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Optimization of Potential-Energy Parameters for Folding of Several Proteins
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We introduce a novel approach to the study of the folding of proteins whose native structures are
already known. We use an off-lattice atomistic potential energy. The parameters of the potential
energy are simultaneously optimized for several proteins. The low-lying local-energy minima for
these proteins are found by conformational space annealing. The parameters are modified in such
a way that the native-like conformations are energetically more favored than the others. After the
parameter optimization, one set of the parameters is obtained for the proteins. We then investigate
Monte Carlo dynamics of these proteins by using this optimized potential energy. Our work is dis-
tinguished from earlier work in the literature, where folding was achieved by using simplified models
such as lattice models. We apply our method to four proteins: betanova, 1fsd, 1vii, and 1bdd, and
observe that at appropriate temperatures they fold into their native structure, starting from various
non-native states. In all cases, rapid collapse is followed by a subsequent folding process, that takes
place on a longer timescale. We also observe that for all proteins at low temperatures, the prob-
ability distributions of various quantities such as RMSD depend on initial conformations, showing
their glassy behavior. At higher temperatures, this non-ergodic glassy behavior disappears. The
results provide new insights into the folding mechanism, which is controlled not only by thermody-
namic factors but also by kinetic factors. The way a protein folds into its native structure is also
determined by the convergence point of early folding trajectories, which cannot be obtained from
the free-energy surface.

PACS numbers: 05.20.Dd, 05.70.−a, 87.14.Ee, 87.15.−v
Keywords: Protein folding, Folding mechanism, Potential-parameter optimization, Monte Carlo dynamics

I. INTRODUCTION

The understanding of protein folding, that is, folding
of a protein from its amino-acid sequence into a unique
three-dimensional structure (native structure) is a long-
standing challenge in modern biophysics. The native
structure and folding pathways are indispensable for un-
derstanding the function and biological role of the pro-
tein [1–3]. Computer simulations [4–10] have been car-
ried out to study the folding mechanism. However, simu-
lation of protein-folding processes by using an atomistic
model is a very difficult task. The difficulties come from
two sources.

First, there are inherent inaccuracies in the potential-
energy functions which describe the energetics of pro-
teins. Potential-energy functions are generally param-
eterized from quantum-mechanical calculations and ex-
perimental data on model systems. However, such calcu-
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lations and data do not determine the parameters with
perfect accuracy. The residual errors in potential-energy
functions may have significant effects on simulations of
macromolecules, such as proteins, where the total energy
is the sum of a large number of interaction terms. More-
over, these terms are known to cancel each other to a
high degree, making their systematic errors even more
significant. Thus, it is crucial to refine the parameters of
a potential-energy function before it can be successfully
applied to the protein-folding problem.

Second, even if the global minimum-energy confor-
mation is native-like, this does not guarantee that a
protein will fold into its native structure on a reason-
able timescale, because direct folding simulation by using
an all-atom potential requires astronomical amounts of
CPU time. Currently, typical simulation times are only
about a few nanoseconds. An extensive folding simula-
tion has been carried out for the 36-residue 1vii, where
1-µsmolecular-dynamics simulation with an all-atom po-
tential has been performed, producing only candidates
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for folding intermediates [4]. For this reason, direct
folding simulations have been mainly focused on simple
models, such as lattice models [5,6], models where only
native interactions are included (Go-type models) [7,8],
and a model with discrete energy terms whose param-
eters are optimized separately for each protein [9]. Al-
ternative indirect approaches have also been proposed,
including unfolding simulations [8,10] starting from the
folded state of a protein. However, it is not obvious
whether the folding is the reverse of the unfolding [6,8].
Moreover, to the best of our knowledge, no one has yet
succeeded in folding more than one protein into their na-
tive states by using a single potential, even with the use
of simplified models [9].

In this work, we introduce a novel method of fold-
ing several proteins simultaneously. This method uses a
single atomistic continuous potential which includes all
pairwise (native and non-native) interactions, and yet
allows us to carry out folding simulations starting from
non-native conformations. We use an off-lattice poten-
tial energy function, the united-residue (UNRES) [11,
12] potential energy. The parameters of the UNRES po-
tential energy are simultaneously optimized for several
proteins. The low-lying local-energy minima for these
proteins are found by the conformational space anneal-
ing (CSA) method [13]. The parameters are modified in
such a way that the native-like conformations are ener-
getically more favored than the others. After the param-
eter optimization, one set of the parameters is obtained
for the proteins. The optimized UNRES potential en-
ergy is applied to the study of folding processes of these
proteins.

