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INTRODUCTION

Prediction of the native structure of a protein from its amino acid sequence

is one of the most important problems in protein science. However, modeling

the native structure based solely on physico-chemical energy functions remains

an unsolved problem.1–3 Therefore, bioinformatics approaches that utilize in-

formation extracted from the database of known structures are widely used in

practice. When experimental structures of homologous sequences are available,

these structures can be used as templates.4,5 However, homologous proteins

still have gaps or insertions in sequences, referred to as loops, whose structures

are not conserved during evolution. Since the templates give no structural in-

formation on these regions, the loops have to be modeled ab initio.

Although the length of a loop region is generally much shorter than that of

the whole protein chain, modeling a loop poses a challenge not present in the

global protein structure prediction, in that the modeled loop structure has to

be geometrically consistent with the rest of the protein structure. The condi-

tion of such consistency imposes constraints on the possible values of the loop

dihedral angles, called the loop closure constraint, when the bond lengths and

bond angles are kept close to canonical values. In many loop modeling meth-

ods developed so far, conformations are generated without explicit loop clo-

sure constraint. The gap in the chain is reduced afterwards either by screening

out conformations with large gaps or by minimizing an energy term penaliz-

ing the gap.6–13

However conformations satisfying the loop closure constraint can be gener-

ated by using analytical loop closure.14–24 Among these methods, the polyno-

mial formulation developed in Ref. 20, 21 has the combined advantage of sim-

plicity and generality, and can be applied to closing loops by rotation of tor-

sion angles of non-consecutive residues. Iterative loop closure methods have

also been developed.25–28 An analytical loop closure approach is natural and

efficient in that minimization of an arbitrary gap penalty is unnecessary since

loops are restricted to be closed in a purely geometric way, and there is no

small remaining chain break that needs to be ignored or reduced afterwards.

In a sampling test on 30 loop targets of lengths ranging from 4 to 12 residues

and an optimization test on an 8-residue loop, it was shown that loop sam-
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ABSTRACT

Protein loops are often involved in im-

portant biological functions such as

molecular recognition, signal trans-

duction, or enzymatic action. The

three dimensional structures of loops

can provide essential information for

understanding molecular mechanisms

behind protein functions. In this arti-

cle, we develop a novel method for

protein loop modeling, where the loop

conformations are generated by frag-

ment assembly and analytical loop clo-

sure. The fragment assembly method

reduces the conformational space dras-

tically, and the analytical loop closure

method finds the geometrically con-

sistent loop conformations efficiently.

We also derive an analytic formula for

the gradient of any analytical function

of dihedral angles in the space of

closed loops. The gradient can be used

to optimize various restraints derived

from experiments or databases, for

example restraints for preferential

interactions between specific residues

or for preferred backbone angles. We

demonstrate that the current loop

modeling method outperforms previ-

ous methods that employ residue-

based torsion angle maps or different

loop closure strategies when tested on

two sets of loop targets of lengths

ranging from 4 to 12.
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pling can be performed much more efficiently when ana-

lytical loop closure is employed.20 Analytical loop clo-

sure was also combined with the Rosetta energy func-

tion24 and was shown to predict loop structures more

accurately than the previous Rosetta method that

employs an iterative loop closure method.29

The loop conformational space can be further reduced

by using fragment assembly. Fragment assembly methods

have been applied widely and successfully to protein

structure prediction when structural templates are not

available.13,30–45 In a fragment assembly method, local

structures are limited to those of short fragments col-

lected from a structure database, and the global structure

is modeled by searching for the lowest free energy state

among the states with such local structures.

In this work, we combine the two approaches, analyti-

cal loop closure and fragment assembly, for efficient pro-

tein loop sampling. Since an initial loop conformation

generated by fragment assembly alone does not close the

loop in general, backbone torsion angles are perturbed so

that the analytical loop closure equation is satisfied. A tor-

sional energy function can be minimized at the same time

to confine the angle changes that accompany loop closure

within a desired range. To perform this task efficiently, we

develop an analytic formula for the gradient of a function

of backbone dihedral angles in the space of closed loops.

Prediction results on eight short protein loops using

a preliminary version of the current method was

reported in Ref. 30, where a Monte Carlo search was

used to find conformations minimizing a deviation

from the original fragment angles. In this work, by

developing a general formula for the analytic gradient

of a function of dihedral angles that satisfy the loop clo-

sure constraint, such minimization can be performed

much more efficiently.

