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ABSTRACT: Single-molecule data often come in the form of
stochastic time trajectories. A key question is how to extract an
underlying kinetic model from the data. A traditional approach
is to assume some discrete state model, that is, a model
topology, and to assume that transitions between states are
Markovian. The transition rates are then selected according to
which ones best fit the data. However, in experiments, each
apparent state can be a broad ensemble of states or can be
hiding multiple interconverting states. Here, we describe a
more general approach called the non-Markov memory kernel (NMMK) method. The idea is to begin with a very broad class of
non-Markov models and to let the data directly select for the best possible model. To do so, we adapt an image reconstruction
approach that is grounded in maximum entropy. The NMMK method is not limited to discrete state models for the data; it yields
a unique model given the data, it gives error bars for the model, and it does not assume Markov dynamics. Furthermore, NMMK
is less wasteful of data by letting the entire data set determine the model. When the data warrants, the NMMK gives a memory
kernel that is Markovian. We highlight, by numerical example, how conformational memory extracted using this method can be
translated into useful mechanistic insight.

1. INTRODUCTION

It is now routine to measure single-molecule (SM) trajectories
of ion channel opening/closing events or folding/unfolding
transitions of proteins and nucleic acids.1−5 SM trajectories
show transitions of a molecule from one conformational state
to another. For instance, in SM force spectroscopy, the
trajectory includes transitions between a high force state
(folded state) and a low force state (unfolded state). Individual
states can exhibit what is called “conformational memory”.1

Broadly speaking, when a state has conformational memory, the
dwell time in that state is not distributed as a single exponential.
Alternatively, one can say that in bulk, the relaxation is not
single exponential. For example, the folding of phosphogly-
cerate kinase monitored by bulk fluorescence experiments
following a temperature jump6 hints at a kinetically
heterogeneous process; SM fluorescence experiments find
that adenylate kinase apparently shows no less than six folding
intermediates.8

Figure 1 is a cartoon illustration of how conformational
memory can arise. In this cartoon example, the origin of the
conformational memory is simple to understand. The low force
state in Figure 1b is made up of two microscopic states; it is
called an aggregate. The dwell time distribution in the low force
state is therefore not a single exponential because the low force
state is composed of two interconverting states indistinguish-
able in this particular experiment. Such models are called
aggregated Markov (AM) models.9−11 The states within an
observable aggregate are assumed to exchange with each other

via Markov processes. There are well-known limitations in
using AM models in data analysis. First, they require advanced
knowledge of the topology of the underlying kinetic states. By
topology, we are referring to the kinetic relationships among
the states, usually expressed as sets of arrows connecting the
underlying states; see Figure 1b. As a consequence, the AM
approach does not make full use of the data set; it forces the
data onto a model rather than let the data tend toward a model.
Second, if there are fewer independent observables than
parameters in the model, then AM models are not unique;
many different models would fit the data.12 For example, a
three-state system with with two observable aggregates requires
six rate coefficients. However, only four independent
parameters are determinable from such data. This problem is
often solved by using some symmetry relationship, for example,
by assuming that some rates are identical13 or by performing
additional experiments that give orthogonal information.14

Third, AM models require the assumption that transitions are
Markovian and that there are a finite number of states. In
reality, there could, instead, be a continuous manifold of
underlying states,15 fluctuating rates,20 or strong memory
effects that can give rise to heavy-tail statistics.21 Points one and
three are also limitations of a related strategy tailored for noisy
data, called hidden Markov (HM) modeling.7,25 HM models
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are commonly used when the microscopic state in which the
molecule is found is obscured by the noise. Thus, HM
modeling techniques can be useful in extracting AM models
from data. That is, the HM and AM models are not mutually
exclusive. The stochastic rate model is another possible
description of a system with memory where the escape from
a complex state is described using a rate that is a stochastic
variable, in general depending on time.22 Yet, another method
is the multiscale state space network, which is useful for
mapping out the interconnectivity of conformational state space
of a protein from a continuously varying observable.23

