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ABSTRACT
We obtain a numerical solution of the equation for the synchronous unsteady motion of two spherical vesicles in incompressible viscous
fluid in the presence of both Stokes drag and hydrodynamics memory. We find that for a given amount of work performed, the final distance
traveled by each vesicle is increased by the presence of the other vesicle moving in the same direction. The result suggests that the unsteady
transport of the vesicles by molecular motors in vivo may be facilitated due to an effective hydrodynamic interaction between the neighboring
vesicles.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5113880., s

I. INTRODUCTION
Subcellular transport processes have been the subject of contin-

uing interest largely because of the high efficiency of molecular-scale
motors responsible for such transport, as compared to the efficiency
of their macroscopic counterparts.1–13 Important factor affecting
such a transport process include the hydrodynamic interactions14–48

of the molecular motor as well as the vesicle transported by such a
motor with the surrounding viscous fluid.49 First, it has been shown
that the Stokes drag experienced by a spherical object embedded in
a fluid is reduced in the presence of another sphere in the vicin-
ity.50 The reduction of drag can be understood intuitively as coming
from the indirect transfer of the momentum between the embed-
ded objects, mediated by the fluid. Second, there is a separate effect
of hydrodynamic memory due to the unsteady flow,29–41,51–56 where
the momentum transferred from an embedded object is transiently
stored in the fluid and then transferred back to the object at a later
point. Such an effect may facilitate the transport even for a single
spherical object.57

These considerations motivate us to ask whether the fluid flow
generated by an unsteady motion of a moving object in viscous fluid
indeed facilitates the transport of a neighboring object. In fact, the
equations for the unsteady motion of two hard spheres in incom-
pressible viscous fluid have been developed recently,40,41 but their

solutions have not been provided as yet, and the implications of these
equations on the efficiency of transport have not been investigated
so far. To study whether the hydrodynamic interactions between
neighboring spherical vesicles facilitate their unsteady transport,
we consider two hard spheres under the same constant external
force of finite duration. By numerically integrating the equation of
motion40,58[Eq. (2)], we show that for a given distance traveled, the
required input work for two neighboring vesicles is less than that for
those separated by a larger distance. We also find that two neighbor-
ing vesicles are transported faster than separated vesicles. Our result
supports the idea that indirect, fluid-induced, intervesicle interac-
tion may be utilized in active subcellular transport for improved
efficiency.

II. EQUATION FOR TWO HARD SPHERES
The equation describing an unsteady motion of two nonrotat-

ing hard spheres in incompressible viscous fluid has been derived
by generalizing the equation for one sphere in a fluid.40 Briefly,
fluid flow is computed in the presence of a sphere of radius R with
no-slip boundary conditions by using the unsteady Stokes equation
where the advective term in the Navier-Stokes equation is neglected
but the time-derivative is kept.59 Another sphere is introduced at a
center-to-center distance d, and then, the flow is perturbed in order
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FIG. 1. The spheres moving along the center-to-center axis. The directions of the
velocity are shown by the bold arrows which are also the directions of the external
forces. The center-to-center distance and the radius are d and R, respectively.

to satisfy the no-slip boundary at the second sphere and perturbed
again in order to satisfy the boundary condition at the first sphere.
This process is iteratively repeated. The series is truncated so that the
resulting error is of order ϵ4, where ϵ ≡ R/d.40 The resulting expres-
sion for the force has a remarkable symmetry with respect to the
exchange of the spheres’ positions. In particular, when their radii
are the same and they move with the same velocity v(t), the force
exerted on each of the spheres is the same. In the special case of
one-dimensional motion with the velocity v(t) (Fig. 1) along their
separation vector, the equation reduces to40

