set, whereEN andESN are the
highest energies of the nativelike and supernative conformations,
respectively, andENN is the lowest energy of the non-native
conformations. The energies are the modified ones that are
weighted with the rmsd values of the conformations as in eq 2.
Weighting the energies with the rmsd values makes the large
rmsd conformations have high energies compared to the ones

Figure 5. Plots of the UNRES energy and CR rmsd (from the native structure) of local minimum-energy conformations in the structural database
of four proteins accumulated after the 40th iteration of parameter optimization (red) and the new conformations obtained from the global CSA
using these parameters (green). The results are shown for (a) betanova, (b) 1fsd, (c) 1vii, and (d) 1bdd.

Figure 6. CR trace of GMEC found with the optimized parameters
shown together with the native structure for each of the four proteins
in the training set. The native structure is shown in red, and the GMEC
is shown in yellow. The GMECs are shown for (a) betanova, with a
rmsd value of 1.51 Å, (b) 1fsd, with a rmsd value of 1.65 Å, (c) 1vii,
with a rmsd value of 1.73 Å, and (d) 1bdd, with a rmsd value of 1.89
Å. Plots were prepared with the program MOLMOL.37 Egap

(1) ) EN - ENN

Egap
(2) ) ESN - ENN (4)
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with small rmsd values. This idea is somewhat similar to the
hierarchical optimization method proposed in ref 16, where the
secondary structure contents were used as the criterion for
ranking the nativeness of the conformations. In this work, we
simply use the rmsd values. The rmsd value is easier to calculate;
consequently, it becomes easier to automate the procedure.
Parameter optimization is carried out by minimizing the energy
gapsEgap

(1) andEgap
(2) of each protein in turn, while imposing the

constraints that all of the other energy gaps, including those
from the other proteins, do not increase.

In this work, we adjust only the linear parameters for
simplicity, the total number of them being 715 for the UNRES
potential. Therefore, the energy of a local minimum-energy
conformation can be written as

where theej’s are the energy components evaluated with the
coordinatesxmin of a local minimum-energy conformation.
Because the positions of local minima also depend on the
parameters, the full parameter dependence of the energy gaps
is nonlinear. However, if the parameters are changed by small
amounts, then the energy with the new parameters can be
estimated by the linear approximation

where thepi
old andpi

new terms represent the parameters before
and after the modification, respectively. The parameter depen-
dence of the position of the local minimum can be neglected in
the linear approximation because the derivative in the confor-
mational space vanishes at a local minimum.13 The additional
0.3 rmsd term of eq 2 vanishes in these expressions for the
same reason. The changes of the energy gaps are estimated to
be

The magnitude of the parameter changeδpj ≡ pj
new - pj

old is
bounded by a certain fractionε of pj

old. We useε ) 0.01 in this
study. First, the vectorδpj is chosen within the bound to decrease
the energy gap∆Egap

(1) of the selected protein as much as
possible while imposing the constraint that any positive values
amongEgap

(2) and the energy gaps of the other proteins do not
increase and negative values do not become positive. Denoting
the energy gaps of thekth protein asEgap

(p)1,2)(k) and assuming
that theith protein is selected for the decrease in the energy
gap, this problem can be phrased as follows:

Minimize

with constraints

This is a global optimization problem where the linear
parameterspj are the variables. The object function to minimize
and the constraints are all linear inpj. This type of optimization
problem is called linear programming. It can be solved exactly,
and many algorithms have been developed to solve the linear

Figure 7. Results of the jackknife test. Plots of the UNRES energy versus CR rmsd (from the native structure) of the low-lying local-energy-
minimum conformations. Conformations obtained from the global CSA using initial parameters and parameters obtained after the 28th and 40th
iterations of optimization are shown in red, green, and blue, respectively. The results are shown for (a) 1bbg, (b) 1ccn, (c) 1hnr, (d) 1kbs, (e) 1neb,
(f) 1bba, (g) 1idy, (h) 1prb, (i) 1pru, and (j) 1zdb.

E ) ∑
j

pjej(xmin) (5)

Enew ≈ Eold + ∑
i

(pi
new - pi

old)ei(xmin) (6)

∆Egap
(1) ) Egap

(1) ({pj
new}) - Egap

(1) ({pj
old})

) (EN({pj
new}) - ENN({pj

new})) -

(EN({pj
old}) - ENN({pj

old}))

) ∑
j

(ej
N - ej

NN)(pj
new - pj

old) (7)

∆Egap
(2) ) Egap

(2) ({pj
new}) - Egap

(2) ({pj
old})

) (ESN({pj
new}) - ENN({pj

new})) -

(ESN({pj
old}) - ENN({pj

old}))

) ∑
j

(ej
SN - ej

NN)(pj
new - pj

old) (8)

∆Egap
(1) (i) ) ∑

j

(ej
N(i) - ej

NN(i))(pj
new - pj

old) (9)

|δpi| e ε (10)

∆Egap
(2) (i) ) ∑

j

(ej
SN(i) - ej

NN(i))(pj
new - pj

old) e

{0 if Egap
(2) (i) > 0

-Egap
(2) (i) otherwise } (11)

∆Egap
(p)1,2)(k * i) ) ∑

j

(ej
(S)N(k) - ej

NN(k))(pj
new - pj

old) e

{0 if Egap
(p) (k) > 0

-Egap
(p) (k) otherwise } (12)
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programming problem. We use the primal-dual method with
supernodal Cholesky factorization29 in this work, which finds
an accurate answer with reasonable computational cost.

