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ABSTRACT Many of the recent secondary
structure prediction methods incorporate the idea
of fuzzy set theory, where instead of assigning a
definite secondary structure to a query residue,
probability for the residue being in each of the con-
formational states is estimated. Moreover, continu-
ous assignment of conformational states to the
experimentally observed protein structures can be
performed in order to reflect inherent flexibility.
Although various measures have been developed
for evaluating performances of secondary struc-
ture prediction methods, they depend only on the
most probable secondary structures. They do not
assess the accuracy of the probabilities produced
by fuzzy prediction methods, and they cannot in-
corporate information contained in continuous
assignments of conformational states to observed
structures. Three important measures for evaluat-
ing performance of a secondary structure predic-
tion algorithm, Q score, Segment OVerlap (SOV)
measure, and the k-state correlation coefficient
(Corr), are deformed into fuzzy measures F score,
Fuzzy OVerlap (FOV) measure, and the fuzzy corre-
lation coefficient (Forr), so that the new measures
not only assess probabilistic outputs of fuzzy pre-
diction methods, but also incorporate information
from continuous assignments of secondary struc-
ture. As an example of application, prediction re-
sults of four fuzzy secondary structure prediction
methods, PSIPRED, PROFking, SABLE, and PRE-
DICT, are assessed using the new fuzzy measures.
Proteins 2006;65:453–462. VVC 2006 Wiley-Liss, Inc.

Key words: secondary structure prediction; assess-
ment; evaluation

INTRODUCTION

The prediction of the three-dimensional structure of a
protein from its amino acid sequence is one of the most
important problems in bioinformatics. As a first step to-
ward solving this problem, many algorithms for statisti-
cally predicting the local secondary structure, instead of
the full global tertiary structure, have been developed.1–18

The most common definition of the secondary structure is
based on Dictionary of Secondary Structure of Proteins
(DSSP),19 where the secondary structure is classified as
eight states. By grouping these eight states into three

classes, Coil (C), Helix (H), and Extended (E), one obtains
three state classification, which is more widely used.
Therefore, the goal of the secondary structure prediction
is to assign one of the three possible states to each resi-
due of the query protein. Typical secondary structure pre-
diction algorithms apply pattern recognition algorithms
such as artificial neural network, k-nearest neighbor
method, or support vector machine to the query protein
sequence or sequence profile obtained by multiple se-
quence alignment with related sequences.

Many secondary structure prediction algorithms not
only can assign a definite secondary structure class to a
query residue, but also estimate probability for the residue
being in each of the secondary structural classes. These
methods can be considered as incorporating the fuzzy set
theory20,21 where the predicted secondary structure of a
residue does not belong to a definite conformational state,
but has fuzzy membership to all three conformational
states. Therefore, this class of methods is called the fuzzy
prediction methods in this work. The k-nearest neighbor
method incorporating the concept of fuzzy set is explicitly
called the fuzzy k-nearest neighbor method.22 The proba-
bilities produced by a fuzzy prediction method contain de-
tailed information on possible secondary structure of a
query residue, which is not contained in the secondary
structure finally produced by the prediction algorithm.

Moreover, since the experimentally observed protein
structure itself is not rigid, one can use continuous DSSP
(DSSPcont)23 instead of standard DSSP, so that more in-
formation on experimental structure can be maintained.
Just as in the case of fuzzy prediction, a continuous as-
signment of the secondary structure produces the proba-
bility for a residue being in each of the conformational states.
Therefore, continuous assignment of secondary structure
such as DSSPcont can be considered as fuzzy observation,
in contrast to crisp observation described by standard dis-
crete DSSP assignments.