Alternatively, the conformational state space of single proteins
has been described using a Langevin equation with a memory
kernel fit to the data.24

Here, we describe an alternative approach to kinetic
modeling. The idea is to start with a very broad class of kinetic
models. We subsequently use the data from SM time traces and
the tools of maximum entropy (MaxEnt)15,16,26−28 to select the
best model from this class. The purpose of this approach is to
avoid biasing our analysis or wasting data by forcing the data
ahead of time to fit a predetermined model. Rather, we let the
data determine the model.
We call our approach the non-Markov memory kernel

(NMMK) method. Here, the underlying system kinetics are
modeled using continuous memory kernels rather than using
explicit states such as in AM and HM modeling. In the NMMK
method, the memory kernel itself is the model. It predicts the
full dynamics without the need for any associated assumptions
about kinetic rates or topologies (see Figure 2). Thus, a Markov
model (a model with no memory) emerges from the NMMK

method only if it is warranted by the data. In many ways, this
method complements AM and HM modeling methods
described above as well as approaches for inferring rate
distributions (also called rate spectra) from raw data; these
include a hybrid method of MaxEnt and nonlinear least-squares
(MemExp)16 as well as a variety of other methods.17 Such
methods seem less successful when applied to rate distributions
that cannot be described by the sum of many exponentials.17

Other efforts in describing sequential multistep reactions18 are
specific to exponential rates or stochastic rates sampled from a
Gaussian distribution.19

Here, we focus on some clear distinguishing features of the
NMMK method; the model extracted is unique, transitions
between states are not assumed to be Markovian from the
onset, a topology is not assumed a priori, our variational
method yields the time it takes for the memory in each state to
decay to zero, and the method gives error bars on the model
that it predicts. We also discuss what features we should expect
in the memory kernel for the special case when the observed
state is composed of an aggregate of states.

2. THEORETICAL METHODS

2.1. Non-Markov Memory Kernel Model (NMMK)
Approach. Here, we illustrate how the NMMK method
works on simulated data. In the analysis of noisy time traces of
SM data, investigators first pick out transitions and obtain both
marginal dwell time histograms for each state as well as
conditional dwell time histograms for each pair of state
(processes entirely described by marginal dwell histograms for
each state are called renewal processes30). Furthermore, for AM
models, no additional information is contained in higher-order
conditional histograms.9

For instance, from Figure 1a, the dwell time distribution in
the low force state is obtained by histogramming τ2, τ4,... In a
follow-up publication where we will tackle real experimental
data, we use change-point algorithms31 for detecting transitions
in noisy data in a model-independent way. That is, unlike the
HM or AM approach, transitions are picked out from data in a
way that does not depend on the topology assumed a priori.
The NMMK model describes the kinetics in terms of a

generalized master equation with a memory kernel κ(t) as
follows

Figure 1. The experiment can only distinguish between two observable states, a high force and a low force state, for this example drawn from SM
force spectroscopy. (a) A cartoon of a stochastic time trajectory shows the discrete transitions of SM between two conformational states (one
extended and the other not). τ denotes the amount of time that the molecule dwells in each successive state. (b) The AM model. Here, the dark
shaded state (the high force state) represents the folded state, while the unshaded state (low force state) represents the unfolded state. For this
example, the dark shaded state is composed of two underlying microscopic states that transition between themselves and to all other states via a
Markov process. The dwell time distribution in this state is correspondingly biexponential.

Figure 2. AM models and NMMK models. (a) AM model with an
aggregated shaded state. (b) The AM model formulated as a NMMK
model. The AM model is a special case of the NMMK model. See the
text for details.
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∫ τ κ τ τ κ̇ = − − ≡ − *f t f t t f t( ) d ( ) ( ) ( ) ( )
t