After minimizing ∆Egap
(1) (i), we solve the same form of linear

programming problem where∆Egap
(2) (i) is now the objective

function and the other energy-gap changes become constrained.
Then we select another protein and repeat this procedure (300
times in this work) of minimizing∆Egap

(1) and∆Egap
(2) in turn.

It should be noted that we do not put any constraints on the
overall scale of the parameters. Because the energies are
proportional to the overall parameter scale and because this scale
changes freely during the optimization process, the overall
energy scale is not determined in our protocol. Therefore, the
numerical value of the energy has no physical meaning in our
work.

The current parameter-optimization procedure is different
from the one used in earlier work,13-15 where the optimization
was performed without using supernative conformations and
energy was not weighted with the rmsd value. The earlier
procedure and the current one are shown schematically in
Figures 2 and 3, respectively, in terms of the energy and rmsd.

D. Reminimization and New Conformational Search.
Because the procedure in the previous section was based on
linear approximation equations (eqs 7 and 8), we now have to
evaluate the true energy gaps using the newly obtained
parameters. The breakdown of the linear approximation may
come from two sources. First, the conformations corresponding
to the local minima of the potential for the original set of
parameters are no longer necessarily valid for the new parameter
set. For this reason, we reminimize the energy of these
conformations with the new parameters. Because supernative
conformations are not local minimum-energy conformations,
even with the original parameters, the unconstrained remini-
mization of these conformations with the new parameters may
furnish low-lying local minima with small values of rmsd.
Second, the local minima obtained using the CSA method with
the original parameter set may constitute only a small fraction
of low-lying local minima. After the modification of the
parameters, some of the local minima that were not considered
because of their relatively high energies can now have low
energies for the new parameter set. It is even possible that
entirely distinct low-energy local minima appear. Therefore,
these new minima are taken into account by performing
subsequent CSA searches (see section B) with the newly
obtained parameter set.

E. Update of the Structural Database and Iterative
Refinement of Parameters.The low-lying local-energy minima
found in the new conformational searches are added to the
energy-reminimized conformations to form a structural database
of local-energy minima. The conformations in the database are
used to obtain the energy gaps, which are used for the new round
of parameter refinement. As the procedure of [CSAf parameter
refinementf energy reminimization] is repeated, the number
of conformations in the structural database increases.15 This
iterative procedure is continued until sufficiently good nativelike
conformations are found from the global CSA search.

III. Results

A. Four Proteins in the Training Set. We apply our protocol
to a training set consisting of four proteins. They are the
designed protein betanova, 1fsd, the 36-residue subdomain of
chicken villin headpiece (HP36 or 1vii), and the 10-55 fragment
of the B domain of staphylococcal protein A (1bdd), which are
20, 28, 36, and 46 residues long, respectively. The protein

betanova is aâ protein, 1fsd is anR/â protein, and the rest are
R proteins that represent structural classes of small proteins.
The initial parameter set is the one used in CASP3.7,27

Fifty conformations were sampled in each CSA search, and
the global minimum-energy conformations (GMECs) found with
the initial parameters have rmsd values of 6.6, 5.6, 6.3, and 9.5
Å, respectively. The smallest values of rmsd found from the
CSA search are 5.1, 3.6, 4.9, and 4.0 Å. After the 28th iteration
of the parameter refinement, the conformations with smaller
values of rmsd are found from the global CSA search. The
GMECs have rmsd values of 4.1, 1.9, 2.7, and 3.1 Å, and the
smallest values of rmsd that are found are 1.6, 1.7, 1.6, and 1.6
Å. The rmsd values become even smaller after the 40th iteration,
with rmsds of GMECs being 1.5, 1.7, 1.7, and 1.9 Å and the
smallest values of rmsd being 1.5, 1.3, 1.2, and 1.7 Å. The rmsds
of the GMECs and the smallest rmsds for these parameters are
shown in the Table 1. Their energies are not displayed because
their numerical values have no physical meaning, which is due
to the fact that the overall scale of the linear parameters is not
fixed in our protocol. The results of the global search with the
initial and optimized parameter set for the four proteins are also
plotted in different colors in terms of energy and rmsd in Figure
4. The local minimum-energy conformations accumulated in
the structural databases after the 40th iteration of the parameter
refinement are shown in Figure 5 along with the global CSA
search results. The CR traces of the GMECs of the four proteins
found using the parameters obtained after the 40th iteration of
optimization are shown in Figure 6 along with the native
conformations.