There are various applications of secondary structure
prediction, such as homology modeling, threading, tertiary
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structure prediction of a new fold, and remote homology
detection for the transfer of functional annotation between
sequences, and some of these applications require not only
the final discrete secondary structural classes produced by
the prediction algorithm and discrete assignments, but
also the full information contained in the fuzzy prediction
and observation. One such application is the tertiary
structure prediction based on fragment assembly,24–30

where the local structures are generated according to the
probabilities estimated by the secondary structure predic-
tion methods. Therefore, for this class of methods, the cor-
relation between fuzzy prediction and fuzzy observation is
more important than that between their crisp counter-
parts. However, measures for evaluating secondary struc-
ture prediction algorithms that have been used so far,31–36

called crisp measures in this work, compare only the final
output of the most probable secondary structure predicted,
with the discrete assignment of the experimental second-
ary structure. Clearly, we need measures to evaluate the
accuracy of the probabilities of the secondary structural
classes estimated by an algorithm, which also incorporate
the continuous assignment of secondary structure.
In this work, I consider three important crisp measures

for evaluating secondary structure prediction methods, Q
score, Segment OVerlap (SOV) measure, and the k-state
correlation coefficient (Corr), and deform them to obtain
new measures that compare fuzzy prediction results with
fuzzy observation. I will call the resulting modified mea-
sures as fuzzy measures, named F score, Fuzzy OVerlap
(FOV) measure, and the fuzzy correlation coefficient
(Forr). They are elaborated in the next section along with
their crisp counterparts.

METHODS
Q and F Scores

The Q score is the simplest measure for evaluating sec-
ondary structure prediction performance. It is given by
the percentage of residues predicted correctly. For a given
secondary structure class S, one defines

QS � 100% 3
NTþðSÞ
OþðSÞ ð1Þ

where Oþ(S) is the observed number of residues in the
class S, and NTþ(S) is the number of residues correctly
predicted to be in the class S. The Q3 score, the measure
of overall performance without reference to a specific sec-
ondary structure class, is defined as

Q3 �
X

S2fC;H;Eg

OþðSÞ
N

QS ¼ 100%3
Ncorrð3Þ

N
ð2Þ

where N is the total number of residues of the query pro-
tein, and Ncorr(3) ¼ SSe{C,H,E}NTþ(S) is the total number
of correctly predicted residues regardless of their second-
ary structures.

It is rather straightforward to deform QS and Q3 to
obtain fuzzy measures. We define

FS � 100% 3
~NTþðSÞ
~OþðSÞ

;

F3 � 100% 3
~Ncorrð3Þ

N
; ð3Þ

where

~NTþðSÞ �
X
j

PrPðj;SÞPrOðj;SÞ;

~OþðSÞ �
X
j

PrOðj;SÞ; ð4Þ

with PrP( j;S) and PrO( j;S) denoting the probability that
the j-th residue belongs to the secondary structure class
S as estimated by the fuzzy prediction and observation,
respectively. Similarly,

~Ncorrð3Þ �
X

S2fC;H;Eg
~NTþðSÞ

¼
X

S2fC;H;Eg

XN
j¼1

PrPðj;SÞPrOðj;SÞ: ð5Þ

By construction, the lower and upper bound of F scores are
0 and 100%. It is evident that when the probabilities con-
sist of 0s and 1s only, implying prediction and observation
with 100% confidence, the F scores reduce to the Q scores.

As an example, let us consider the prediction result
given in Figure 1. The Q scores for this prediction are

QC � 100% 3
2

4
¼ 50%;

QH � 100% 3
5

8
¼ 62:5%;

Q3 � 100% 3
7

12
¼ 58:3%: ð6Þ

The QE score is undefined since both the numerator
and the denominator vanish, due to the fact that there

Fig. 1. An example of the fuzzy prediction. The values of the crisp
and fuzzy measures for this result are shown in Table I.
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is no residue observed to be in the class E. On the
other hand, the F scores for this example are

FC�100%3
0:82þ0:230:533þ0:830:2þ0:2þ0:8

0:8þ0:233þ0:8þ2:0

¼50:0%;

FH�100%3
0:230:1þ0:830:433þ1:030:835þ0:230:5

0:2þ0:833þ1:035þ0:2

¼65:1%;

F3�100% 3 ½0:82þ0:230:1þð0:230:5þ0:830:4Þ33

þ0:835þð0:830:2þ0:230:5Þþ0:2þ0:8�=12
¼59:8%; ð7Þ

where again FE is undefined for this example.