We demonstrate the performance of our method by

loop reconstruction tests on the 30 loops proposed by

Canutescu and Dunbrack27 and the 317 loops developed

by Fiser et al.46 We found that the sampling efficiency is

significantly improved compared to four different previ-

ous methods.7,20,27,47 By combining our sampling

method with a statistical potential DFIRE48,49 the loop

prediction accuracy could also be improved.

METHODS

Collection of fragments and
structure database

For each residue of a target loop, a seven-residue

window centered on the residue is considered. For

each window, 200 fragment structures of length seven

with similar sequence features are collected from a

nonredundant structure database, as described below.

The structure database was constructed by clustering

an ASTRAL SCOP (version 1.63) set so that no two

proteins in the database have more than 25% sequence

identity with each other.50–52 The resulting set con-

sists of 4362 nonredundant protein chains and total of

905684 residues. To perform a fair benchmark test, we

did not use fragments obtained from proteins homolo-

gous to the target proteins in this work. To elaborate,

we removed the proteins with E-value less than 0.01

after a BLAST search53 with the whole sequence con-

taining the target loop.

The sequence features to be compared for fragment

selection are the sequence profiles obtained from a

PSI-BLAST search. A sequence profile is a set of posi-

tion-dependent mutation probabilities of the protein

residues to other amino acids, obtained from local

alignment of a given sequence with related sequences

in a sequence database. The PSI-BLAST profile con-

tains evolutionary information that cannot be obtained

directly from the raw sequence, and it has been widely

used for local structure prediction51,52,54 as well as

for global structure prediction by fragment assembly

methods.13,30,32–45

Since we consider windows of size seven, the sequence

features for each window form a matrix of size 7 3 20 .

The distance between two sets of sequence features A and

B is defined as

DAB ¼
X7
i¼1

X20
j¼1

wijPðAÞ
ij � P

ðBÞ
ij j; ð1Þ

where Pij
(A) is a component of the sequence feature set

A, and wi is a weight parameter. Since the end-regions

of a fragment is often cut off during fragment assembly,

as explained in the next subsection, the structure of the

central region is more frequently used. We thus place

higher weight on the central region by using the for-

mula

wi ¼ ið8� iÞ: ð2Þ

Two hundred fragments of seven residues that have the

shortest distances from the target loop sequence for each

window are then collected for fragment assembly. It must

be noted that for the terminal residues of the loop, the

windows contain residues in the framework region.

Therefore, the sequence features used for collecting the

fragments contain information on the framework region

as well.

Fragment assembly for the loop region

The fragments obtained as above are assembled to

construct loop conformations. Conformations are gener-

ated by sequentially adding randomly chosen fragments

starting from the N-terminal region of the loop. A new

fragment is joined to the growing loop conformation

only if they share at least one residue with close dihedral
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angles. Two sets of dihedral angles (u1, w1) and (u2, w2)

are considered to be close if

ju1 � u2j þ jw1 � w2j � 30�: ð3Þ

The comparison of dihedral angles is made between

the first w 2 1 residues of the new fragment and the last

w 2 1 residues of the current partial loop conformation,

where w is the the fragment length. As mentioned above,

w 5 7 is used in this work. If we find a residue that sat-

isfies the condition Eq. (3), the new fragment is added

starting from the next residue position, and the length of

the partial loop is increased by 1. This assembly proce-

dure is illustrated in Figure 1. When there is no position

satisfying the condition Eq. (3), another fragment is

selected from the fragment set. If no fragment can be

added at the current step, the assembly procedure goes

back to the previous loop conformation with one less

residue, and another fragment is chosen randomly. For a

loop of length L, conformations of length L 1 8 are gen-

erated to utilize information in the fragments including

framework residues. The structures outside the loop

region are discarded in the subsequent analysis.

Since the joining of new fragments usually occurs in

the middle of the fragments, only parts of the 7-residue-

long fragments are used in the assembly, as illustrated in

Figure 1. The average length of the actually inserted part

of fragments by the current method is 1.9 for the confor-

mations generated for the Fiser loop set,46 as shown in

Table I. One can see that the sizes of the inserted frag-

ments do not depend much on the target loop length.