We also observe a linear slope of 0.3 in the energy versus
rmsd plot for the low-lying states. It turns out that the energy
landscape designed in this way ensures good foldability. In fact,
we observe successful folding of all four proteins into their
native states in the direct Monte Carlo folding simulation with
the UNRES potential, using the parameters after the 40th
iteration of the refinement.30

B. Jackknife Tests. We have performed conformational
searches for proteins not contained in the training set, which
are usually called jackknife tests. We selected proteins of various
structural classes, composed of no more than 60 amino acids
residues. We find that the performance of the optimized
parameters is reasonably good and that the optimized parameter
set provides better performance compared to the results from
the initial parameter set. This implies that the optimized
parameters are not overfitted to the four proteins in the training
set but are transferable to other proteins to some extent.

We have considered proteins 1bbg, 1ccn, 1hnr, 1kbs, 1neb,
1bba, 1idy, 1prb, 1pru, and 1zdb, with the number of amino
acid residues being 40, 46, 47, 60, 60, 36, 54, 53, 56, and 38,
respectively. 1bbg, 1ccn, and 1hnr areR/â proteins, 1kbs and
1neb areâ proteins, and the rest areR proteins. The rmsd values
of the GMECs and the best structures found with the initial
and optimized parameter sets are summarized in Table 1. The
results of the global CSA search with these parameters are
shown in Figure 7 in terms of energy and rmsd. We find that
the results for protein 1zdb are particularly notable. In Figure
8, the CR traces of the GMECs found with the initial and
optimized parameters are shown together with the native
structure. We see that although this protein is not included in
the training set the GMEC becomes more and more similar to
the native structure as the parameter-optimization procedure is
continued. These results suggest that the parameters we obtained
from the training set of the four proteins perform better than
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the initial parameter set and are transferable to other proteins
to some extent.

IV. Discussion

We have proposed a general protocol for force field parameter
optimization and landscape design and have applied it to the
UNRES potential. We optimized the 715 linear parameters so
that they correctly describe the energetics of four proteins
simultaneously. This optimized parameter set yielded GMECs
with rmsd values of 1.5, 1.7, 1.7, and 1.9 Å for betanova, 1fsd,
1vii, and 1bdd, respectively. In the process, we designed the
energy landscape to have good foldability.30 It seems that the
current parameter-optimization method achieves this goal by
constructing the protein-folding funnel,31 which is believed to
be an essential property of the protein energy functions in nature.
It would be interesting to determine how many proteins can be
energetically well described using a given force field. This
should provide a good measure of the efficacy of existing force
fields.

Liwo et al.16 also successfully carried out the parameter
optimization of an UNRES potential utilizing the CSA method.
Their protocol is similar to ours in that they use energy gaps
that depend on the nativelikeness of conformations, but the
secondary structure content was used for the criterion of
nativelikeness instead of the rmsd. Also, there are several
additional multibody terms in their UNRES potential, and the
interaction between side chains is a Gay-Berne potential instead
of the simpler Lennard-Jones form used in this work. They
optimized their parameters separately for proteins 1fsd and 1igd.
The parameters optimized using 1igd were tested on proteins
betanova, 1fsd, and 1bdd to obtain impressive results.

In contrast to earlier protocols,13,15 where the value of the
rmsd cutoff was manually specified for each protein at each
iteration to define nativelike conformations, we now have
defined 50 conformations with the smallest rmsd values in the
structural database for each protein as the nativelike conforma-
tions and have used supernative structures, which have zero rmsd
values by definition, to furnish candidates for low-lying na-
tivelike conformations with small values of the rmsd. This
enabled us to automate the whole procedure using a shell script.
However, there is still some arbitrariness in our protocol, such
as choosing 50 nativelike conformations and giving the slope
of 0.3 in eq 2. Although 0.3 is chosen as an optimal value by
examining the performance of our protocol for one proteins
betanovasthis criterion is rather arbitrary because the overall
performance of the protocol is not sensitive to the precise
numerical value of the coefficient. In fact, one can obtain
reasonably good results using other values such as 0.1 and 0.5.
In addition, the optimal value may depend on the proteins that
we use for the training. Therefore, one should consider a more
systematic way of determining the value of the slope. Finally,
it should be noted that although we have considered only the
UNRES potential for parameter optimization in this work it is
straightforward to apply the procedure to other potentials such
as ECEPP,32 AMBER,33 and CHARMM34 with various solva-
tion terms.35,36 All of these points are left for future study.
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