II. PARAMETER OPTIMIZATION OF A
POTENTIAL ENERGY

We propose a procedure (Fig. 1) where the parame-
ters of an empirical potential-energy function are mod-
ified so as to make conformations with larger values of
Cα-RMSD (root-mean-square deviation) from the native
structure having higher values of energy relative to those
with smaller values of RMSD. This goal is achieved by
using the following modified energy:

Emodified = E + 0.3 RMSD, (1)

when calculating the energy gaps (see subsection II. 3),
where the numerical value of the coefficient 0.3 is an ar-
bitrarily chosen value. We also tried the values of 0.1
and 0.5, with similar results to those in the case of 0.3.
In the current method, we introduce super-native confor-
mations whose backbone angles are fixed to the values of
the native structure and only side-chain angles are min-
imized with respect to the energy. Among the confor-
mations with non-zero RMSD, 50 (an arbitrary number)
conformations with the lowest RMSD values are selected
as native-like conformations, and the rest are considered

Fig. 1. Schematic showing the potential-parameter opti-
mization. The minimum modified energy of the non-native
family, and the maximum modified energies of native-like and
super-native families, define the energy gaps. The arrows in-
dicate the direction of the optimization.

as non-native conformations. The super-native confor-
mations would furnish low-lying local minima with small
RMSD values after the reminimization procedure with
new optimized parameters. Generally, the RMSD values
of the native-like conformations become smaller as the
iteration of the parameter optimization continues.

1. Potential-energy Function

In the UNRES potential, a protein is represented by a
sequence of α-carbon (Cα) atoms linked by virtual bonds
with attached united side-chains (SC) and united pep-
tide groups located in the middle between the consecu-
tive Cα’s (Fig. 2). All the virtual bond lengths are fixed:
the Cα-Cα distance is taken as 3.8 Å, and Cα-SC dis-
tances are given for each amino acid type. There are two
backbone angles and two SC angles per residue (no SC
for glycines). The energy of a protein is given by [11,12]

E = Udis +
∑
i<j

[
U

(4)
el−loc(i, j) + Uss(i, j)

]
+
∑
i 6=j

Usp(i, j)

+
∑
i<j−1

Upp(i, j) +
∑
i

[
Ub(i) + Ut(i) + Ur(i)

]
. (2)

Here, Udis denotes the energy term which forces two
cysteine residues to form a disulfide bridge. The four-
body interaction term U

(4)
el−loc results from the cumulant

expansion of the restricted free energy of the protein.
Uss(i, j) represents the mean free energy of the hydropho-
bic (hydrophilic) interaction between the side-chains of
residues i and j, which is expressed by Lennard-Jones
potential, Usp(i, j) corresponding to the excluded-volume
interaction between the side-chain of residue i and the
peptide group of residue j, and the potential Upp(i, j)
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Fig. 2. United-residue representation of a protein. The in-
teraction sites are side-chain ellipsoids of different sizes (SC)
and peptide-bond centers (p) indicated by shaded circles,
whereas the α-carbon atoms (small empty circles) are in-
troduced to define the backbone-local interaction sites and
to assist in defining the geometry. The virtual Cα-Cα bonds
have a fixed length of 3.8 Å, corresponding to a trans-peptide
group; the virtual-bond (θ) and dihedral (γ) angles are vari-
able. Each side chain is attached to the corresponding α-
carbon with a different but fixed bond length, bi, with a vari-
able bond angle, αi, formed by SCi and the bisector of the
angle defined by Cαi−1, Cαi and Cαi+1, and with a variable dihe-
dral angle βi of counterclockwise rotation about the bisector,
starting from the right side of the Cαi−1, Cαi , Cαi+1 frame.

accounts for the electrostatic interaction between the
peptide groups of residues i and j. The terms Ub(i),
Ut(i) and Ur(i) denote the short-range interactions corre-
sponding to the energies of virtual angle bending, virtual
dihedral angle torsions, and side-chain rotamers, respec-
tively. The total number of linear parameters which we
adjust is 715 [12].