SOVand FOV Measures

In contrast to the Q score, the SOV measure31,34 is not
based simply on the number of correct residues, but also
puts emphasis on the continuity of a secondary structure
element. For example, SOV(3) gives a big penalty for a
prediction where a long helix is falsely predicted as two
short helices because of one misclassified residue in the
middle, whereas Q3 score assesses this result as nearly
perfect prediction since only the number of correctly pre-
dicted residues is taken into account.
As in the case of Q scores, one defines SOV measure for

a particular secondary structure class S as well as that
for the overall prediction. First, for a given secondary
structural class S (¼C,H,E), we define the set of overlap-
ping segments:

SegðSÞ ¼ fðs1ðSÞ; s2ðSÞÞjs1ðSÞ \ s2ðSÞ 6¼ ;g: ð8Þ

where (s1(S), s2(S)) is a pair of observed and predic-
ted secondary structure segments in the class S, which
has at least one residue in common. Seg(S) is the set of
all such pairs. Then, the SOV measures are defined as

SOVðSÞ¼100%3
1

NðSÞ
3

X
SegðSÞ

minovðs1ðSÞ;s2ðSÞÞþdðs1ðSÞ;s2ðSÞÞ
maxovðs1ðSÞ;s2ðSÞÞ lenðs1ðSÞÞ

� �
;

SOVð3Þ¼100%3
1

Nall

3
X

S2fC;H;Eg

X
SegðSÞ

"
minovðs1ðSÞ;s2ðSÞÞþdðs1ðSÞ;s2ðSÞÞ

maxovðs1ðSÞ;s2ðSÞÞ

3 lenðs1ðSÞÞ
#
; ð9Þ

where len(s1(S)) and len(s2(S)) are the number of residues
in the segments s1(S) and s2(S) respectively; minov(s1(S),
s2(S)) is the length of actual overlap of a given pair s1(S)
and s2(S); maxov(s1(S), s2(S)) is the length of the total

extent of residues, which belong to either s1(S) or s2(S),

and

dðs1;s2Þ¼min½ðmaxovðs1;s2Þ�minovðs1;s2ÞÞ;minovðs1;s2Þ;
intðlenðs1Þ=2Þ; intðlenðs2Þ=2Þ�: ð10Þ

Also, the normalization factors N(S) and Nall are defined
as

NðSÞ¼
X

SegðSÞ
lenðs1ðSÞÞþ

X
Seg0 ðSÞ

lenðs01ðSÞÞ
2
4

3
5;

Nall¼
X

S2C;H;E

NðSÞ; ð11Þ

where Seg0(S) is the set of observed segments s01(S) that
have no overlap with predicted segments of secondary

structure S. To preserve main features of the SOV mea-

sure, we keep the original definition of the segments and

the sets of segments, s1(S), s2(S), Seg(S), Seg
0(S), when

we deform SOV to the fuzzy measure FOV, but redefine

maxov and minov. As in the case of Q score, this is done

by summing probabilities. That is, we define

minov0ðs1ðSÞ; s2ðSÞÞ �
X

j2s1ðSÞ\s2ðSÞ
minðPrOðj;SÞ;PrPðj;SÞÞ

maxov0ðs1ðSÞ; s2ðSÞÞ �
X

j2s1ðSÞ[s2ðSÞ
maxðPrOðj;SÞ;PrPðj;SÞÞ:

Then the FOV measure is defined as

FOVðSÞ ¼ 100%3
1

NðSÞ
3

X
SegðSÞ

minov0ðs1ðSÞ;s2ðSÞÞþd0ðs1ðSÞ;s2ðSÞÞ
maxov0ðs1ðSÞ;s2ðSÞÞ lenðs1ðSÞÞ

� �
;

FOVð3Þ ¼ 100%3
1

Nall

3
X

S2fC;H;Eg

X
SegðSÞ

"
minov0ðs1ðSÞ;s2ðSÞÞþd0ðs1ðSÞ;s2ðSÞÞ

maxov0ðs1ðSÞ;s2ðSÞÞ

3 lenðs1ðSÞÞ
#
; ð12Þ

where d0 is defined in the manner similar to the case of

SOV measure, with maxov0 and minov0 used in places of

maxov and minov. As in the case of F scores, FOV mea-

sures reduce to SOV measures when the estimated proba-

bilities consist of 0s and 1s only.
Let us elaborate by considering the example in Figure