By joining the fragments only at close values of dihe-

dral angles, we concentrate on more realistic structures

that resemble those found in the structure database even

near fragment junctions. In this way, the conformational

search space is reduced significantly39–45 compared to

other fragment assembly methods that do not require

such condition. Due to this fact, a random sampling

method tested in this study performs very well for the

sizes of the loops considered here (up to 12 residues), as

presented in the Results and Discussion section. A set of

5000 conformations was generated for each loop target

in the Canutescu and Dunbrack set to compare with sev-

eral previous methods. Initial 4000 conformations were

generated for the test on the Fiser set,46 out of which a

final set of 1000 conformations were selected after a

screening procedure to compare with the RAPPER

method.7 There is no difficulty in increasing the number

of sampled conformations because the whole procedure

is very efficient, and the method may also be combined

with more extensive search methods, especially for loops

longer than those considered here.

Analytical loop closure and
analytical gradient

Conformations for a protein loop generated by the

fragment assembly method alone do not satisfy the loop

closure constraint in general. Therefore, the backbone

torsion angles of the loop must be rotated so that the

loop structures correctly fit into the rest of the protein

structure. Since the minimum number of backbone tor-

sion angles that has to be rotated for loop closure is six,

we first perform an initial loop closure by randomly

selecting three residues and computing their six backbone

dihedral angles (three u and three w angles) by solving

the analytical loop closure equation.20,21 Among N loop

dihedral angles, the N 2 6 unperturbed ones are from

the database fragments. However, the six dihedral angles

perturbed for the closure may deviate from the initial

fragment angles significantly or may even fall into Rama-

chandran-disallowed regions55 in some cases, depending

on the initial conformation. Such a problem can be alle-

viated by distributing the torsion angle changes from the

initial six angles to all the available torsion angles, result-

ing in small changes for many angles instead of large

changes for a few. The angle changes can be distributed

by minimizing an energy function that guides the dihe-

dral angles into desirable regions in the space of closed

loop conformations.

The loop closure procedure adopted in this work is as

follows. We first perform initial loop closure by ran-

domly selecting three residues and compute their

six backbone dihedral angles (three u and three

w angles) by solving the analytical loop closure equa-

tion.20,21 As an optional next step, we adjust all the

Figure 1
Illustration of the fragment assembly process. A fragment of length w 5
7 (middle) is joined to the growing loop conformation (top), resulting

in a loop conformation with one more residue (bottom). The fragment

is joined starting from the position next to the residue with close

dihedral angles between the fragment and the growing loop (indicated

with a dotted box). The blocks of different shadings represent

contributions from distinct fragments. Their average size is 1.9, as

presented in the text.

Table I
The Average Length of the Inserted Part of Fragments in Loop

Construction of the Fiser Loop Set for Each Target Loop Length

Loop length 4 5 6 7 8 9 10 11 12 Average

Insertion length 1.5 1.5 1.9 1.9 2.0 1.9 1.9 2.0 2.0 1.9
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torsion angles simultaneously to minimize the following

measure for deviation from Ramachandran-allowed regions

FRama ¼
Xn
l¼1

fRamaðul ;wlÞ ð4Þ

under the loop-closure constraint, where fRama(u,w) is an
energy function for a residue that represents a Rama-

chandran plot, and n is the number of loop residues that

are neither glycine nor proline. The function fRama(u,w)
is a sum of the Lennard-Jones and Coulomb interactions

among the non-side chain atoms within a dipeptide, as

developed in Ref. 56 with the CHARMM22 parameters.57

The same form of fRama is used for the 18 amino acids

that are neither glycine nor proline. The two-dimensional

energy contour of the dipeptide energy function has been

shown to reproduce the dihedral angle distribution in the

structural database much better than the hard-sphere

repulsion potential energy of Ramachandran et al.55 We

allowed free changes for the glycine angles because of

their flexibility and fixed proline angles at the fragment

angles because of the u angle rigidity. Separate fRama

functions for glycine, proline, and pre-proline residues

such as in Ref. 58 may also be used if desired. Minimiza-

tion of the function FRama enforces the torsion angles to

lie within the allowed regions of the Ramachandran map

for each residue.

Among the N variable torsion angles, {/1,/2,/3,���,-
N21,/N}, only N 2 6 of them are independent under the

loop closure constraint, and the minimization is per-

formed in the N 2 6 dimensional space of closed loops.

