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We perform protein structure prediction by combining a hybrid energy function, fragment assem-
bly, and double optimization. In the hybrid energy function, all the backbone atoms are described
explicitly, but the side-chain is modeled as a few interaction centers in order to reduce computa-
tional costs. We reduce the search space by using a fragment assembly method, where the local
structure of the backbone is obtained from a structural database using similarity of sequence fea-
tures, and only the global tertiary packing of fragments is determined by minimizing the energy.
The structure with the minimum energy is obtained using double optimization, where a combi-
nation of backbone fragments with minimum energy is obtained using the conformational space
annealing (CSA) method, and the optimal side-chains for a given backbone structure are obtained
using simulated annealing. We show the feasibility of our method by performing test predictions
on two proteins, 1bdd and 1e0l, that belong to distinct structural classes.
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I. INTRODUCTION

Understanding folding of a protein into its three-
dimensional structure from its amino-acid sequence, es-
pecially the prediction of the native structure, is a long-
standing challenge in theoretical biophysics. The infor-
mation on the native structure of a protein is quite cru-
cial in understanding its biological function [1]. The most
popular methods for protein structure prediction are
knowledge-based methods such as comparative modeling
and fold recognition [2–4]. In knowledge-based methods,
there should exist a sequence with known structure that
is related to the query sequence. When homologous or
weakly homologous sequences with known structures are
not available, we turn to physics-based methods [3, 5–
17]. The physics-based structure prediction is based on
the thermodynamic hypothesis [18] which states that the
native tertiary structure of a protein corresponds to the
global minimum of its free energy for its physiological
environment. Therefore, in the physics-based prediction
method, also called the energy-based method, the na-
tive structure of a protein is predicted by obtaining the
conformation that minimizes the free energy. Since the
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physics-based method is based on fundamental principles
of physics, the study of protein folding using this method
provides us with valuable insight into not only the native
structure but also the folding mechanism [19–21].

There are two main challenges to successful prediction
of protein structures, the design of an accurate energy
function with reasonable computational cost and the de-
velopment of a powerful global optimization method. It
is obvious that the calculation of the protein structure
with an energy function that takes into account all the
atomic degrees of freedom, although more accurate than
that using a coarse-grained model, will take too much
computational resource in order to produce meaningful
results. Also, even if we are provided with an accu-
rate free energy function, it is a nontrivial task to find
the global minimum of such an energy function, because
there is usually a huge number of local minima. Vari-
ous global optimization methods have been developed to
overcome this problem.

The fragment assembly method, which has been a
popular trend in protein structure prediction [3, 9–17],
addresses both of these issues to some extent. In this
method, the local structures are collected from experi-
mentally determined structures deposited in a structural
database, such as the protein data bank (PDB), by using
the similarity of sequence features. A set of candidates
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for the local structures of individual parts of a protein
is first constructed. Then, a combination of these frag-
ments that minimizes the free energy is searched for.

Since the effects of local interactions are incorporated
into the fragments, one needs to include only non-local
interactions in the energy function during fragment as-
sembly. (Local and non-local interactions in this work
mean interactions between residues near and far in se-
quence, respectively). By eliminating the burden of accu-
rate modelling of local interactions, computational costs
are significantly reduced. Also, since the global mini-
mum energy conformation is searched for among a finite
(albeit large) number of conformations, the search space
is drastically reduced, making it much easier to develop
a suitable global optimization method.

In this work, we develop a protein structure prediction
method based on fragment assembly combined with a
hybrid energy function and double optimization. In our
energy function, all the backbone atoms are described
explicitly, but the side-chain atoms are approximated as
a few interaction centers. The optimal side-chain confor-
mation for a given backbone structure is obtained using
simulated annealing (SA) [22], and the combination of
fragments with minimal energy is obtained using a con-
formational space annealing (CSA) method [23–29]. We
show the feasibility of our method by performing test
predictions on two proteins, 1bdd and 1e0l, that belong
to distinct structural classes.