Ffluid = −
6πηR

1 + 3
2 ϵ− ϵ3

v−
2πR3ρf

3(1 + 3ϵ3)
v̇ − 6πηR∫

t

−∞

dt′v̇(t′)hϵ(t− t′),

(1)

where ρf and η are the density and the dynamic viscosity of the
fluid, respectively. The functional form of the memory kernel hϵ(t)
is formally given as a Laplace transform40 (Appendix A). A sim-
ilar expression can be obtained for the spheres whose motion is
in the direction perpendicular to the lines joining their centers
(Appendix B). Because the force exerted on each sphere by the fluid
is the same, the motion of both spheres can be kept synchronous by
applying the same external force F(t) using the same initial velocities.
The equation of motion for each sphere can be written as

(ρs +
ρf

2(1 + 3ϵ3)
)v̇ = −

9η
2R2

v

1 + 3
2 ϵ − ϵ3

−
9η

2R2 ∫

t

−∞

dt′v̇(t′)

×hϵ(t − t′) +
3

4πR3 F(t), (2)

where ρs is the density of the sphere. By comparing with the exact
result50 for the special case of the motion with constant velocity, it
was argued that Eq. (2) is a reasonable approximation for ϵ ≲ 0.2540

(see also Appendix D). The functional form of hϵ(t) is such that
h0(t) = R

√ ρf
πηt (Appendix A) so that for ϵ = 0, we obtain the familiar

Basset-Boussinesq-Oseen equation32,51–53 for an accelerating sphere
in a fluid

(ρs +
ρf
2
)v̇ = −

9η
2R2 v−

9
2R

√
ηρf
π ∫

t

−∞

dt′
v̇(t′)
√
t − t′

+
3

4πR3 F(t), (3)

where the second term on the right hand side captures the effect of
the hydrodynamic memory.51–53

For convenience, we may rewrite the equation for synchronous
movement of two spheres in terms of dimensionless quantities,
defined as

θ ≡ t/τB, u(θ) ≡ 6πηRv(t)/Fmax, f (θ) ≡ F(t)/Fmax, (4)

where Fmax is the maximum value of F(t) and τB ≡ (2ρs + ρf )R2/9η is
the Brownian relaxation time.48 Then, Eq. (2) is rewritten as

2ρs(1 + 3ϵ3
) + ρf

(1 + 3ϵ3)(2ρs + ρf )
du
dθ
= −

u
1 + 3

2 ϵ − ϵ3
− ∫

θ

−∞

dθ′
du
dθ′

×hϵ(τB(θ − θ′)) + f (θ). (5)

The velocity u(θ) can be obtained by numerical integration of
Eq. (5), by discretizing the time θ. The integral can then be per-
formed by a simple trapezoidal rule, which gives a reasonably
accurate result when the discretization is performed with step
Δθ = 0.001, as can be checked for the case of ϵ = 0 where exact solu-
tions are available for certain special cases (see Appendix C). Once
u(θ) is obtained, it is then straightforward to obtain the nondimen-
sionalized quantities x and w corresponding to position and work,
respectively, by additional integration,

x(θ)≡∫
θ

0
u(θ′)dθ′ + x(0)≡

6πηR
FmaxτB

X(t), w(θ)≡∫
θ

0
f (θ′)u(θ′)dθ′,

(6)

where X(t) is the position of the sphere. In order to quantify a notion
of efficiency for transport, we define the dimensionless effective
transport drive force f drive,57

fdrive ≡
w(θ)
Δx(θ)

, (7)

where Δx(θ) ≡ x(θ) − x(0) is the displacement. This quantity is
the dimensionless version of the specific energy consumption, often
used for the measure of transport efficiency in the transportation
industry.60,61 Smaller values of f drive(θ) imply less external work
required for a given displacement. We also define the dimensionless
effective friction57

z(θ) ≡
fdrive(θ)
ū(θ)

=
w(θ)Δθ
Δx(θ)2 . (8)