For simplicity we choose {/7,/8,���,/N} as the independ-

ent variables used for minimization, called the driver

angles, and express the remaining 6 adjuster angles in

terms of the driver angles. We then derive a formula for

the gradient of FRama in the N 2 6 dimensional space

using chain rules as follows.

Let us denote the axis of /i-rotation by a unit vector

Gi, and label the atom at the N-terminal of the rotation

axis by i, as depicted in Figure 2. For any atom j located

in the C-terminal direction of the chain relative to the

atom i, the variation of its position dRij due to an infini-

tesimal change of /i , d/i , is given by

dRij ¼ d/i Ci3Rij

� �
; ð5Þ

where Rij is the position of the atom j relative to i.

Since the Cartesian coordinates of atoms in the frame-

work region, the region outside the loop, are fixed under

the loop closure constraint, dRj 5
P

idRij 5 0 for any

atom j in the framework. In the current convention, the

framework region at the N-terminal side of the loop is

unaffected by the change of loop dihedral angles, and the

C-terminal framework moves as a rigid body in the ab-

sence of the loop closure constraint. It is therefore neces-

sary and sufficient to impose the following constraint for

three distinct atoms A, B, and C in the C-terminal

framework region:

dRj ¼
XN
i¼1

dRij ¼
XN
i¼1

d/i Ci3Rij

� � ¼ 0 ðj ¼ A;B;CÞ

ð6Þ

Equation (6) is a constraint on possible changes of

the torsion angles d/i under the loop closure con-

straint. Considering i (51,���,N) as the column index

and j (5A,B,C) together with the space index

l (5x,y,z) as the row index a (51,���,9) , the matrix

Mai � ðCi3RijÞl ða ¼ ðj; lÞÞ ð7Þ

is a 9 3 N matrix, and Eq. (6) is a system of 9 equations

for N variables. However, it has to be noted that

ðRj � RkÞ � ðCi3ðRij � RikÞÞ ¼ Rjk � ðCi3RjkÞ � 0

ðj; k ¼ A;B;CÞ; ð8Þ

which amounts to 3 identities among the 9 rows of Mia.

These identities show that the distances between atoms

A, B, and C are preserved,

dkRij � Rikk2 ¼ ðRj � RkÞ � ðdRij � dRikÞ � 0

ðj; k ¼ A;B;CÞ ð9Þ

when dRi’s are given by the rotation Eq. (5). Due to the

three identities in Eq. (8), any 3 rows of Mli can be

expressed as linear combinations of the remaining 6

rows, and Eq. (6) is reduced to a system of 6 independ-

ent equations for N variables. Therefore, Eq. (6) can be

used to express the change of the adjuster angles

d/1,���,d/6 for an arbitrary perturbation of the driver

angles d/7,���,d/N.

Figure 2
The displacement of an atom j, dRj, when the torsion angle about the

axis Gi changes by a small amount d/i is dRj 5 d/i(Gi 3 Rij) .

J. Lee et al.
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Expressing Eq. (6) in terms of the driver angle pertur-

bations, we get

dRj ¼
XN
i¼7

d/i Ci3Rij þ
X6
k¼1

@/k

@/i

Ck3Rkj

 !
¼ 0

ðj ¼ A;B;CÞ: ð10Þ

The derivative of the adjuster angles with respect to

the driver angles @/k/@/i can then be obtained from the

following linear equation:

C13R1A C23R2A � � � C63R6A

C13R1B C23R2B � � � C63R6B

C13R1C C23R2C � � � C63R6C

0
B@

1
CA

@/1=@/i

@/2=@/i

..

.

@/6=@/i

0
BBBB@

1
CCCCA

¼ �
Ci3RiA

Ci3RiB

Ci3RiC

0
B@

1
CA ði ¼ 7; � � � ;NÞ: ð11Þ

For simplicity, we use N, Ca, and C0 atoms of the first

residue in the C-terminal framework region as the three

atoms A, B, and C, and solve Eq. (11) to obtain @/k/@/i

(k 5 1,���,6; i 5 7,���,N) as a function of /i (i 5 7,���,N).
The analytic form of the gradient for the function FRama

in the space of closed loops is then

@FRama

@/i

� �
closed loop

¼ @FRama

@/i

þ
X6
k¼1

@FRama

@/k

@/k

@/i

ði ¼ 7; � � � ;NÞ: ð12Þ

Using the analytic gradient formula, the minimization

was carried out with a gradient-based quasi-Newton

optimization method, L-BFGS-B.59 It has to be noted

that any differentiable function of the backbone torsion

angles can be used in place of FRama for minimization.

