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Microcanonical origin of the maximum entropy principle for open systems
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There are two distinct approaches for deriving the canonical ensemble. The canonical ensemble either follows
as a special limit of the microcanonical ensemble or alternatively follows from the maximum entropy principle.
We show the equivalence of these two approaches by applying the maximum entropy formulation to a closed
universe consisting of an open system plus bath. We show that the target function for deriving the canonical
distribution emerges as a natural consequence of partial maximization of the entropy over the bath degrees
of freedom alone. By extending this mathematical formalism to dynamical paths rather than equilibrium
ensembles, the result provides an alternative justification for the principle of path entropy maximization
as well.
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I. INTRODUCTION

The microcanonical ensemble describes a closed system
with fixed parameters specifying the macroscopic state. In
contrast, the canonical ensemble describes a system in thermal
contact with a heat bath with a fixed temperature. It is
often described as a special limit of the microcanonical
ensemble, with the microcanonical system consisting of two
weakly coupled subsystems where one, designated the bath,
is much larger than the other subsystem. In this regard, the
microcanonical formulation of statistical physics can be argued
to be more fundamental.

For a closed system, the basic postulate of the statistical
mechanics is that all the microscopic states consistent with the
specified macroscopic parameters have equal probability of
being occupied by the system [1–3]. The canonical distribution
is then obtained by dividing up the closed system into the
system of interest and the heat bath, the latter being much
larger than the former, and then summing over all the bath
microstates [1,3,4].

An alternative derivation of the canonical distribution
follows from the maximum entropy principle (MEP) [1,2,5,6].
Here the Gibbs-Shannon entropy, H ({pi}) = −∑

i pi log pi ,
is maximized under the constraint that the expectation value of
energy,

∑
i piEi , is fixed to a certain value, where pi and Ei

are the occupation probability and the energy of the microstate
labeled as i.

No transparent connection between both approaches just
described has been established, which would require explain-
ing why fixing the temperature of the heat bath is equivalent
to fixing the mean energy of the open system. In fact, the
temperature of the heat bath determines the most probable
value of open system energy, which is determined by the
condition that the derivative of the system entropy with respect
to energy should be equal to the inverse of the heat bath
temperature. In the limit of infinite system size, the relative
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energy fluctuations from the expectation value vanish and
the energy expectation value becomes essentially the same as
the most probable value of energy. However, this equivalence
breaks down once we consider a small open system. Now
that nanoscale systems are routinely probed [7], a clear
demonstration of this equivalence, that does not take the
infinite system size limit, is necessary.

In this work, we show that the MEP for the open system
simply follows from the MEP applied to the closed universe
consisting of an open system and a heat bath. The MEP for
the open system follows from partial maximization of the
Gibbs-Shannon entropy of the closed universe over the bath
degrees of freedom. Since it is well known that MEP yields
the microcanonical ensemble for a closed system, our result
shows the equivalence between the microcanonical and MEP
derivations of the canonical ensemble.

The mathematics of the present work can be reinterpreted
in the context of dynamical systems. In this light, we will
discuss how the microcanonical origin for the MEP provides an
alternative justification to MEP applied to dynamical systems
with mean flux constraints [8–14].

II. MAXIMUM ENTROPY PRINCIPLE FOR CLOSED
AND OPEN SYSTEMS

In this section, we briefly highlight the formalism nec-
essary for the remainder of this work. We introduce the
target functions used to derive the canonical (i.e., open) and
microcanonical (i.e., closed) distributions from the MEP.

The target function of the closed system is

H ({pi}) + λ
∑

i

pi(1 − δEiE) + ν

(∑
i

pi − 1

)
, (1)

whereas that for the open system is

H ({pi}) − β

(∑
i

piEi − ε

)
+ ν

(∑
i

pi − 1

)
. (2)
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JULIAN LEE AND STEVE PRESSÉ PHYSICAL REVIEW E 86, 041126 (2012)

In both expressions, H ({pi}) is the Gibbs-Shannon entropy.
In Eqs. (1) and (2), ν is the Lagrange multiplier which
enforces normalization of the pi , that is,

∑
i pi = 1. The

Lagrange multipliers λ and β set the two different constraints
imposed on closed and open systems. For closed systems,
Eq. (1), only energy Ei coinciding with the closed system
E is accepted. Thus the Lagrange multiplier λ enforces
the constraint

∑
i pi(1 − δEiE) = 0. In the case of the open

system, the Lagrange multiplier β enforces a constraint,∑
i piEi − ε = 0, on the average system energy ε. These

target functions are to be minimized with respect to pi values
and the Lagrange multipliers to fully determine the values of
these variables.