III. IMPROVED TRANSPORT OF TWO
NEIGHBORING SPHERES

We now consider a simple protocol where a constant external
force is applied over a finite duration Tpulse, starting from t = 0. Note
that by definition, the maximum value of the normalized force f (θ)
is unity. Therefore, f (θ) = 1 for 0 ≤ θ ≤ θpulse and zero otherwise,
where θpulse ≡ Tpulse/τB. We also take x(0) = u(0) = 0. Therefore, the
input work is w(θ) = f × x(θ) = x(θ) for θ < θpulse and w = x(θpulse)
otherwise. As such,

fdrive(θ) ≡
w(θ)
x(θ)

= {
1, (θ < θpulse)

x(θpulse)/x(θ), (θ ≥ θpulse).
(9)

The results of the numerical computation for θpulse = 20 and ρs = ρf
are shown in Fig. 2, where the values of a ≡ du

dθ , u, and x are compared
for d =∞, d = 8R, and d = 4R. The case of d =∞ corresponds to the
motion of a single sphere. We find that for a given strength of the
external force, the magnitudes of both acceleration and deceleration
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FIG. 2. (a) The nondimensional acceleration a(θ), (b) velocity u(θ), and (c) position
x(θ) are compared for d =∞ (single sphere), d = 8R, and d = 4R, for Tpulse = 20τB
and ρs = ρf . The position for Tpulse = 1000τB is shown in the inset of (c).

for two neighboring spheres are larger than those for the spheres
separated by a larger distance, and the overall effect is such that v(t)
for neighboring spheres is larger for all values of t.

More importantly, x(∞) increases by a large amount when the
intersphere distance d decreases, whereas x(θpulse) is only weakly
dependent on distance. Therefore, from the second line of Eq. (9),

FIG. 3. The effective transport drive force f drive(θ) ≡ w(θ)/x(θ) is compared for
d =∞ (single sphere), d = 8R, and d = 4R, for Tpulse = 20τB and ρs = ρf .

we find that f drive(∞) for neighboring spheres is less than that of
an isolated sphere. That is, neighboring spheres travel farther for a
given amount of input work as compared to isolated spheres. The
graphs of f drive(θ) are shown for several values of d in Fig. 3, where
we see that in fact f drive(θ) is an increasing function of d for all values
of θ. The values of f drive(∞) are also plotted in Fig. 4 for several val-
ues of R/d and θpulse, where approximate values of x(∞) are obtained
from the values of x(θ) in those approximately flat regions of the x
plots (Fig. 2) with u(θ) ≤ 0.01. The trend of the reduced effective
drive force for neighboring spheres is evident. In particular, we see
that for θpulse = 20, the value of f drive reduces from 0.682 at R =∞ to
0.596 at d = 4R, resulting in about ∼13% reduction in the required
work for a given displacement. The reduction of f drive is smaller
for larger values of θpulse. This is because the motion of a sphere is

FIG. 4. The final values of the effective transport drive force, f drive(∞)
≡ w(∞)/x(∞), are shown for several values of R/d and θpulse ≡ Tpulse/τB, with
ρs = ρf . The case of R/d = 0 corresponds to that of a single sphere.
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diffusive at the time scale of t ≫ τB,32 with only tiny effects coming
from hydrodynamic memory. This can be seen from the graphs of
x(θ) for θpulse = 1000, shown in the inset of Fig. 2(c), where the slope
is approximately proportional to the instantaneous applied force,
showing the typical behavior of an overdamped particle. In particu-
lar, since the motion of the sphere almost stops after the force pulse,
we have x(θpulse) ≃ x(∞), leading to f drive(∞) = x(θpulse)/x(∞) ≃ 1
regardless of the intersphere distance, implying negligible reduction
of the effective transport drive force.