For example, empirical functions for torsion angle maps

may be used by deriving analytical versions of the func-

tions using spline methods.60 Other empirical energy

functions for multipeptides61 may also be useful.

Screening of the sampled loop
conformations

After the loop closure, a screening procedure is per-

formed for the Fiser loop set to compare with the results

of RAPPER.7 In the RAPPER program, each residue is

sampled in the space of a fine-grained u/w map obtained

from the Ramachandran plot, and conformations that

have steric clashes or that are impossible to satisfy loop

closure are discarded during the loop building process.7

Since we have not considered possible steric clashes for

the loop conformations so far, we apply a screening step

for a fairer comparison.

We employ the DFIRE potential,48 which has been

derived from the distribution of inter-atomic distances

found in a structure database and thus takes steric

clashes into account effectively. Because the screening is

performed before the side chain atoms are constructed,

side chain atoms beyond Cb atoms are not included for

score calculation. We call this score DFIRE-b.
The purpose of the screening is to eliminate unphysical

conformations with large steric clashes so that the overall

qualities of the ensembles are improved. However, it is

inevitable that some native-like conformations are elimi-

nated as well in the process. After randomly generating

4000 conformations by fragment assembly and loop clo-

sure (and optional Ramachandran energy minimization)

for each loop target, we score the resulting conformations

using the DFIRE-b score and select the 1000 conforma-

tions with the best scores for further processing.

It is not possible for us to simply estimate the fraction

of the discarded loops during sampling by RAPPER,7 but

we found that if we select 1000 out of 4000 sampled con-

formations, more native-like conformations than the

1000 conformations sampled by RAPPER are obtained,

as presented in the Results and Discussion section. In

this four-fold sampling, only three quarters of the con-

formations are discarded, and this fraction is expected to

be much smaller than the actual fraction of the confor-

mations discarded in RAPPER due to steric clashes

and impossibility of loop closure, which disfavors us in

comparison.

Construction of the side chains and final
selection of the model structure

Although the new developments in this work mainly

involve loop sampling, the current method by itself can

be combined with pre-existing scoring functions to pro-

vide predicted loop structures. We present a model selec-

tion procedure here to illustrate such an application.

Since the fragments are collected from proteins whose

sequences are different from that of the query, only back-

bone dihedral angles are obtained from the fragments.

With backbone fixed, the optimal side chain conforma-

tions are constructed by selecting the side chain dihedral

angles from Dunbrack’s backbone-dependent rotamer

library.62 Possible side chain conformations are finite

combinations of rotamers, and the exact global mini-

mum of a free energy function can be found using an ef-

ficient optimization algorithm based on graph theory,63

where the free energy function of SCWRL 3.0 is used,

consisting of a one-body term proportional to the log of

the rotamer probability and steric repulsions with back-

bone and other side chain atoms.64

We found that steric clashes still remain after the side

chain building for some model structures and tried

force-field minimization to adjust backbone structures to

accommodate the clashes. However, the model accuracy

Protein Loop Modeling

PROTEINS 5



became worse (data not shown) probably because opti-

mization of backbone results in the erasure of the data-

base information contained in the initial backbone con-

formations.

The final model structures are selected from the con-

formations generated for the Fiser loop set using the

DFIRE potential48,49 again, now in the all-atom form.

DFIRE has been shown to be as successful in scoring

loop decoy conformations as the force fields such as

AMBER or OPLS with generalized Born solvation free

energy.65,66

RESULTS AND DISCUSSION

Loop conformation sampling

The loop sampling method developed here that com-

bines fragment assembly and analytical loop closure

(FALC) was applied to the 30 loop targets of lengths 4,

8, and 12 residues proposed by Canutescu and Dun-

brack.27 The loop set, chosen from a set of nonredun-

dant X-ray crystallographic structures, was used to test

the performance of several loop sampling algorithms

including the Cyclic Coordinate Descent (CCD) algo-

rithm27 and the self-organizing algorithm (SOS).47 The

CCD is a robust iterative loop closure algorithm. It can

be coupled with Ramachandran probability maps in a

Monte Carlo fashion, resulting in preferential sampling

in the Ramachandran maps. A recent loop construction

method called SOS iteratively superimposes small, rigid

fragments (amide and Ca) and adjusts distances between

atoms to satisfy loop closure and to consider steric con-

ditions simultaneously. This method was reported to out-

perform the CCD method.47 We previously tested a

method that samples //w angles from Ramachandran

maps using protein local optimization program8 and

closes the loop with analytical loop closure on the same

loop set. This method, called CSJD in Ref. 20, is also

compared together.