1. There is one pair of overlapping segments of H in the

middle, and for this pair we have

minovðs1ðHÞ; s2ðHÞÞ ¼ 5; maxovðs1ðHÞ; s2ðHÞÞ ¼ 10;

minov0ðs1ðHÞ; s2ðHÞÞ ¼ 0:8 3 5 ¼ 4;

maxov0ðs1ðHÞ; s2ðHÞÞ ¼ 0:8 3 3þ 1:0 3 5þ 0:5 3 2 ¼ 8:4;
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with d(s1, s2) ¼ d0(s1, s2) ¼ int[len(s2)/2] ¼ 3. Therefore,

SOVðHÞ ¼ 100% 3
1

8

5þ 3

10
3 8

� �
¼ 80:0%;

FOVðHÞ ¼ 100% 3
1

8

4þ 3

8:4
3 8

� �
¼ 83:3%:

Similar calculation for C yields

SOVðCÞ ¼ 100% 3
1

1þ 3

1

4
3 1þ 1

3
3 3

� �
¼ 31:3%;

FOVðCÞ ¼ 100% 3
1

1þ 3

0:8

2:3
3 1þ 0:8

2:8
3 3

� �
¼ 30:1%:

Again, SOV(E) and FOV(E) are undefined for this exam-
ple since both the numerators and the denominators
vanish. The measures for the overall performance are

SOVð3Þ ¼ 100%3
1

12

1

4
3 1þ5þ3

10
3 8þ1

3
3 3

� �
¼ 63:8%;

FOVð3Þ ¼ 100%3
1

12

0:8

2:3
3 1þ4þ3

8:4
3 8þ0:8

2:8
3 3

� �
¼ 65:6%:

k-State Correlation Coefficients

Among the measures we discuss, the k-state correlation
coefficients, abbreviated as Corr scores in this work, have
the most rigorous foundation in statistical theory. The
assignment of a secondary structure to a residue can be
considered as a categorical variable with three categories.
When we restrict our attention to a specific secondary
structural class S and classify a residue according to
whether it belongs to the class S or not, the resulting cate-
gorical variable has only two categories. We then calculate
the correlation coefficient between the observed and pre-
dicted variables. In contrast to Q scores and SOV mea-
sures, which range from 0 to 100%, the numerical value of
a correlation coefficient is between �1 and 1, where 1 is a
perfect linear correlation, 0 means no linear correlation,
and �1 is a perfect linear anti-correlation. A random pre-
diction results in a correlation coefficient close to 0.
Let us first consider the case of the two category assign-

ment. We consider variables XS( j) and YS( j) ( j ¼
1,2, . . .,N), which are two-dimensional vectors. For a given
secondary structure S, we assign XS( j) ¼ (1,0) if the j-th
residue is observed to be in the conformational state S,
and XS( j) ¼ (0,1) otherwise. Similarly, YS( j) ¼ (1,0) or
(0,1) depending on whether or not the j-th residue is pre-

dicted to be in the conformational state S. The two-state
correlation coefficient between XS and YS is then given as35

CorrðSÞ�
P

N
j¼1ðXSðjÞ� �XSÞ�ðYSðjÞ� �YSÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
k¼1ðXSðkÞ� �XSÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
m¼1ðYSðmÞ� �YSÞ2

q

¼
P

N
j¼1ðXSðjÞ�YSðjÞ� �XS � �YSÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
k¼1ðXSðkÞ2� �X

2
SÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
m¼1ðYSðmÞ2� �Y

2
SÞ

q
¼ NNTþðSÞ�OþðSÞPþðSÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

OþðSÞO�ðSÞPþðSÞP�ðSÞ
p

¼ NNcorrðSÞ�OþðSÞPþðSÞ�O�ðSÞP�ðSÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2�OþðSÞ2�O�ðSÞ2ÞðN2�PþðSÞ2�P�ðSÞ2Þ

q
ð13Þ

where �XS(�YS) is the average value of XS(k)(YS(k)),
Oþ(S)(Pþ(S)) is the numbers of residues observed (pre-
dicted) to be in the class S, and O�(S), (P�(S))) is the
numbers of residues observed (predicted) not to be in the
class S. Also, Ncorr(S) : NTþ(S) þ NT�(S) with NTþ(S)
being the number of correctly predicted residues in the
class S (true positives), and NT�(S) the number of resi-
dues correctly identified as something other than the
class S (true negatives). It should be noted that since the
secondary structure prediction is viewed as a two-class
problem in calculating the correlation coefficient in
Eq. (13), usually called the Matthews correlation coeffi-
cient, no distinction is made between states other than S.