0 (1)

where f(t) denotes a dwell time distribution in a particular state
obtained from data. (For simplicity, we will assume that the
distribution from which all dwell times are sampled is
stationary. Thus our memory kernel depends on the amount
of time spent in a state t, κ(t), since first arriving in that state,
not on some absolute time. Likewise, if we were discussing
conditional dwell distributions, we would only consider the
memory kernel for having spent time t in some state A
conditioned on having spent time τ in state B, say κAB(t|τ), and
this object would again not depend on some absolute time.)
When we talk about a model, we will be referring to the
memory kernel. It gives us a dynamical picture of a state by
telling us how the memory in a state decays.
Note that if the dwell distribution, f(t), in a particular state is

single exponential, then the resulting κ(t) is a delta function.
This is the signature of a memoryless, that is, Markov, process.
Put another way, if the memory kernel for some state is a delta
function, we conclude that this state is a single state whose
transitions to its neighbors satisfy the Markov property.
2.2. AM Models Show Clear Signatures in the Memory

Kernel. Suppose that some state A is an aggregate of
indistinguishable discrete states. We show in the Appendix
that AM models always give rise to multiexponential dwell time
distributions. What memory kernel should we expect for state
A?
In this case, the most general dwell time distribution in this

state is

∑= λ−f t c( ) e
i

i
ti

(2)

An exponential decay with N components can arise in cases
where the state is an aggregate of N states. In Laplace space, eq
1 is
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where − O1 denotes the inverse Laplace transform of O. We
will perform the inverse Laplace transformation by expressing
O using partial fractions as ∑m hm/(s + σm) + K (for constant
K). This gives
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where δ ̃(t) is defined by the property ∫ 0
∞ y(t)δ ̃(t) dt = y(0).
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where the {σi} are the zeroes of ∑i ci1/(λi + s).
For the special case that all {ci}’s in eq 2 are positive, all

parameters {σm, hm} are also positive. To see this explicitly,
consider a plot of f(̂s) (see Figure 3), where it is clear that λ1 <
σ1 < λ2 < σ2 ... < σn−1 < λn. The signs of the {hm} are then

determined from its explicit form in eq 6. From this ordering
and eq 6, it follows that all {σm, hm}’s are positive.
The structure of the zeroes and poles is more complicated

when some of the {ci}’s are negative, which can apply in
instances where detailed balance is violated in the underlying
AM model. Nonetheless, we can still rank order the zeroes and
poles to determine the sign of {σm, hm}.
The type of structure that we expect in the memory kernel

from an AM model is given by eq 6. Equation 6 captures a
sharp spike in the memory kernel at t = 0 (the hallmark of a
Markov process) in addition to components present at later
times that describe the relaxation of the memory kernel.
While in its full generality eq 6 looks daunting, consider a

simple biexponential dwell time distribution with positive {c1,
c2}. This dwell describes the decay from an aggregated state
with two different time scales, a faster and a slower time scale.
In this case, the memory kernel is a sharp positive spike at the
origin (the delta function) followed by a dip below zero and
then followed by an exponential rise back to zero. See the green
curve in Figure 4b for an example of this behavior. At the
origin, the memory kernel’s sharp positive spike says that the
decay is memoryless. At the next time step, the slower time
scale becomes relevant and reduces the effective rate of escape
from this state. This coincides with the negative component of
the memory kernel. In other words, the slower time scale
introduces memory in the memory kernel; it introduces
mathematical structure beyond the single spike at the origin.
Memory kernels arising from multiexponential dwell time

distributions are helpful in building intuition because the forms
for the coinciding memory kernels have analytic mathematical
forms. We have just shown how additional states yield effective
memory in the system. Given an AM model, the structure of
the memory kernel can then be interpreted according to the
presence of aggregates of discrete states. However, AM models
are idealizations of real data, and the structure in the memory
kernel can be interpreted differently. For example, the structure
in the memory kernel can be interpreted in the context of a
diffusion model in a rough energy landscape, a model recently
used to describe the dwell in the unfolded state of
phosphoglycerate kinase that we discussed earlier.6 Alter-
natively, we are free to interpret the memory kernel as a model
where the rates themselves are stochastic variables. We argue
here that the memory kernel in itself provides a model; it
dictates the way in which the memory decays to zero within
error as well as the amount of time that this takes.
We now turn our attention to developing a robust algorithm

for extracting memory kernels from noisy histograms.
Answering this question will help us answer questions like,
“is a Markov model (the most basic of all models normally
taken for granted) warranted by the data?”.