The result also suggests that the efficiency enhancement is larger
when the force is applied as an intermittent series of short pulses
rather than one long pulse. The values of f drag for two force protocols
with the same average force are compared in Fig. 5. In one proto-
col, force is applied intermittently as ten short pulses with duration
Tpulse = 60τB and magnitude f = 2, interspersed with the pauses
of duration Tpulse = 60τB. In the other protocol, a force of magni-
tude f = 1 is applied for a duration Tpulse = 1200τB. The applied
forces are shown at the bottom of Fig. 5 where the magnitude was
rescaled by a factor of 0.5 to avoid an overlap with other curves.
The resulting curves for f drive(t) for the intermittent short pulses
and the long pulse are shown at the top and the center, respec-
tively, where the results for d = ∞ (dashed) and d = 4R (solid) are
compared. We find that the reduction of f drag due to the proxim-
ity of the other comoving sphere is greater, for the protocol of the
intermittent short pulse. The reduction of f drag at t = ∞ is 1.8%
for the long pulse and 7.1% for ten short pulses. In the case of
subcellular transport where a force is usually applied in a periodic
manner, such as in the case of the transport due to the stepping of
the kinesin motor (see Sec. IV), we expect that the movement of a

FIG. 5. The effective transport drive force is compared for two force protocols:
ten short force pulses vs a constant force. The applied forces are shown at the
bottom, where the intermittent and constant force protocols are shown as black
lines and gray shading, respectively, and the magnitudes are scaled by 0.5 to
avoid overlap with other curves. The time duration for each of the short pulses,
as well as the duration of the pause, is 60τB, and the period is 120τB. The con-
stant pulse has a time duration of 1200τB. The resulting curves for f drive for the
intermittent force are shown at the top for d = ∞ (dashed) and d = 4R (solid).
The results for the constant force are shown at the center for d =∞ (dashed) and
d = 4R (solid).

FIG. 6. The graphs of the effective transport friction z(θ) are compared for d =∞
(single sphere), d = 8R, and d = 4R, for Tpulse = 20τB and ρs = ρf .

neighboring object will play an important role in facilitating subcel-
lular transport.

We also plot the graph of z(θ) in Fig. 6 for d =∞ (single sphere),
d = 8R, and d = 4R, showing that for given displacements, two neigh-
boring spheres not only require less work but also result in faster
transport as compared to separate spheres. The value of z(θ) here
diverges as θ → ∞ because limθ→∞ũ(θ) = 0, but it will be main-
tained at finite values when a periodic force is applied so that a
nonequilibrium steady state is reached.57

IV. ORDER OF MAGNITUDE ESTIMATES
WITH BIOLOGICAL PARAMETERS

To see whether the reduced effective transport drive force and
friction due to the indirect interaction between two spheres is rel-
evant for subcellular transport processes, we perform an order of
magnitude estimate using biological parameters. More specifically,
we consider an example of cargo transport by a kinesin motor, where
the constant force pulse can be considered as an extremely simpli-
fied model of the force exerted by the kinesin motor and its cargo.
The force duration may be taken as Tpulse ∼ 10 μs, the time scale
during which the stepping motion occurs.49,62–65 As discussed pre-
viously, the hydrodynamic memory plays a role only if Tpulse is not
too much larger than τB ≡ (2ρs + ρf )R2/9η. For fixed values of Tpulse,
ρs, ρf , and η, this tells us that the size of the cargo should be suffi-
ciently large in order for hydrodynamic memory to play a significant
role. For example, we previously found that f drive(∞) for two spheres
with d = 4R was 13% less than for those separated by an infinite dis-
tance. Using the values η = 2 × 10−3 kg/(m s)66–70 (BNID150903)71

and ρs = ρf = 103 kg/m3 (BNID113851)72,73 for the cytoplasm, we
get

Tpulse = 10 μs = 20τB = 20 ×
3 × 103 kg/m3

× R2

9 × 2 × 10−3 kg/(m ⋅ s)
, (10)

leading to

R ≃ 2 μm ∼ O(1 μm), (11)
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about the size of a large size vesicle such as an organelle.74–76 Con-
sidering the fact that organelles of size of order 1 μm are often trans-
ported by molecular motors,74–76 the reduction of effective drive
force and friction driven by hydrodynamic effects warrants further
investigation within living environments.