To obtain the three-state correlation coefficient for all
the secondary structural classes, we construct variables
X and Y whose values are three-dimensional vectors. We
assign X( j)(Y( j)) ¼ (1,0,0), (0,1,0) or (0,0,1) depending on
whether the j-th residue is observed (predicted) to be in
the class C, H, or E, to get [36]

Corrð3Þ �
P

N
j¼1ðXðjÞ �YðjÞ� �X � �YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
k¼1ðXðkÞ2� �X

2Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
m¼1ðYðmÞ2� �Y

2Þ
q

¼ NNcorrð3Þ�
P

S2fC;H;EgOþðSÞPþðSÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2�P

S02fC;H;EgOþðS0Þ2ÞðN2�P
S002fC;H;EgPþðS00Þ2Þ

q
ð14Þ

where as before, N denotes the number of all residues, and
Ncorr(3) : SSe{C,H,E}NTþ(S) the number of those predicted
correctly. We see that Eq. (14) is the generalization of the last
expression in Eq. (13) to the case of three-class assignment.

Both in Eq. (13) and Eq. (14) each component of the varia-
bles X(S)( j) and Y(S)( j) can be interpreted as representing
the probability that the j-th residue belongs to a specific
class, obtained from the observation and prediction respec-
tively, when the confidence is 100%. Therefore, for fuzzy
prediction, where the prediction is made with nonzero prob-
abilities for all of the secondary structural classes, it is clear
that the components of Y(S)( j) should be replaced by the
probabilities estimated by the fuzzy prediction algorithm.
Similarly, for fuzzy observation, X(S)( j) should be replaced
by the probabilities produced by the DSSPcont assignment.

TABLE I. The Comparison of Performance Measures
for the Example in Figure 1

Q SOV Corr F FOV Forr

All 58.3 63.8 0.120 59.8 65.6 0.636
Coil 50.0 31.3 0.120 50.0 30.1 0.554
Helix 62.5 80.0 0.120 65.1 83.3 0.747

The measures are undefined for E, since the probabilities of their
appearance vanish in the observed secondary structure.
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Thus, for the case of Matthews correlation coefficient,
we replace XS( j) and YS( j) by ~XS( j) : (PrO( j;S), 1 –
PrO( j;S)) and ~YS( j) : (PrP( j;S), 1 – PrP( j;S)) to obtain
the two-state fuzzy correlation coefficient, abbreviated as
Forr score in this work:

ForrðSÞ ¼
P

N
j¼1ð~XSðjÞ � ~YSðjÞ � �~XS � �~YSÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
k¼1ð~XSðkÞ2 � ~X

2

SÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
m¼1ð~YSðmÞ2 � ~Y

2

SÞ
q

¼ N ~NTþðSÞ � ~OþðSÞ~PþðSÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNO0þðSÞ � ~O2þðSÞÞðNP0þðSÞ � ~P2þðSÞÞ

q ð15Þ

where

~OþðSÞ �
XN
j¼1

PrOðj; SÞ;

O0
þðSÞ �

XN
j¼1

PrOðj; SÞ2;

~PþðSÞ �
XN
j¼1

PrPðj; SÞ;

P0
þðSÞ �

XN
j¼1

Pr Pðj;SÞ2;

~NTþðSÞ � Pr Pðj;SÞPr Oðj;SÞ: ð16Þ

Similarly, for the three-state fuzzy correlation coeffi-
cient, we replace X( j) and Y( j) by ~X( j) : (PrO( j;C),

PrO( j; H), PrO( j; E)) and ~Y( j) : (PrP( j;C), PrP( j;H),
PrP( j; E)) to get

Forrð3Þ¼
P

N
j¼1ð~XðjÞ� ~YðjÞ� ~X � ~YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
k¼1ð~XðkÞ2� ~X

2Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
m¼1ð~YðmÞ2� ~Y

2Þ
q

¼ N ~Ncorrð3Þ�
P

S
~OþðSÞ~PþðSÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN ~NO�
P

S02fC;H;Eg ~OþðS0Þ2ÞðN ~NP�
P

S002fC;H;Eg~PþðS00Þ2Þ
q

ð17Þ

where

~NO �
X

S2fC;H;Eg
O0

þðSÞ ¼
XN
j¼1

X
S2fC;H;Eg

Pr Oðj;SÞ2

~NP �
X

S2fC;H;Eg
P0
þðSÞ ¼

XN
j¼1

X
S2fC;H;Eg

Pr Pðj;SÞ2 ð18Þ

By construction, the fuzzy correlation coefficients (15,17)
reduce to the crisp correlation coefficients (13,14) when
the estimated probabilities consist of 0s and 1s only.

For the example in Figure 1, we have

Ncorrð3Þ ¼ NcorrðCÞ ¼ NcorrðHÞ ¼ 7;

NcorrðEÞ ¼ 12:

Also,

OþðCÞ ¼ 4; OþðHÞ ¼ 8; OþðEÞ ¼ 0;

PþðCÞ ¼ 5; PþðHÞ ¼ 7; PþðEÞ ¼ 0:

TABLE II. Average Scores of Prediction on EVA Common Set 1
for the Four Prediction Methods

PSIPRED PROFKING SABLE PREDICT

Q3 76.6 (1.2) 71.0 (1.5) 76.8 (1.2) 72.7 (1.3)
QC 73.9 (1.6) 76.9 (1.5) 75.2 (2.0) 72.5 (1.9)
QH 83.8 (1.9) 69.5 (2.7) 81.6 (1.9) 83.1 (1.6)
QE 63.1 (3.8) 61.9 (4.1) 62.6 (3.9) 46.4 (3.6)
SOV(3) 75.9 (1.7) 69.2 (2.0) 74.8 (1.9) 66.4 (1.8)
SOV(C) 71.5 (1.9) 70.2 (2.0) 70.2 (2.3) 66.2 (2.1)
SOV(H) 83.7 (2.2) 73.4 (3.0) 81.9 (2.2) 79.0 (2.4)
SOV(E) 65.4 (4.1) 61.6 (4.6) 65.2 (4.4) 49.1 (3.5)
Corr(3) 0.571 (0.021) 0.498 (0.024) 0.562 (0.024) 0.509 (0.022)
Corr(C) 0.568 (0.019) 0.493 (0.023) 0.555 (0.023) 0.508 (0.021)
Corr(H) 0.624 (0.023) 0.575 (0.029) 0.630 (0.024) 0.558 (0.024)
Corr(E) 0.550 (0.038) 0.471 (0.042) 0.559 (0.041) 0.494 (0.031)
F3 69.1 (1.1) 62.5 (1.1) 65.3 (1.1) 57.3 (0.9)
FC 65.6 (1.1) 65.7 (0.9) 61.9 (1.2) 57.6 (0.9)
FH 77.3 (1.6) 62.3 (2.0) 72.7 (1.6) 65.2 (1.3)
FE 56.9 (2.8) 56.0 (2.8) 56.3 (2.4) 39.7 (1.5)
FOV(3) 69.0 (1.7) 62.6 (2.0) 67.8 (1.9) 56.5 (2.0)
FOV(C) 63.9 (1.8) 63.1 (1.9) 61.4 (2.3) 56.4 (2.1)
FOV(H) 79.2 (2.2) 67.8 (3.0) 77.4 (2.3) 70.8 (2.6)
FOV(E) 56.4 (3.8) 56.0 (4.3) 57.4 (4.1) 35.7 (3.2)
Forr(3) 0.662 (0.034) 0.590 (0.034) 0.637 (0.035) 0.610 (0.033)
Forr(C) 0.665 (0.015) 0.600 (0.017) 0.637 (0.021) 0.610 (0.014)
Forr(H) 0.703 (0.023) 0.651 (0.024) 0.705 (0.023) 0.649 (0.021)
Forr(E) 0.645 (0.031) 0.563 (0.038) 0.640 (0.036) 0.632 (0.023)