For each of the loops in the test set, the minimum

backbone RMSDs from the crystal structure among 5000

conformations sampled by the following five methods are

compared in Table II: the Ramachandran map CCD

(from Table 2 of Ref. 27), the CSJD method (from Table

I of Ref. 20), the SOS algorithm (from Table 1 of

Ref. 47), and the current methods (FALC and FALCm).

In Table II, ‘‘FALC’’ refers to the results of the loop clo-

sure by rotating six random torsion angles after fragment

assembly, and ‘‘FALCm’’ to the results of the gradient

minimization after FALC, as described in Methods. Both

FALC and FALCm perform better than CCD, CSJD, and

SOS. In particular, our algorithms perform better than

SOS in all 10 8-residue loop targets and 8 out of 10 12-

residue loop targets. With the FALC method, the mini-

mum RMSD improves from 1.19 Å to 0.78 Å and from

2.25 Å to 1.84 Å on average for the 8-, and 12-residue

loops, respectively. The FALCm method show further

improvements over the FALC method for the 8- and 12-resi-

due loops from 0.78 Å to 0.72 Å and from 1.84 Å to 1.81 Å.

The current method is different from the Ramachan-

dran map CCD method in two respects. First, the local

backbone torsion angles are sampled in the fragment

space here, but they are sampled from Ramachandran

probability maps in CCD. Ramachandran probability

maps contain information specific to the amino acid

types only, but fragments obtained from the PSI-BLAST

profiles provide sequence-specific information. Second,

the loop closure is performed analytically here, but an

iterative method is used in CCD.

The differences between the current method and the

SOS method are also two-fold. First, the small fragments

(amide and Ca) employed in SOS are chosen to satisfy

local geometric constraints, but the fragments used here

contain additional information on the sequence-specific

conformational preferences that encompass the length of

Table II
The Minimum Backbone RMSD Values of the Loops Sampled by CCD,

CJSD, SOS, and by the Methods Developed here, FALC and FALCm

Loop CCDa CJSDb SOSc FALCd FALCme

4-residue 1dvjA_20 0.61 0.38 0.23 0.34 0.39
1dysA_47 0.68 0.37 0.16 0.17 0.20
1eguA_404 0.68 0.36 0.16 0.22 0.22
1ej0A_74 0.34 0.21 0.16 0.16 0.15
1i0hA_123 0.62 0.26 0.22 0.09 0.17
1id0A_405 0.67 0.72 0.33 0.20 0.19
1qnrA_195 0.49 0.39 0.32 0.23 0.23
1qopA_44 0.63 0.61 0.13 0.28 0.30
1tca_95 0.39 0.28 0.15 0.08 0.09
1thfD_121 0.50 0.36 0.11 0.21 0.21
Average 0.56 0.40 0.20 0.20 0.22

8-residue 1cruA_85 1.75 0.99 1.48 0.60 0.62
1ctqA_144 1.34 0.96 1.37 0.62 0.56
1d8wA_334 1.51 0.37 1.18 0.96 0.78
1ds1A_20 1.58 1.30 0.93 0.80 0.73
1gk8A_122 1.68 1.29 0.96 0.79 0.62
1i0hA_145 1.35 0.36 1.37 0.88 0.74
1ixh_106 1.61 2.36 1.21 0.59 0.57
1lam_420 1.60 0.83 0.90 0.79 0.66
1qopB_14 1.85 0.69 1.24 0.72 0.92
3chbD_51 1.66 0.96 1.23 1.03 1.03
Average 1.59 1.01 1.19 0.78 0.72