II. METHOD

1. The Energy Function

The hybrid energy function, called ECEPP/SM, is
derived from the all-atom potential energy ECEPP/3
[30] by coarse-graining the side-chain degrees of freedom
whereas the backbone degrees of freedom are kept to
atomic details. To elaborate, an all atom representation
is used for the backbone atoms, except for Cα which is
turned into a pseudo-atom that includes the effect of α
hydrogen. Cβ is also a pseudo-atom that includes the ef-
fect of β hydrogen. The pseudo-atom at the Cα position
is classified as G and A, the pseudo-atoms for Glycine
and other amino acids, respectively. Cβ and β hydro-
gens are classified as B1 ∼ B9, depending on the amino
acid type.

Atoms beyond the Cβ position in the side chain are
reduced to a single pseudo-atom for an amino acid con-
taining the Cγ atom and to two pseudo-atoms for an
amino acid with branched side-chains (Ile, Thr, Val), or
with long side-chains (Tyr). These side-chain pseudo-
atoms are also classified into various types. The simpli-
fied models of the side-chains and the classification of the
pseudo-atoms are shown in Figure 1 for a selected set of
amino acids.
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Fig. 1. Classification of the atom types in the simplified
side-chain representation used in the hybrid energy function
for a selected set of amino acids.

In terms of the pseudo-atom coordinates, the hybrid
energy function (ECEPP/SM) takes the functional form
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+w · SME({Sa}, {ri}), (1)

where ri and Sa represent the coordinates of the back-
bone and the side-chain atoms respectively, with rij ≡
|ri − rj|. The first term represents the Coulomb electro-
static interaction, with q and ε0, respectively, being the
atomic charge and the dielectric constant. The second
term and the third term represent van der Waals and
hydrogen bonding interactions, respectively, with non-
bonding parameters εij , ηij , σij and ρij . The first, the
second, and the third terms are intended for the inter-
actions between all-atom degrees of freedom, such as H,
N, C and O in the backbone. The parameters of these
terms were taken from ECEPP/3 without any modifica-
tion. The last term

SME({Sa, rj}) =
∑

b


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j

Ebs(|Sb − rj|)

+
∑
c

Ess(|Sb − Sc|)
]

(2)

accounts for the interaction involving side-chain pseudo
atoms, where

∑
j Ebs(|Sb − rj|) and

∑
cEss(|Sb − Sc|)

represent the interactions of the side-chain at Sb with the
backbone and with the other side-chain atoms, respec-
tively. These terms do not have analytic forms, but their
values are stored as tables for each 0.01 Å bin of |Sb−rj|
and |Sb−Sc|. The energy values are derived by examin-
ing the dependence of the average side-chain energy on
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these distances and depend on the types of pseudo-atoms
involved (Figure 1). There is an ambiguity in the relative
weight w of the last term compared to the rest, and it
should be optimized using training sets of proteins with
known structures so that native-like conformations are
produced as lowest energy conformations. In this work,
no attempt was made to optimize the weight parameter
w; rather, it was set to an arbitrary value of 1.0 for most
of the simulations. The details of the atom-type classi-
fication and the parameter derivation will be presented
elsewhere [31].

Although it is impractical to consider all the orienta-
tions of a side-chain due to the huge size of the conforma-
tional space in the case of the all-atom model, where sev-
eral dihedral angles are present as the degrees of freedom,
one can drastically reduce the sampling space by using
the simplified model for the side-chain because there is
only one side-chain dihedral angle, χ, for each residue.

2. Fragment Library

In addition to approximating side-chains by using
pseudo-atoms, the sampling space for the backbone de-
grees of freedom can also be drastically reduced by using
a fragment library, which is a set of the ten most prob-
able conformations of the local neighborhood for each
residue. The fragments are selected from a reference
database of non-redundant proteins, constructed by clus-
tering ASTRAL SCOP (version 1.63) set [32] so that no
two proteins in the database have more than 25 % se-
quence identity with each other. The resulting database
consists of 4362 protein chains.

For fair benchmark tests, proteins in the reference
database that are homologous to the query protein are
removed. A BLAST search of the query sequence against
the reference database is performed, and any protein
chain whose local alignments have sequence identity of
70 % or more to the query sequence length is removed.