Figure 3. Pole and zero structure of g ≡ f(̂s). Dots denote poles, and
asterisks denote zeroes.
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2.3. An Algorithm for Extracting the Memory Kernel.
As noted earlier, transitions between states in SM trajectories
are rarely as clear as those shown in Figure 1a. Rather,
transitions are obscured by noise. In this case, a dwell
distribution like f(t) would be obtained by using a model-
independent change-point algorithm to detect transitions in the
real noisy data.31 That is, unlike HM models, the change-point
algorithm would pick out significant transitions in the data
without committing to a particular model from the onset. The
output of this procedure is a “denoised time trace” like the one
given in Figure 1a. The amount of time spent in each state is
histogrammed. Because data is finite, the histograms themselves
are noisy.
The numerical extraction of the memory kernel from noisy

histograms can be mapped onto an adaptation of the method of
image reconstruction.15,26−28 Briefly, the goal of image
reconstruction is to obtain an image, I, from data, D, where
the data and image are related by a linear transform G. That is
D = G*I. Direct inversion of the data, (G*−1)D, would be
numerically unstable for noisy data; therefore, we use the
variational procedure of image reconstruction to regularize the
operation and obtain a reconstructed image. The variational
procedure is based on the principle of MaxEnt.

The analogue of eq 1 in discrete time is

∑ κ− = −+
=

−f f fj j
k

j

k j k1
0 (7)

Here, the memory kernel plays the role of the image. The
important difference between eq 7 and standard image
reconstruction is the operator G. Our operator in eq 7 contains
noisy data. Our goal is to derive a variational procedure for
extracting the memory kernel with such an operator. We do so
by defining an objective function that we will optimize with
respect to each κj in order to obtain our reconstructed memory
kernel.
We begin by assuming the experimental input to be in the

form of a dwell time histogram with error bars for each bin.
That is f j

exp = f j + εj, where f j is the theoretical value of the dwell
time distribution at time point j. Brute force inversion of f j+1

exp −
f j
exp = −∑k = 0

j f k
expκj−k to obtain {κj} is numerically unstable

because noise propagates quickly as we solve κ1 in terms of κ0,
κ2 in terms of κ1, and so on. Image reconstruction is used as a
regularizing procedure to overcome this problem. For this
reason, using f j

exp = f j + εj, we write eq 7 as follows

∑ ∑κ ε ε ε κΔ + = − ++
=

− +
=
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where Δf j+1,jexp ≡ f j+1
exp − f j

exp. The deviations of experiment and
theory, the residuals, are on the right-hand side of eq 8. We
assume ⟨εiεj⟩ = σj

2δij and ⟨εi⟩ = 0. Squaring both sides of eq 8
and taking the average with respect to the noise, we find
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We define a χ2 statistic as a sum over all time intervals
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where N here is the number of data points. For a finite sample,
we may invoke the frequentist logic often used in image
reconstruction,15,26−28 and suppose that χ2 = N. That is, on
average, the difference between each data point and its
theoretical expected value differ by their standard deviation.
We then follow the logic of MaxEnt, which is often invoked in
image reconstruction, and ask that the memory kernel be as
featureless as possible given χ2 = N as a constraint on the data.
In other words, we now maximize the objective function, F(θ,
{κ}), with respect to the set {κj}

∑θ κ α κ κ
κ κ

κ

β χ

= − + ̅
+ ̅

Λ + ̅

− −
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2
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j
j

j
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2
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The entropy of the memory kernel is −∑j(κj + κ)̅ log((κj + κ)̅/
(Λj + κ)̅); {α, β} = {cos2 θ, sin2 θ} are the Lagrange multipliers
that enforce the constraints on the data. (Only one Lagrange
multiplier is independent because α + β = 1. When we take a
derivative of the objective function, eq 11, with respect to κj, we