12-residue 1cruA_358 2.54 2.00 2.39 2.27 2.07
1ctqA_26 2.49 1.86 2.54 1.72 1.66
1d4oA_88 2.33 1.60 2.44 0.84 0.82
1d8wA_46 4.83 2.94 2.17 2.11 2.09
1ds1A_282 3.04 3.10 2.33 2.16 2.10
1dysA_291 2.48 3.04 2.08 1.83 1.67
1eguA_508 2.14 2.82 2.36 1.68 1.71
1f74A_11 2.72 1.53 2.23 1.33 1.44
1qlwA_31 3.38 2.32 1.73 2.11 2.20
1qopA_178 4.57 2.18 2.21 2.37 2.36
Average 3.05 2.34 2.25 1.84 1.81

aRMSD values (in Å) taken from Table II of Ref. 27.
bRMSD values (in Å) taken from Table I of Ref. 20.
cRMSD values (in Å) taken from Table I of Ref. 47.
dRMSD values (in Å) obtained from fragment assembly and initial loop closure.
eRMSD values (in Å) obtained from minimization of the Ramachandran energy

with the analytical gradient after FALC.
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several residues as well as local geometry. Second, loop

closure is accomplished by iterative distance adjustments

in SOS but by a single step of analytical loop closure

here.

We argue that the excellent performance of the current

loop sampling method originates from both fragment as-

sembly and analytical loop closure. The fact that the

CJSD method shows better performance than the Rama-

chandran CCD, as presented in Table II, implies that ana-

lytical loop closure has an advantage over CCD. In addi-

tion, the fact that the current methods (FALC and

FALCm) give better results than the CSJD method and

SOS demonstrates the effectiveness of the current frag-

ment assembly method.

CCD has been used with Rosetta for loop modeling,29

and analytical loop closure was also combined with

Rosetta for loop reconstruction tests24 showing substan-

tial improvement in performance over the CCD-based

Rosetta protocol. These methods involve extensive sam-

pling guided by the Rosetta energy function, but the cur-

rent method is more focused on sampling independent

of energy function by reducing the search space effec-

tively. Since our sampling method is an order of magni-

tude faster than these methods (data not shown), it

would be promising to employ the current method for

global optimization of an accurate energy function in the

future.

Application of the target function minimization in an-

alytical loop closure, referred to as FALCm here,

improves the loop sampling results for the 8- and 12-res-

idue loops, as discussed above. The improvement is not

dramatic probably because it is more probable to close

the loop with resulting angles in Ramachandran-allowed

regions when more native-like angles are assembled from

fragments in the initial stage. The analytical gradient for-

mula still has a wide potential area of applications, for

example in guiding loop sampling with target functions

that favor hydrogen bonding to specific functional groups

in protein-ligand binding problems or that favor interac-

tions with known or predicted hot spot residues in pro-

tein-protein binding problems.

Loop ensemble generation with screening

In order to test the feasibility of the application of the

current method to loop ensemble generation, we carried

out a loop reconstruction test on a subset of the loop

target test set developed by Fiser et al.46 We consider

only the targets used for the test in Ref. 7, where some

of the targets in the original Fiser set were omitted due

to poor qualities in the experimental structures. We also

omit the shortest (and the easiest) loops of 2 and 3 resi-

dues. The resulting set consists of 317 targets, as shown

in Table III.

The results of loop ensemble generation are displayed

in Table III with the results of RAPPER reported in

Table III of Ref. 7. The minimum main chain RMSD and

the average main chain RMSD of the 1000 conformations,

obtained after screening 4000 conformations sampled by

FALCm, were examined for each target, and their average

values Rave and Rmin are displayed for each loop length.

The main chain RMSD was calculated using the coordi-

nates of N, Ca, C
0, and O atoms, following Ref. 7.

In the ensemble generation test by RAPPER, 1000 con-

formations were generated screening out loops with pos-

sible steric clashes or with too extended conformations

for loop closure during the loop building process.

Although it is not possible for us to accurately estimate

the fraction of the loops that were screened out in the

RAPPER program, the fraction must be much larger

than 3/4, considering the probabilities of typical loop clo-

sure and steric clash.

The performance of our method in generating native-

like conformations are significantly better than RAPPER,

both in Rave and Rmin, as can be seen from Table III.