The fragment selection is performed using the sim-
ilarity between sequence features. Instead of compar-
ing raw sequences directly, PSI-BLAST [33] profiles that
contains evolutionary information are generated. For a
given segment of the query sequence, ten fragments with
similar sequence profiles are selected from the structural
database, by using k-nearest neighbor method [34–37],
to obtain the fragment library. The fragment set is the
same as the one used in Ref. 17.

3. Conformational Sampling

The goal of the current study is to find the combination
of fragments, as well as the side-chain orientation, that
minimizes the energy function. It should be noted that
the sampling space of the backbone is a finite discrete

space of fragment combinations whereas that of the side-
chains is a continuous space of dihedral angles χ. In
this work, we perform a double optimization, where the
conformational space annealing (CSA) method [23–29] is
used for generating low-energy back-bone conformations,
and the simulated annealing (SA) method [22] is used for
obtaining the optimal side-chain orientation for a given
backbone conformation.

The CSA method is based on the genetic algorithm
in which a population of conformations, called a bank,
is considered at a time. The initial bank is constructed
by random generation of conformations and subsequent
local minimizations. The local minimization in the con-
text of fragment assembly means the Monte Carlo sim-
ulation at T = 0. That is, one of the fragments forming
the structure is randomly selected and then replaced by
another fragment in the library, which is also randomly
selected. Then, the new conformation is accepted only
when its energy is lower than the previous one.

The bank is updated by generating trial conforma-
tions. First, seeds are selected from the bank, and trial
conformations are generated from the seeds by replacing
parts of the seed conformations with those of other ran-
domly selected bank conformations and by performing
local minimizations. The CSA method has a parameter
Dcut that controls the diversity of the bank, which de-
creases as the algorithm proceeds. To elaborate, a trial
conformation a is compared with bank conformations,
and the conformation A is selected from the bank, which
is the closest to the conformation a with respect to a suit-
able distance measure D(a,A). If D(a,A) < Dcut, the
conformation a is considered as being more or less sim-
ilar to the conformation A. The conformation with the
lower energy is kept in the bank, and the other one is dis-
carded. However, if D(a,A) > Dcut, the conformation
a is regarded as being distinct from any other confor-
mation in the bank. Therefore, a is compared with the
bank conformation with the highest energy, and again,
the conformation with the lower energy is kept in the
bank, and the other one is discarded. The diversity of
the bank is maintained for a large value of Dcut, and
the low-energy properties of the conformations are em-
phasized for a small value of Dcut. The algorithm stops
when all the conformation left in the bank are used as
seeds.

The energy calculated for a given conformation in the
CSA method always includes the optimal side-chain en-
ergy. That is, whenever a backbone conformation is
newly constructed, a simulated annealing (SA) is per-
formed to obtain the optimal side-chain orientation. In
the SA method, several side-chain angles are randomly
selected and randomly perturbed within given bounds,
and the newly generated conformation is accepted or re-
jected according to the Metropolis criterion at a given
temperature. The temperature is slowly reduced at each
Monte Carlo step in order to obtain the side-chain con-
formation with minimum energy.
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Table 1. The Energy and RMSD values of the lowest energy bank conformation (LEBC) of 1e0l and the smallest RMSD
value found among the bank for various values of the SA parameters. The result of the simulation without side-chain (w = 0.0)
is also shown. The unit for both the temperature and the energy is kcal/mol.

PDB ID (length) Tfactor MCstep Tinit Energy (LEBC) RMSD (LEBC) RMSD (smallest)