Figure 4. Extraction of the memory kernel from the data. (a) Time
trace data, where the green curve is the double exponential function
and the red curve is the fictitious data obtained by adding 40% noise.
(b) The memory kernel. The green curve is the exact answer, the pink
curve is the one obtained by brute force (i.e., direct) inversion, the
blue curve is the prior, and the red curve is the solution obtained by
image reconstruction (the optimal answer). See the text for details.
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can divide through the entire expression by β. Then we are left
with only one Lagrange multiplier, the ratio α/β.) Λj is the
prior on κj; and κ ̅ is a constant positive parameter to ensure that
κj + κ ̅ never becomes negative so that the entropy is well-
defined. Our estimate of the set {κj} in the absence of data is
therefore κj

0 = (Λj + κ)̅e−1 − κ.̅ By setting χ2 = N, the problem
is underdetermined. We therefore need to use MaxEnt to select
one of the many possible solutions for which χ2 = N. In other
words, the Lagrange multipliers “tune” the balance between
fitting the data points on the one hand and “smoothing” to
achieve the model closest to the prior.
Now, we need to specify our prior. In the absence of any

data, we should assume a simple Markov memory kernel. In our
case, we set the first two points from our brute force memory
kernel (j = 0 and 1), which are more reliably determined than
later points, as the first two points of the prior, Λj. We take the
rest of the prior to be flat. The idea is to take advantage of the
structure of the memory kernel we know to be reliable to set
our prior.
Next, the 95% confidence interval of the memory kernel is

estimated assuming that the true memory kernel lies some-
where within the solution obtained by optimizing the objective
function under the constraint χ2 = μ ± 2σ rather than χ2 = N
when N is large (where the χ2 distribution has μ = N and σ =
(2N)1/2). We should expect the memory kernel’s lower bound
(when χ2 = μ − 2σ) to be close to the brute force inversion
(where χ2 is strictly zero) and its upper bound (when χ2 = μ +
2σ) to be closer to the chosen prior (where χ2 is very large).
As an aside, we choose the Shannon−Jaynes entropy in eq 11

because it worked for all examples that we have considered so
far and it tries to minimize features in the memory kernel; we
show only a small fraction of the many numerical examples that
we tackled in the next section. It is quite possible that other
entropies, or other regularizing procedures, would also serve as
acceptable substitutes to the Shannon−Jaynes entropy.

3. RESULTS AND DISCUSSION: PROOF OF PRINCIPLE
OF THE NMMK METHOD

Figure 4 shows an illustration of how NMMK methods work
on a theoretical example. We first create a decay signal and then
add noise to it. We imagine that such a dwell distribution
originates from having used a change-point algorithm to detect
significant transitions in a real time trace, as discussed earlier.
Then, we ask how well NMMK can extract the correct
underlying model. In this case, we added 40% noise to a
biexponential dwell time distribution, pj = 0.5 × 0.9j + 0.5 ×
0.05j; the raw “data” made up in this way is shown in Figure 4a.
First, as a point of reference, Figure 4b shows the memory

kernel that is obtained by brute force inversion of the raw data
(pink line). It is too noisy to give a good approximation to the
exact answer (green line) or even to register that there are two
exponentials in the dwell distribution. The exact memory kernel
(computed from eq 6) is not simply a delta function; it shows
more structure, consistent with the presence of a second state.
Now, in order to apply the NMMK method, we use only the
first two points of the pink line to construct the prior (blue
line). Using that prior, we then use the NMMK image
reconstruction method. The NMMK predictions are shown as
the red curve. The NMMK method clearly shows a peak
followed by a dip, consistent with the correct two exponentials
even when the noise level is high. This example shows that
while the double exponential behavior is invisible in the time
trace due to a high noise level (Figure 4a, red line), the double

exponential is nevertheless detectable as the rising tail in the
memory kernel obtained by the image reconstruction algorithm
(Figure 4b, red curve). Hence, the NMMK method appears to
be a sensitive model-building strategy that can detect structure
in the memory kernel (or hidden intermediate states in the
language of AM), without assuming that the process is
Markovian.
A good data-processing algorithm should display both

sensitivity and specificity. Sensitivity means that small changes
in the data originating from the underlying physics should be
reflected in the corresponding model. Specificity means that
irrelevant differences in the data due to noise should not be
captured in the model. Figures 4−9 show our tests of sensitivity
and specificity of the NMMK approach.