2. Global and Local CSA

In order to check the performance of a potential-energy
function for a given set of parameters, one has to sample
super-native, native-like, and non-native conformations
for each protein in the training set. For this purpose,
we perform two types of conformational search, the local
and global CSA searches. The local CSA search is de-
fined as the restricted search for the super-native confor-
mations in the space of the side-chain angles. The other
conformations are obtained from an unrestricted con-
formational search which we call global CSA. The con-
formations obtained from the local and global searches

are added to the structural database of local minimum-
energy conformations for each protein.

3. Parameter Refinement

Since a potential can be considered to describe the
native state correctly if native-like structures have lower
energies than the non-native ones, the parameters are
optimized to minimize the energy gaps E(1)

gap and E
(2)
gap,

E(1)
gap = EN − ENN, E(2)

gap = ESN − ENN, (3)

for each protein in the training set, where EN and ESN

are the highest energies of the native-like and super-
native conformations, respectively, and ENN is the lowest
energy of the non-native conformations (Fig. 1). The en-
ergies are the modified ones that are weighted with the
RMSD values of the conformations as in Eq. (1). Weight-
ing the energy with the RMSD value has the effect of
pushing harder the high RMSD conformations compared
to the ones with lower RMSD values. The RMSD value
is easy to calculate, and consequently it becomes easier
to automate the procedure. The parameter optimization
is carried out by minimizing the energy gaps E(1)

gap and
E

(2)
gap of each protein in turn, while imposing the con-

straints that all the other energy gaps, including those
from the other proteins, do not increase. The energy
gaps are evaluated using linear approximation.

4. Reminimization

Since we optimize the parameters by using the linear
approximation, we now have to evaluate the true en-
ergy gaps using the newly obtained parameters. The
breakdown of the linear approximation may come from
two sources. First, the conformations corresponding to
the local minima of the potential for the original set of
parameters are no longer necessarily so for the new pa-
rameter set. For this reason, we reminimize the energy
of these conformations with the new parameters. Since
the super-native conformations are not local minimum-
energy conformations, even with the original parameters,
the reminimization of these conformations with the new
parameters would furnish low-lying local minima with
small values of RMSD. Second, the local minima ob-
tained by using the CSA method with the original pa-
rameter set may constitute only a small fraction of the
low-lying local minima. After the change of the parame-
ters, some of the local minima, which were not considered
due to their relatively high energies, can now have low
energies for the new parameter set. It is even possible
that entirely distinct low-energy local minima appear.
Therefore, these new minima are taken into account by
performing subsequent CSA searches with the newly ob-
tained parameter set.
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5. Iterative Refinement

The low-lying local energy minima found in the new
conformational searches are added into the energy-
reminimized conformations to form a structural database
of local energy minima. The conformations in the
database are used to obtain the energy gaps, which are
used for the new round of parameter refinement. As the
procedure of [CSA → parameter refinement → energy
reminimization] is repeated, the number of conforma-
tions in the structural database increases. This iterative
procedure is continued until sufficiently good native-like
conformations are found from the global CSA search.

6. Four Proteins in the Training Set

We apply our method to a training set consisting of
four proteins. They are betanova (20 residues, three-
stranded β-sheet), 1fsd (28 residues, one β-hairpin and
one α-helix), 1vii (36 residues, three-helix bundle) and
1bdd (46 residues, three-helix bundle). They represent
structural classes of small proteins. Fifty conformations
were sampled in each CSA search; the global minimum-
energy conformations (GMECs) found with the initial
parameters have RMSD values of 6.6, 5.6, 6.3 and 9.5
Å, respectively, and the smallest values of RMSD found
from the CSA search are 5.1, 3.6, 4.9 and 4.0 Å. After
the 28-th iteration of the parameter refinement, the con-
formations with smaller values of RMSD are found from
the global CSA search. The GMECs have RMSD val-
ues of 4.1, 1.9, 2.7 and 3.1 Å, and the smallest values
of RMSD found are 1.6, 1.7, 1.6 and 1.6 Å. The RMSD
values become even smaller after the 40-th iteration with
RMSDs of GMECs being 1.5, 1.7, 1.7 and 1.9 Å and the
smallest values of RMSD being 1.5, 1.3, 1.2 and 1.7 Å.
We observe a linear slope of 0.3 in the energy vs. RMSD
plot for the low-lying states.