0.9 10 0.5 –166.17 4.19 1.48

0.9 10 1.0 –167.25 3.96 1.42

0.9 10 1.5 –167.21 4.21 1.58

0.9 20 0.5 –170.11 4.08 1.41

0.9 20 1.0 ∼ 1.5 –163.11 4.11 1.23

0.9 30 0.5 –163.98 4.32 1.17

0.9 30 1.0 ∼ 1.5 –170.24 3.80 1.43

1E0L (25) (w = 1.0) 0.5 10 0.5 ∼ 1.0 –181.32 3.77 1.38

0.5 10 1.5 –166.95 2.35 1.48

0.5 20 0.5 ∼ 1.0 –170.91 3.77 1.16

0.5 20 1.5 –165.52 4.19 1.41

0.5 30 0.5 ∼ 1.0 –181.31 3.83 1.11

0.5 30 1.5 –165.76 2.37 1.16

0.3 10 0.5 ∼ 1.5 –181.32 3.77 1.38

0.3 20 0.5 ∼ 1.5 –168.78 3.96 1.79

0.3 30 0.5 ∼ 1.5 –156.52 3.89 1.39

1E0L (25) (w = 0.0) – 0 – –5.94 4.43 1.22

4. Clustering and the Final Models

If the energy function in Eq. (1) is the accurate free-
energy function describing the protein, we can simply
consider the bank conformation with the lowest energy as
the predicted model for the protein structure. However,
there can be inaccuracies in various parameters describ-
ing the energy function, and since the structure of the
lowest energy bank conformation (LEBC) may depend
sensitively on these parameters, suboptimal conforma-
tions are also important for protein structure prediction.

Therefore, usually a clustering of the final bank con-
formations is performed, and the representative confor-
mation for each cluster is selected to obtain multiple can-
didates for the native structure. By clustering the final
bank conformations, one can include the effect of confor-
mational entropy for the global structure [38], which may
not be fully incorporated in fragment assembly combined
with the energy function in Eq. (1).

In this work, we grouped the final conformations
into k = 5 clusters using the k-means clustering algo-
rithm [39]. The choice for the number of clusters, k, is
rather arbitrary. We chose it to be five only because
in CASP(http://predictioncenter.gc.ucdavis.edu/), the
competition for computational prediction of protein
structures, allows up to five models to be submitted as
multiple candidates for a protein structure, so k = 5
should be used in such a case. The center of a clus-
ter was considered as the representative conformation of
that cluster.

III. RESULTS

In order to test the feasibility of our method, we per-
formed test predictions on two proteins, FBP28WW do-
main from mus musculus (PDB ID:1e0l) and staphylo-
coccus aureus protein A, immunoglobulin-binding B do-
main (PDB ID:1bdd). They are of length 37 and 60, but
after unstructured tail regions are removed, regions of
length 25 (residue 6-30) and 46 (residue 10-55) remain to
be modeled. 1e0l and 1bdd belong to distinct structural
classes, all-α and all-β proteins, respectively. The pa-
rameters for the CSA runs were set to the default values
used in previous works [14–17]: 50 bank conformations,
10 seeds to be selected, and 30 trial conformations to be
generated for each seed. The relative weight w in (1) was
set to 1.0 unless stated otherwise.

The values of the energy and the backbone root-mean-
square deviation (RMSD) of the LEBC, along with the
smallest value of RMSD found among the bank confor-
mations, are displayed in Tables 1 and 2 for various val-
ues of the SA parameters. In the tables, Tinit is the
initial temperature, Tfactor is the factor by which the
temperature is multiplied after each Monte Carlo step,
and MCstep is the number of Monte Carlo steps per
side-chain minimization. The Boltzmann constant is ab-
sorbed into the temperature, so kcal/mol is used as the
unit for both energy and temperature.

As can be seen from the tables, the results do not de-
pend much on the parameters. We see that although the
lowest energy bank conformation has a relatively large
value of RMSD, there are native-like conformations in
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Table 2. The Energy and RMSD values of the lowest energy bank conformation (LEBC) of 1bdd and the smallest RMSD
value found among the bank for various values of the SA parameters. The results of the simulations with w = 0.0 (no side-chain)
and w = 0.5 are also shown. The unit for both temperature and energy is kcal/mol.