The values in the parentheses are the standard errors.
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Therefore,

CorrðCÞ ¼ CorrðHÞ ¼ Corrð3Þ

¼ 12 3 7� 4 3 5� 8 3 7ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð122 � 42 � 82Þð122 � 52 � 72Þ

p ¼ 0:120

and Corr(E) is undefined since both the numerator 12 3
12 – 0 3 0 – 12 3 12 ¼ 0 and the first factor of the de-
nominator

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122 � 02 � 122

p
¼ 0 vanish. Introducing the

fuzziness, we have

Fig. 2. Plots of average Q (dashed lines with filled circles) and F (solid lines with filled boxes) scores for the four prediction methods, for (a) three
states, (b) coil, (c) helix, and (d) extended b-sheet. In these and the following figures, error bars are 4.002 3 stderr (See text).

~OþðCÞ ¼ 0:8þ 0:233þ 0:8þ 1:032 ¼ 4:2;

~OþðHÞ ¼ 0:2þ 0:833þ 1:035þ 0:2 ¼ 7:8;

~OþðEÞ ¼ 0:0;

~PþðCÞ ¼ 0:8þ 0:533þ 0:135þ 0:232þ 0:8 ¼ 4:0;

~PþðHÞ ¼ 0:1þ 0:433þ 0:835þ 0:532þ 0:1 ¼ 6:4;

~PþðEÞ ¼ 0:139þ 0:332þ 0:1 ¼ 1:6;

O0
þðCÞ ¼ 0:82 þ 0:22 3 3þ 0:82 þ 1:02 3 2 ¼ 3:40;

O0
þðHÞ ¼ 0:22 þ 0:82 3 3þ 1:02 3 5þ 0:22 ¼ 7:00;

O0
þðEÞ ¼ 0:0;

P0
þðCÞ ¼ 0:82 þ 0:5233þ 0:12 3 5þ 0:22 3 2þ 0:82 ¼ 2:16;

P0
þðHÞ ¼ 0:12 þ 0:42 3 3þ 0:8235þ 0:523 2þ 0:12 ¼ 4:20;

P0
þðEÞ ¼ 0:12 3 9þ 0:32 3 2þ 0:12 ¼ 0:28;

~NO ¼ O0
þðCÞ þO0

þðHÞ þO0
þðEÞ ¼ 10:40:

~NP ¼ P0
þðCÞ þ P0

þðHÞ þ P0
þðEÞ ¼ 6:64;

and

~NTþðCÞ ¼ 0:82 þ 0:2 3 0:5 3 3þ 0:8 3 0:2þ 0:20þ 0:80

¼ 2:10;

~NTþðHÞ ¼ 0:2 3 0:1þ 0:8 � 0:4 3 3þ 1:0 3 0:8

3 5þ 0:2 3 0:5 ¼ 5:08

~NTþðEÞ ¼ 0:0;

~Ncorrð3Þ ¼ 2:10þ 5:08 ¼ 7:18:

458 J. LEE

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot



Therefore,

ForrðCÞ ¼ 12 3 2:10� 4:2 3 4:0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 3 3:40� 4:22Þð12 3 2:16� 4:02Þ

p ¼ 0:554:

ForrðHÞ ¼ 12 3 5:08� 7:8 3 6:4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið12 3 7:00� 7:82Þð12 3 4:20� 6:42Þp ¼ 0:747;

where again, Forr(E) is undefined since both its numera-
tor and denominator vanish. The scores for the example
of Figure 1 are summarized in Table I.

RESULTS AND DISCUSSION

As an example of application of the fuzzy measures
introduced in this work, I assessed performances of four

secondary structure prediction methods that estimate
probabilities for all the secondary structure classes, and
are relatively easy to install and run on a local computer,
PSIPRED (v2.3)4, PROFking (v1.0)5, SABLE (v2.0)6,7,
and PREDICT (v1.0)8. The test set used was EVA com-
mon Set 137. After removing proteins with chain breaks,
76 proteins remain in the set. It should be emphasized
that the result is not to be considered as an extensive test
of these prediction methods, and the actual performances
of the prediction algorithms depend on their versions and
the set of proteins used for the test.