In Figure 6, we show a memory kernel extracted from a
biexponential dwell time histogram with 20% Gaussian noise.
The noise is always proportional to the value of the histogram

Figure 5. Extraction of the memory kernel from the data. The memory
kernel as a function of time when the dwell time distribution coincides
with a single exponential in the presence of 40% noise. Even at 40%
noise, image reconstruction can reliably extract the memory kernel and
pick out the delta function expected from the noise. Other features of
the memory kernel apparent from the brute force curve are interpreted
as noise, and the sharp peak at the origin is the only qualitatively
significant feature apparent from the optimal solution.

Figure 6. Extraction of the memory kernel from the data. Same as
Figure 4 but now with 20% noise. As expected here, the optimal
solution matches the theoretical solution much more closely.
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bin for each bin. Compare this to the memory kernel extracted
from a dwell histogram with 40% noise from Figure 4b. The
biexponential nature of the dwell time distribution is apparent
in both despite a large difference in the noise. Hence, NMMK
shows specificity. Similarly, we show specificity for memory
kernels extracted from a noisy monoexponential dwell time
histogram in Figure 5 (with 40% noise) versus that in Figure 9
(with 60% noise). We can extract a memory kernel for a
simpler model (like the monoexponential) at higher noise
levels than we can for more complex models (like
biexponentials). This is because the histograms of more
complex models have more features that make the NMMK
method less specific.
Comparing Figures 4b and 5, we find that even at 40% noise,

the NMMK method can distinguish monoexponential versus
biexponential models. Thus, NMMK is therefore also sensitive.
In Figure 8, we show that if the two decay rates of the
biexponential histogram are more similar than they are for
Figure 4b, then the NMMK has difficulty picking out a
reasonable memory kernel at 40% noise, though not at 20%
noise (see Figure 7) for the biexpoential model considered.

(We extract our memory kernel from dwell histograms. Because
we assume that the noise around each bin value of our dwell
histogram is Gaussian, doubling our histogram bin size reduces
the noise by a factor of √2. Selecting bin sizes that are too
large can make complex memory kernels look like delta
functions. The optimal bin size therefore depends on the
model.).
We have illustrated how the NMMK method is used to

extract memory kernels here from simple mono- and
biexponential histograms. We have used sums of exponentials
because they are common and important in dynamical
processes and simple to illustrate. However, the NMMK is
not limited in any way to exponentials. NMMK can also treat
processes involving a continuum of states.

4. CONCLUSION
Stochastic trajectories are the common form of data from SM
and few-particle experiments. Such processes are often treated
using AM models, where it is assumed that states are clustered

together into aggregated states that can interconvert using
Markov processes. To go beyond the limitations of such
models, we propose an alternative, the non-Markov memory
kernel (NMMK) model. We show that the NMMK model has
the following advantages: for given data, it gives a unique model
(with error bars); it does not require inputting knowledge of
the number of underlying states; it is readily combined with
current first-principles-based image reconstruction methods to
provide a stable numerical recipe; and it can be used even when
the underlying physical states are not discrete and transitions
between these are not Markovian. When the data warrant a
simple Markov model, the memory kernel reduces to a delta
function. The NMMK is a way to harness the entire
experimental output from kinetics experiments to reconstruct

Figure 7. Extraction of the memory kernel from the data. Same as
Figure 6 but with a double exponential decay described by the eq 0.5 ×
0.9j + 0.5 × 0.3j. As the two decay constants here are more similar than
those in Figure 6, the negative dip expected theoretically is less
pronounced and is consequently more difficult to pick out at 20%.