For a closed system, the variation of Eq. (1) yields the
uniform distribution describing the microcanonical ensemble

pi = δE,Ei

�(E)
, (3)

where �(E) is the total number of microstates with energy E.1

For an open system, Eq. (2) yields the Boltzmann distribution
from the canonical ensemble

pi = e−βEi∑
j e−βEj

, (4)

where β is determined by the condition
∑

k Eke
−βEk/∑

i e
−βEi = ε. We call this derivation the MEP derivation of

the canonical ensemble.
It is well known how the canonical ensemble, Eq. (4),

is derived from the microcanonical ensemble [1,3,4] by
considering the closed universe consisting of an open system
and the heat bath surrounding it. To wit

pi ∝ �bath(Etot − Ei) = exp[Sbath(Etot − Ei)]

� exp[Sbath(Etot) − βEi], (5)

where the fixed constant Etot = Ei + Ebath is the total energy
of the closed universe, consisting of the open system and
the heat bath. Since the bath energy is assumed much larger
than the system energy, we keep only the leading term in
the expansion where β−1 = [ dSbath

dEbath
]−1, which is also a fixed

constant. We call this derivation the microcanonical derivation
of the canonical ensemble.

The connection between microcanonical and MEP deriva-
tions of the canonical distribution is not clear. The parameter
β in Eq. (2) is introduced as the Lagrange multiplier for
constraining the mean energy, whereas β in Eq. (5) is the
inverse of heat bath temperature, the derivative of the heat
bath entropy with respect to energy.

In the next section, it is shown that the MEP for the open
system can indeed be derived using a two-step maximization
of Gibbs-Shannon entropy for the entire closed universe. Since

1For notational simplicity, we assume discrete energy levels here.
When the energy levels are continuous, it is more natural to count
the number of states with energy values lying between E and E +
dE with some small number dE. Then δE,Ei

in Eq. (3) should be
replaced by θ (Ei − E)θ (E + dE − Ei), with corresponding minor
modifications in the following sections.

the MEP applied to the closed universe yields the microcanoni-
cal ensemble, the equivalence between the microcanonical and
MEP derivations of Boltzmann distribution is thus established.

III. THE MEP FOR OPEN SYSTEMS EMERGES FROM
THE MEP FOR CLOSED SYSTEMS

We begin with the target function for the closed universe
composed of the open system plus bath as follows:

Htot({pia}) + ν

( ∑
i,a

pia − 1

)
+ λ

∑
i,a

pia(1 − δEi+Ea,Etot )

= −
∑
i,a

pia log pia + ν

( ∑
i,a

pia − 1

)

+ λ
∑
i,a

pia(1 − δEi+Ea,Etot ), (6)

where indices i and a label the microstates of the open system
and the heat bath, respectively. Denoting the total number
of the open system and the heat bath microstates as A and B,
respectively, there are AB total pia variables, of which AB − 1
are independent because of the normalization condition
on pia .

We rewrite pia in terms of the marginal open system
distribution pi and a conditional bath distribution p(a|i)
defined as follows: pi ≡ ∑

a pia and p(a|i) ≡ pia/pi . The
number of components for pi and p(a|i) are A and AB, but
the normalization conditions∑

pi = 1
(7)∑

a

p(a|i) = 1 (i = 1 . . . A)

reduce the number of independent components to A − 1
and AB − A, respectively, thus making the total number of
independent components AB − 1 as before.

Writing the target function in terms of pi and p(a|i) we
have

−
∑
i,a

p(a|i)pi log[p(a|i)pi] +
∑

i

νi

[∑
a

p(a|i) − 1

]

+μ

[∑
i

pi − 1

]
+ λ

∑
i,a

pip(a|i)(1 − δEi+Ea,Etot )

= −
∑

i

pi log pi −
∑
i,a

p(a|i)pi log p(a|i)

+
∑

i

νi

[∑
a

p(a|i) − 1

]
+ μ

[∑
i

pi − 1

]

+ λ
∑
i,a

pip(a|i)(1 − δEi+Ea,Etot ), (8)

where Eq. (7) was used in going from the first to the second
line.

Now we can perform the maximization of Eq. (8) in two
steps. First, we vary the target function with respect to p(a|i),
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νi , and λ in order to eliminate these for a given pi . Second,
the target function is maximized with respect to the remaining
open system variables pi and μ.