PDB ID (length) Tfactor MCstep Tinit Energy (LEBC) RMSD (LEBC) RMSD (smallest)

0.9 10 0.5 ∼ 1.5 –178.74 8.05 3.13

0.9 20 0.5 ∼ 1.5 –183.29 8.01 3.07

0.9 30 0.5 ∼ 1.5 –191.29 7.98 3.08

0.5 10 0.5 ∼ 1.5 –183.31 7.42 2.91

0.5 20 0.5 –182.36 8.14 3.16

1BDD (46) (w = 1.0) 0.5 20 1.0 ∼ 1.5 –183.29 8.01 3.04

0.5 30 0.5 –192.92 7.94 3.02

0.5 30 1.0 ∼ 1.5 –192.92 7.94 3.08

0.3 10 0.5 ∼ 1.5 –191.29 7.97 2.91

0.3 20 0.5 ∼ 1.5 –182.36 8.14 3.14

0.3 30 0.5 ∼ 1.5 –192.92 7.94 3.02

1BDD (46) (w = 0.5) 0.5 30 0.5 –70.8 8.10 3.04

1BDD (46) (w = 0.0) – 0 – 17.8 13.01 11.99

Table 3. For the five clusters of each protein, the energy and RMSD values of the center conformations are shown, along
with the sizes of the clusters. The results of the simulations without side-chain are also shown.

1E0L (25) 1BDD (46)

Size 18 16 9 5 2 17 11 10 10 2

Energy –166.87 –157.16 –180.08 –147.60 –160.22 –170.02 –129.09 –171.69 –167.69 –143.76

RMSD 4.10 4.04 3.90 4.46 4.10 3.99 6.46 3.97 8.01 7.94

1E0L (25) (no side-chain) 1BDD (46) (no side-chain)

Size 21 15 8 3 3 19 11 9 8 3

Energy 0.0086 –5.94 0.45 –2.78 0.34 22.4 20.0 20.0 20.7 19.2

RMSD 5.77 4.43 3.85 5.80 5.53 15.9 13.2 16.6 17.0 14.1

the final bank, which is promising because clustering is
performed to produce the final models, instead of using
the LEBC.

The RMSD and the energy values of the final bank
conformations are plotted for 1e0l and 1bdd for Tinit =
0.5 kcal/mol, MCstep = 30 and Tstep = 0.5 kcal/mol
in Figure 2. Even before performing explicit clustering,
we see that in addition to the conformation populated
near the LEBC, there is a more native-like group. The
lowest energy conformation of this sub-optimal group has
energy = −165.53 kcal/mol and RMSD = 2.44 Å for 1e0l
and energy = −171.69 kcal/mol and RMSD = 3.97 Å for
1bdd.

The k-means clustering of these conformations was
performed with k = 5. The size of these clusters, as well
as the energy and the RMSD values of the representative
conformations, are displayed in Table 3. The conforma-
tion with the smallest value of RMSD among the five
models (the best model), the native structure, and the
conformation with the smallest value of RMSD among
the final bank conformations, are displayed in Figure 3
and 4 for the proteins 1e0l and 1bdd, respectively. We
see that for 1e0l, the secondary structure of the model

structure is incomplete, but that the overall global struc-
ture is similar to the native one. For 1bdd, the model
structure has more tightly packed helices, but again, the
overall structure is remarkably native-like.

To assess the importance of the side-chain interaction,
we also performed simulations with w = 0.0, i.e., without
side-chains. Since the side-chain distinguishes distinct
types of amino acids, for w = 0.0, the sequence plays
only the role of selecting the fragments, and the non-
local interaction is completely independent of the amino-
acid sequence. Since there is no side-chain, SA is not
necessary, and only the CSA search for the backbone
conformation is performed.

The results of the simulations without side-chain are
also displayed in Tables 1, 2 and 3. The RMSD and the
energy values of the final bank conformations are plotted
for 1e0l and 1bdd in Figure 5.

We note that the results for 1e0l are similar to those for
w = 1.0 whereas for 1bdd there is no native-like confor-
mation in the final bank. The results suggest that for an
all-β protein such as 1e0l, the amino-acid sequence only
plays a major role in determining the local structure,
and the global tertiary structure is determined mainly
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Fig. 2. RMSD and energy values of the final bank conformations for (a) 1e0l and (b) 1bdd.

Fig. 3. (a) Native structure, (b) best model and (c) most native-like bank conformation for 1e0l. The figures are prepared
with the program MOLMOL [40].