V. DISCUSSION
In this work, we presented a numerical solution for a syn-

chronous motion of two spherical vesicles in a viscous fluid with
the same force applied to each vesicle. We found that for a given
displacement for each vesicle, the required work is less for two neigh-
boring vesicles than for those separated by a larger distance, and the
former is transported faster than the latter. We also found that the
difference in the required work for neighboring vs isolated spheres
is more pronounced for intermittent short pulses of applied force
rather than a long pulse, making the effect particularly relevant for
subcellular transport where the force are usually applied in a periodic
manner, such as in the case of the transport by kinesin. In reality, the
asynchrony in vesicle transport may somewhat reduce the effect pro-
posed here. Study of such a generalized case is straightforward, albeit
technically more involved.

Our results support the idea that the efficiency of subcellular
transport may be improved by hydrodynamic interaction between
the neighboring vesicles. Taking thermal fluctuations explicitly into
account, the transport efficiency is quantified by13,77

q ≡
Q(t)⟨δX(t)2

⟩

⟨X(t)⟩2
, (12)

where Q(t) is the energy consumption up to time t, ⟨X(t)⟩ is the
average displacement, and ⟨δX(t)2

⟩ is the transport precision. It has
been shown that q ≥ 2kBT, a fundamental lower bound known as
the thermodynamic uncertainty principle.78–83 Within this bound,
the molecular motor that performs transport with minimal energy
expenditure and with highest precision is the most efficient one
by definition. Since we considered the solution to a deterministic
equation, the displacement we obtained is the thermally averaged
displacement for a purely time-dependent external force considered
in the current work. Since the input work is proportional to Q(t)
for a given value of thermal efficiency, and since our results tell us
that ⟨X⟩ for two neighboring vesicles is larger than that for separate
vesicles, Eq. (12) tells us that two neighboring vesicles have higher
transport efficiency due to hydrodynamic interactions if ⟨δX(t)2

⟩

are the same for both cases. Full analysis of the transport efficiency,
taking into account transport precision in the presence of the ther-
mal fluctuations, would require more sophisticated formalism such
as the fluctuating hydrodynamics.5,44–47,84–86
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APPENDIX A: EXPLICIT FORM OF THE MEMORY
KERNEL FOR THE TWO-SPHERE EQUATION [EQ. (1)]

The memory kernel in Eq. (1) is given by40

hϵ(t) =
1
π ∫

∞

0
ĥϵ(s)e−st/τνds, (A1)

where

ĥϵ(s) = Im [
A(s)
Bϵ(s)

] (A2)

with

A(s) = (1 − i
√
s −

s
9
)

2

Bϵ(s) = s2
(

1
9

+
ϵ3

3
) + i(1 + 2ϵ3

)s3/2
− (1 + 5ϵ3

)s

− 6i
√
sϵ3 + 3ϵ3 + 3ϵ2 exp(−i

√
s(1 − ϵ−1

))

× [
s2

90
+
is3/2

6
−

s
2
− i
√
s + 1](i

√
s − ϵ) (A3)

and τν ≡ ρfR2/η. We note that for ϵ→ 0, contribution from the term
with the factor exp(−i

√
s(1 − ϵ−1

)) vanishes in the integral Eq. (A1),
and we have

hϵ(t) =
1
π ∫

∞

0
Im
⎡
⎢
⎢
⎢
⎢
⎣

(1 − i
√
s − s

9)
2

s2

9 + is3/2 − s

⎤
⎥
⎥
⎥
⎥
⎦

e−st/τνds

=
1
π ∫

∞

0

1
√
s
e−st/τνds =

√ τν
πt

, (A4)

recovering the memory kernel for one sphere.51–53

APPENDIX B: THE EQUATION FOR SPHERES MOVING
PERPENDICULAR TO THEIR LINE OF CENTERS

In the main text, we focused on the case where the spheres move
along the line connecting their centers. We may also consider two
identical spheres moving perpendicular to the center-to-center axis,
as shown in Fig. 7. The resulting force exerted by the fluid on each
sphere is40