Figure 8. Extraction of the memory kernel from the data. Same as
Figure 7, but now, the noise is raised to 40%. For sufficiently similar
rate constants, the negative dip is now impossible pick out at 40%
noise. This figure should be compared to Figure 4b, where the
negative dip is more pronounced when the decay constants are more
dissimilar. In that case, the negative dip is clearly noticeable even at
40% noise.

Figure 9. Extraction of the memory kernel from the data. Same as
Figure 5, the monoexponential case, but now, the noise is level is
raised to 60%. These histograms have fewer features than their
biexponential counterparts; therefore, it is easier to extract the memory
kernel from such histograms at higher noise levels. The most
prominent feature of the memory kernel is, somewhat surprisingly, still
the sharp peak at the origin, which is correct. However, at such high
noise levels, the magnitude of the peak recorded at the origin is far
from the theoretical exact answer.
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kinetic models with error bars. In addition, it complements the
method of image reconstruction for the determination of rate
distributions though NMMK is not intrinsically tied to
exponential decay forms. We have only explicitly considered
extracting memory kernels from dwell histograms where the
time ordering information of dwells is lost. However, our
method readily generalizes to the analysis of conditional and
higher-order histograms if such data are available. It is worth
investigating whether our NMMK formulation could be
adapted to treat time-ordered data explicitly rather than
processed data like histograms.

■ APPENDIX: DERIVING DWELL TIME
DISTRIBUTIONS FOR AGGREGATED MARKOV
(AM) MODELS

We first summarize the necessary theory and notation from AM
models.9,10,12,29 We consider Markov states that are aggregated
into s distinguishable groups, which we simply call aggregates.
We define the Markovian rate matrix Q, whose rows sum to
zero. The submatrix Qαβ is the rate matrix connecting the states
in aggregate α to those in β. The individual matrix elements Qαβ

kl

within Qαβ for α ≠ β are the physical values for the rates
connecting the kth state in aggregate α to the lth state in
aggregate β.
Aggregate α has nα underlying states, where ∑α nα = N. The

general joint probability density for the dwell time t1 in the α1
aggregate followed by a dwell of t2 in α2, and so forth, denoted
as fα1...αr(t1...tr), is

9

∑
π= ×α α α α α α α α α

α α
β

α β β

f t t t t

t Q

Q Q Q

Q u

( ... ) exp( ) exp( )

... exp( )

r

r

... 1 1 2
r

r r r

1 1 1 1 1 2 2 2

(12)

where uβ is a column vector of length nβ whose elements are all
equal to 1 and πα is the row vector of length nα whose jth
element is the probability that a dwell in the aggregate α starts
in the jth state of that aggregate. By diagonalizing Qαα as
Sα
−1λαSα with a diagonal matrix λα, we obtain

∑ λ= −αβ α α
=

α

t tQexp( ) exp( )
i

n
i i

1 (13)

λα
i are the eigenvalues of Qαα and also the ith diagonal element
of λα, and the projection matrix α

i is defined by its elements

=α α α
−S S[ ] ( )i kl ki il1

(14)

Using eq 13, eq 12 is rewritten as

∑ ∑ ∑ ∑ λ= −α α α α α
= = = =

α α α

f t t a t( ... ) ... exp( )r
i

n

i

n

i

n
i i

k

r
i

k... 1
1 1 1

...
...

1
r

r

r

r
r

k
k

1
1

1

2

2

1
1

(15)

and

∑π=α α α α α α α
β

α α ββ
a Q Q u...i i i i

...
...

r
r

r
r

r1
1

1 1
1

1 2
(16)

For AM processes, the two-time joint probability density
fαβ(t,τ) for all label pairs α and β or, alternatively, the pair
fαβ(t|τ) and fα(t) captures the full statistics of the n-time density
given by eq 12.9

∑τ λ λ τ= − −αβ αβ α βf t a t( , ) exp( )
i j

ij i j

, (17)

An AM model is fully characterized by the combination of
the model topology and the rates that are captured in fα(t) and
fαβ(t|τ). As we noted in the main body, a set of densities fα(t)
and fαβ(t|τ) for all α and β can correspond to many potential
topologies and rates. AM models are therefore not unique in
general.12
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