Fig. 4. (a) Native structure, (b) best model and (c) most native-like bank conformation for 1bdd.

by sequence-independent interactions, such as hydrogen
bonding between extended fragments that results in a β-
sheet structure. On the other hand, for an all α proteins
such as 1bdd, non-local hydrophobic side-chain interac-
tions are also important for native-like packing of helices.
This can be confirmed by examining the structure with
the smallest RMSD among the final bank (Figure 6),
where the helices are formed, but not correctly packed

into the three-helix bundle. These results are consistent
with the conclusion of an earlier work [17], where CSA
searches were performed for ten proteins from various
structural classes, with the CHARMM energy function
used for the back-bone interaction, and a simple contact
energy between Cβ positions used to mimic side-chain
interactions.

One additional simulation was performed with w = 0.5
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Fig. 5. RMSD and energy values of the final bank conformations for the simulations without side-chains for (a) 1e0l and (b)
1bdd.

Fig. 6. Bank conformation of 1bdd with the smallest
RMSD (11.99 Å) obtained from the simulation without side-
chains.
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Fig. 7. RMSD and energy values of the final bank confor-
mations of 1bdd for the simulation with w = 0.5.

for 1bdd, with Tinit = 0.5 kcal/mol, MCstep = 30 and
Tstep = 0.5 kcal/mol, and the results are summarized
in Table 2 and Figure 7, which are more or less similar
to those with w = 1.0. If an optimal value of w is to
be found, simulations for a training set consisting of a
larger number of proteins will be necessary.

Using a single Intel Xeon CPU (2.4 GHz), the wall
clock times for the simulations with side-chain were 36
∼ 135 minutes for 1e0l, and 148 minutes ∼ 8 hours 21
minutes for 1bdd. Those for the simulations without
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Fig. 8. Average wall clock times for simulations as func-
tions of MCstep for 1e0l (filled circles) and 1bdd (filled boxes).
The error bars indicate the ranges of the values. The simula-
tions for MCstep = 0 were performed without side-chains.

side-chains were 4 minutes for 1e0l and 45 minutes for
1bdd. The average values of these simulation times for
each value of MCstep are plotted in Figure 8, along with
the ranges. It should be remembered that the simulation
time not only depends on the SA parameter MCstep but
also on the number of local minimizations performed in
the CSA search for the backbone conformation. The
latter quantity depends on the random selections of seed
conformations, and the average wall clock time for 1bdd
with MCstep = 20 is larger than that with MCstep =
30 only because the total number of trial conformations
generated in the CSA searches happened to be larger, on
average, for MCstep = 20.

The CSA algorithm can be easily adapted for parallel
computation by dividing the workload of local minimiza-
tions among slave nodes [25]. We did not implement the
parallel code in this work because we had to perform runs
with various SA parameters, and that already required
many CPUs without parallel computations. However, if
one were to fix the SA parameters to a particular set
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of values and run the algorithm for a few proteins, then
parallel computation would certainly speed up the com-
putation.

IV. DISCUSSIONS

In this work, we developed a protein structure predic-
tion algorithm based on a hybrid energy function com-
bined with fragment assembly and double optimization.
We performed test predictions on two proteins, 1bdd and
1e0l, and obtained promising results. We produced five
models for each protein by clustering the final bank of
low-energy conformations and showed that at least one
of the models had a native-like global structure.

By performing simulations without side-chains, we
could see that the all-β protein 1e0l folds into a native
structure only with sequence-independent backbone non-
local interaction whereas for the all-α protein 1bdd, the
sequence-dependent side-chain interaction is essential for
the native-like packing of helices, in accordance with an
earlier work using a simpler side-chain model [17].

The method presented in this work is by no means
optimal, and there is room for improvement. As already
mentioned, an optimal value for the weight parameter
w in Eq. (3) should be determined. As for the double
optimization, there is some arbitrariness in the manner
the CSA and the SA methods are combined, and it is
possible for the SA method to be used for the back-bone
sampling and for the CSA method to be applied for the
side-chain sampling, for example. Also, a better method
for selecting the model structures from the final bank
should be developed. Further refinements to the energy
function and the optimization algorithm will be subjects
of a future study.
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