The average values of Q, SOV, Corr, F, FOV, and Forr
measures for the four methods, for each of the three second-
ary structural classes and the overall performance, are shown
in Table II and Figures 2–4, and the three-state fuzzy scores
for individual proteins are also plotted against their crisp
counterparts in Figures 5–7. The numbers in the parentheses
in Table II are the standard errors, defined by

Fig. 3. Plots of average SOV (dashed lines with filled circles) and FOV (solid lines with filled boxes) scores for the four prediction methods, for (a)
three states, (b) coil, (c) helix, and (d) extended b-sheet.

Forrð3Þ
¼ 1237:18�4:234:0�7:836:4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð12310:40�4:22�7:82Þð1236:64�4:02�6:42�1:62Þ
p

¼ 0:636: ð19Þ

stderr � sffiffiffi
n

p
;

ð20Þ
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where the standard deviation is

s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðXi � �XÞ2
n� 1

vuut ; ð21Þ

with Xi denoting a numerical value of a measure, �X its
average over the protein chains, whose number is n(¼60).
The widths of the error bars in the Figures 2–4 are 2 3
t59,0.975 3 stderr ¼ 4.002 3 stderr, which correspond to
the 95% confidence intervals for the true mean values of
the measures if the sample averages follow the Gaussian
distribution. Here, t59,0.975 ¼ 2.001 is the 97.5 percentile
of the student t59-distribution. The fuzzy prediction
results were evaluated by comparing with the DSSPcont
assignments.
We observe that QE, F(E), SOV(E), and FOV(E) scores

for PREDICT are lower than those for the other methods,
implying low sensitivity for the secondary structural
class E. However, values of the crisp and fuzzy two-state

correlation coefficients, which measure both the sensitiv-
ity and specificity at the same time, are comparable to
those for the other methods.

We note that although F and FOV scores are lower
than their crisp counterparts on average, giving an
impression that the performance of the fuzzy prediction
is worse than that of the crisp prediction, Forr scores are
higher than Corr scores. That is, there is more correla-
tion between the fuzzy prediction and observation, than
between their crisp counterparts. In fact, it might not be
truly meaningful to directly compare the numerical value
of a crisp measure with that of the fuzzy counterpart,
except for Corr and Forr scores, both of which derive from
a single well-defined quantity in statistical theory, the
Pearson correlation coefficient.

Despite relatively high correlations between the crisp
measures and their fuzzy counterparts (See Figures 5–7
and their captions. See also Figures 2–4), it should be
emphasized that the crisp and fuzzy measures are
designed to assess different properties of a secondary

Fig. 4. Plots of average Corr (dashed lines with filled circles) and Forr (solid lines with filled boxes) scores for the four prediction methods, for (a)
three states, (b) coil, (c) helix, and (d) extended b-sheet.
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structure prediction algorithm, and fuzzy measures con-
tain information that cannot be obtained from crisp
measures. In particular, in the case of three-state correla-
tion, there are protein chains with values of Forr(3)
higher than Corr(3), as can be seen from Figure 7, provid-
ing examples where assessments using fuzzy measures
are different from those using crisp ones. If one intends
to use only the final predicted secondary structures, the
fuzzy measures are not particularly useful for assessing
secondary structure prediction algorithms. However, to
fully utilize the estimated probabilities of the secondary
structures produced by the fuzzy prediction method, and
continuous assignment of observed secondary structure
such as DSSPcont, it is more reasonable to use fuzzy pre-
diction methods with high fuzzy scores. Therefore,
the fuzzy measures should be considered as being com-
plementary to the crisp measures rather than being
replacements.

The automatic server and the software for fuzzy pre-
diction assessment using the fuzzy measures are avail-
able at http://bioinfo.ssu.ac.kr/�jul/fuzzy/fuzzy.htm. When
the estimated probabilities for secondary structural
classes are not provided, the server and software produce
the crisp measures as outputs. I hope these facilities
encourage wide use of the newly invented fuzzy meas-
ures for assessments of fuzzy predictions of secondary
structure.
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