We have performed conformational searches for pro-
teins not contained in the training set, which are usu-
ally called jackknife tests [14]. We find that the perfor-
mance of the optimized parameters is reasonably good,
and the optimized parameter set provides better perfor-
mance compared to the results from the initial parameter
set. This implies that the optimized parameters are not
overfitted to the four proteins in the training set, but are
to some extent transferable to other proteins.

III. FOLDING OF SEVERAL PROTEINS

We apply the UNRES potential energy with the opti-
mized parameters after the 40-th iteration to the study
on folding dynamics of proteins betanova, 1fsd, 1vii and
1bdd, by using Monte Carlo dynamics. In Monte Carlo
simulation, the values of angles of a protein are perturbed

one at a time, typically about 15◦, and the backbone
angles are chosen three times more frequently than SC
angles. The perturbed conformation is accepted accord-
ing to the change in the potential energy, following the
Metropolis rule. Since only small angle changes are al-
lowed one at a time, the resulting Monte Carlo dynamics
can be viewed as equivalent to the real dynamics.

At a fixed temperature, at least ten independent sim-
ulations starting from various non-native states of a pro-
tein were performed with up to 109 Monte Carlo steps
(MCS) for each run. Since we conducted the simulations
for more than 10 different temperatures, the total num-
ber of long-time runs for a protein was more than 100.
During simulation, the values of RMSD from the native
structure and the radius of gyration (Rg) were calculated
by using Cα coordinates. The lowest RMSD values from
folding simulations are 0.78 Å, 1.07 Å, 1.58 Å and 2.07
Å for betanova, 1fsd, 1vii and 1bdd, respectively. The
fractions of the native contacts (Q) were also measured
during simulations, where Q is calculated from the na-
tive structure. A native contact is defined to exist when
two Cα’s separated by more than two residues in se-
quence are placed within 7.0 Å. Distributions of RMSD,
Q and Rg are also accumulated during the whole sim-
ulations. To investigate the early folding trajectories in
detail, we also performed short-time simulations of 105

MCS. We divided the 105 MCS into 19 intervals (ten
103 MCS and subsequently nine 104 MCS), and took the
average over the conformations in each interval. These
averages were again averaged over 100 independent sim-
ulations at a fixed temperature, starting from random
conformations. The same procedure was applied to 100
independent short-time simulations, starting from a fully
extended conformation.

We observe [15] that for all proteins at low tempera-
tures, the probability distributions of various quantities
such as RMSD depend on initial conformations, showing
their glassy behavior. At higher temperatures, this non-
ergodic glassy behavior disappears. We also observe [15]
that all proteins fold into their native-like conformations
at appropriate temperatures. In all cases, rapid collapse
is followed by a subsequent folding process that takes
place on a longer timescale.

The folding mechanism suggested in this study is as
follows: There are two aspects of folding dynamics, (i)
non-equilibrium kinetic properties and (ii) equilibrium
thermodynamic properties (Fig. 3). The non-equilibrium
kinetic properties, relevant to the early folding trajecto-
ries (fast process), can be examined only by direct fold-
ing simulations. The free energy surface, an equilibrium
thermodynamic property, dictates the way an initially
collapsed state completes its folding (slow process). The
way a protein folds into its native structure, i.e., either
horizontally or diagonally in the (Q, Rg) plane, is de-
termined by the position of (Q, Rg), where early folding
trajectories converge, relative to the native state. It ap-
pears that the slow folding process of α-proteins such as
1vii and 1bdd occurs in a diagonal fashion, as compared
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Fig. 3. Schematic of the folding trajectories in the (Q,
Rg) plane. The contour represents the free-energy surface,
which is an equilibrium property. Even for proteins with
identical free energy landscape, the early folding trajectories
(dashed lines) may converge into different points (C or C′).
The solid lines represent the later part of the folding trajec-
tories dictated by the free-energy landscape. The position of
the convergence point of a protein is determined by its kinetic
properties. This information can be obtained only by direct
folding simulations.

to that of proteins (for example, betanova and 1fsd) con-
taining β-strands.

IV. CONCLUSION

We have proposed a general method for potential-
parameter optimization, and applied it to the UNRES
potential. We optimized the 715 linear parameters so
that they correctly describe the energetics of several pro-
teins simultaneously. By using the optimized potential
energy, we successfully carried out direct folding simula-
tions of more than one protein. The results provide new
insights into the folding mechanism.
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