There are more improvements for longer loops, especially

in the minimum RMSD. It has to be noted that only a

four-fold random sampling was performed for an illus-

trative comparison. The success of this simple application

shows the potential of the current method for loop en-

semble generation enriched with native-like conforma-

tions when combined with more conformational search

and more extensive use of good scoring functions.8,67

Loop model selection with DFIRE

From the ensemble of 1000 conformations generated

for each target in the Fiser set, the final model was

selected by scoring the conformations with the DFIRE

potential after side chain optimization, as presented

in Methods. As compared in Table IV, the accuracy

of the loop model prediction is improved significantly

Table III
The Main Chain RMSD Values of the Loops Sampled by RAPPER and

by the Current Method for the Fiser Loop Set

Loop RAPPERa FALCm4b

Length Targetsc Rmin
d Rave

e Rmin
d Rave

e

4 35 0.43 1.65 0.33 0.92
5 35 0.53 2.27 0.44 1.63
6 36 0.69 3.06 0.47 2.34
7 38 0.78 3.79 0.58 2.74
8 32 1.11 4.16 0.84 3.69
9 37 1.29 5.00 0.95 4.21
10 37 1.67 5.66 1.45 5.07
11 33 1.99 6.71 1.47 5.76
12 34 2.21 6.96 1.74 6.31

aTaken from Table 3 of Ref. 7.
bObtained from screening with the DFIRE-b potential after the four-fold sam-

pling with fragment assembly, analytical loop closure, and Ramachandran minimi-

zation.
cThe number of loop targets.
dMinimum main-chain RMSD (in Å) averaged over the loop targets.
eAverage main-chain RMSD (in Å) averaged over the loop targets.
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compared to that reported in Ref. 49 in which the RAP-

PER ensembles are also scored with DIFRE. This result

demonstrates that the better-quality conformational

ensembles obtained by this study can lead to higher

modeling accuracy.

CONCLUSION

In this paper, we presented a novel method for protein

loop sampling, based on fragment assembly and analyti-

cal loop closure. Efficient sampling is possible because

the search space is drastically reduced by sampling in the

space of closed loops and in the space of fragments

obtained by utilizing sequence-specific information.

We also developed an analytic formula for the gradient

of a target function that depends on a set of torsion

angles satisfying the loop closure constraint. This gradi-

ent can be used for efficient sampling of closed loops sat-

isfying an additional requirement of optimizing a target

function.

The efficiency of our sampling method was demon-

strated by performing loop reconstruction tests on two

sets of loop targets whose lengths range from 4 to 12. We

found that the ability of our method for generating

native-like conformations is significantly better than the

previous methods based on amino acid-specific informa-

tion only and less elaborate loop closure methods. It is

remarkable that such a result can be obtained when no

or minimal level of energy information is used in the

loop ensemble generation.

One notable feature of our method is that sampling

and scoring procedures are separated. Given the effi-

ciency of our method in generating native-like conforma-

tions, the current method would also be useful for testing

discriminatory powers of various scoring functions and

developing a new one.

Although the current tests were restricted to the loop

reconstruction problem, where the framework region is

fixed to the experimentally determined native structure,

the efficiency of the current sampling method would

allow application to a more challenging task of modeling

loops in the context of the comparative modeling prob-

lem, where the framework region is given by templates

and therefore contain inherent uncertainties.

REFERENCES

1. Lesk AM, Lo Conte L, Hubbard TJP. Assessment of novel fold tar-

gets in CASP4: Predictions of three-dimensional structures, second-

ary structures, and interresidue contacts. Proteins 2001;Suppl 5:98–

118.

2. Aloy P, Stark A, Hadley C, Russel RB. Predictions without tem-

plates: new folds, secondary structure, and contacts in CASP5. Pro-

teins 2003;53:436–456.

3. Vincent JJ, Tai CH, Sathyanarayana BK, Lee B. Assessment of

CASP6 predictions for new and nearly new fold targets. Proteins

2005;Suppl 7:67–83.

4. Moult J, Fidelis K, Rost B, Hubbard T, Tramontano A. Critical

assessment of methods of protein structure prediction (CASP) -

Round 6. Proteins 2005;Suppl 7:3–7.

5. Baker D, Sali A. Protein structure prediction and structural

genomics. Science 2001;294:93–96.

6. De Bakker PIW, DePristo MA, Burke DF, Blundell TL. Ab initio

construction of polypeptide fragments: accuracy of loop decoy dis-

crimination by an all-atom statistical potential and the AMBER

force field with the generalized born solvation model. Proteins

2002;51:21–40.

7. DePristo MA, de Bakker PIW, Lovell SC, Blundell TL. Ab initio

construction of polypeptide fragments: Efficient generation of accu-

rate, representative ensembles. Proteins 2002;51:41–55.

8. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE,

Friesner RA. A hierarchical approach to all-atom protein loop pre-

diction. Proteins 2004;55:351–367.
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