Taking the variation of Eq. (8) with respect to p(a|i), νi ,
and λ and setting them to zero, we get

−pi log p(a|i) − pi + νi + λpi(1 − δEi+Ea,Etot ) = 0, (9)∑
a

p(a|i) = 1, (10)

∑
i,a

pip(a|i)(1 − δEi+Ea,Etot ) = 0. (11)

From Eq. (9) we have

p(a|i) = exp

(
νi

pi

− 1

)
(Ea = Etot − Ei),

(12)

p(a|i) = exp

(
νi

pi

− 1 + λ

)
(Ea �= Etot − Ei).

Next, the constraints Eq. (10) and Eq. (11) fix the values of νi

and λ, which yields2

p(a|i) = δEa,Etot−Ei

�bath(Etot − Ei)
. (13)

Substituting Eq. (13) into Eq. (8), we now get

−
∑

i

pi log pi +
∑
i,a

pi

δEa,Etot−Ei

�bath(Etot − Ei)
log �bath(Etot − Ei) + μ

(∑
i

pi − 1

)

= −
∑

i

pi log pi +
∑

i

pi log �bath(Etot − Ei) + μ

(∑
i

pi − 1

)
. (14)

Since the heat bath is much larger than the open system, we have log �bath(Etot − Ei) � log �bath(Etot) − βEi , we get

H̃ ({pi}) + μ

( ∑
i

pi − 1

)
≡ −

∑
i

pi log pi − β
∑

i

piEi + μ

( ∑
i

pi − 1

)
, (15)

where an irrelevant constant term was dropped. The MEP
target function for an open system, Eq. (2), is now reproduced
from Eq. (1). This shows that thermal contact with a heat
bath of fixed temperature for an open system is equivalent to
constraining the expectation value of energy.

IV. DISCUSSION

It was shown that the MEP for the open system arises in
the process of a two-step maximization of the Gibbs-Shannon
entropy of the closed universe, first with respect to the bath
variables and second with respect to the system variables.
This demonstrates the mathematical equivalence of providing
contact with the heat bath versus constraining a fixed energy
expectation value.

For the sake of concreteness, we used energy as a constraint.
However, our constraints could have been other equilibrium
macrovariables as well as dynamical constraints such as fluxes.
For instance, average fluxes have been used to infer dynam-
ical path probability distribution by maximizing the Gibbs-
Shannon entropy over path probabilities subject to constraints
on mean fluxes [8–14]. Here we have provided an alternative

justification for such methods within a microcanonical frame-
work. We note, however, that the total “universe,” consisting
of the open system and the “flux bath,” cannot be interpreted as
a closed universe in the thermodynamic sense, since a system
with a nonzero flux is always a system driven by an external
agent. For the case of a dynamical system, one just considers a
large system with a fixed total flux value. Then, from MEP, all
micropaths consistent with this flux value are equally probable.
The marginal probability distribution of subsystem paths then
follows from the maximization of the path entropy under the
constraint of fixed flux expectation value.
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2The values of the Lagrange multipliers which satisfy both Eq. (10)
and Eq. (11) are νi = pi[log �(Etot − Ei) − 1] and λ = −∞. To
avoid an infinite Lagrange multiplier for λ, one may use τ ≡ eλ

instead of λ.
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JULIAN LEE AND STEVE PRESSÉ PHYSICAL REVIEW E 86, 041126 (2012)

[7] J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco, Jr.,
and C. Bustamante, Science 296, 1832 (2002); C.
Bustamante, Z. Bryant, and S. B. Smith, Nature 421,
423 (2003); D. Collin, F. Ritort, C. Jarzynski, S. B.
Smith, I. Tinoco, Jr., and C. Bustamante, ibid. 437, 231
(2005).

[8] A. A. Filyukov and V. Y. Karpov, J. Eng. Phys. Thermophys.
13, 326 (1967); 13, 416 (1967); A. A. Filyukov, ibid. 14, 429
(1968).

[9] E. T. Jaynes, Macroscopic Prediction, in Complex Sys-
tems Operational Approaches in Neurobiology, Physics, and

Computers, edited by H. Haken (Springer-Verlag, Berlin,
1985).

[10] G. Stock, K. Ghosh, and K. A. Dill, J. Chem. Phys. 128, 194102,
(2008).

[11] K. Ghosh, K. A. Dill, M. M. Inamdar, E. Seitaridou, and
R. Phillips, Am. J. Phys. 74123, 2006.
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