FIG. 7. Spheres moving perpendicular to the line connecting center-to-center. The
directions of the velocities are shown by the bold arrows, which are also the direc-
tions of the external forces. The center-to-center distance and the radius are d and
R, respectively.
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Ffluid = −
6πηR

1 + 3
4 ϵ + 1

2 ϵ3
v −

2πR3ρf
3(1 − 3

2 ϵ3)
v̇

− 6πηR∫
t

−∞

dt′v̇(t′)gϵ(t − t′), (B1)

where gϵ(t) is formally given as a Laplace transform,40

gϵ(t) =
1
π ∫

∞

0
ĝϵ(s)e−st/τνds, (B2)

where

ĝϵ(s) = Im [
A(s)
Cϵ(s)

] (B3)

with

A(s) = (1 − i
√
s −

s
9
)

2

Cϵ(s) = s2
(

1
9
−
ϵ3

6
) + i(1 − ϵ3

)s3/2
− (1 −

5
2
ϵ3
)s

+ 3i
√
sϵ3
−

3
2
ϵ3 +

3ϵ
2

exp(−i
√
s(1 − ϵ−1

))

× [
s2

90
+
is3/2

6
−

s
2
− i
√
s + 1](−s − i

√
sϵ + ϵ2

) (B4)

and τν ≡ ρfR2/η. We note that for ϵ→ 0, contribution from the term
with the factor exp(−i

√
s(1 − ϵ−1

)) vanishes in the integral Eq. (A1),
and we have

gϵ(t) =
1
π ∫

∞

0
Im
⎡
⎢
⎢
⎢
⎢
⎣

(1 − i
√
s − s

9)
2

s2

9 + is3/2 − s

⎤
⎥
⎥
⎥
⎥
⎦

e−st/τνds

=
1
π ∫

∞

0

1
√
s
e−st/τνds =

√ τν
πt

, (B5)

FIG. 8. The nondimensional positions x(θ) of two spheres moving perpendicular
to the center-to-center line are compared for d =∞ (single sphere), d = 8R, and
d = 4R, for Tpulse = 20τB and ρs = ρf .

FIG. 9. The effective transport drive force f drive(θ) of two spheres moving per-
pendicular to the center-to-center line are compared for d = ∞ (single sphere),
d = 8R, and d = 4R, for Tpulse = 20τB and ρs = ρf .

recovering the memory kernel for one sphere.51–53 The qualitative
behavior for two neighboring spheres moving in the direction per-
pendicular to the central line is similar to those moving along the
central line, in that the transport is enhanced, as shown in Figs. 8
and 9, where both positions and the transport drive force are com-
pared. We again find about 13% reduction in transport drive force
for d = 4R.

APPENDIX C: NUMERICAL SOLUTION OF THE
INTEGRO-DIFFERENTIAL EQUATION

We numerically solved the integro-differential Eq. (5),
rewritten as

a(θ) = −F(ϵ)G(ϵ)u(θ) − F(ϵ)∫
θ

0
dθ′a(θ′)h̃ϵ(θ − θ′) + F(ϵ)f (θ),

(C1)

where we assumed that v = 0 for θ ≤ 0, with

a(θ) ≡
du
dθ

h̃ϵ(θ) ≡ hϵ(τBθ)

F(ϵ) ≡
(1 + 3ϵ3

)(2ρs + ρf )
2ρs(1 + 3ϵ3) + ρf

G(ϵ) ≡
1

1 + 3
2 ϵ − ϵ3

.

(C2)

The integral in Eq. (C1) is performed by using the trapezoidal rule,
where we compute an integral of the form ∫ba f (x)dx by first dis-
cretizing the interval [a, b] into N subintervals and approximating
the integral in each subinterval as an area of the trapezoid,

∫

a+(k+1)Δx

a+kΔx
f (x)dx ≃ Δx[

1
2
f (a + kΔx) +

1
2
f (a + (k + 1)Δx], (C3)

where Δx ≡ (b − a)/N. Care must be taken when the function f (x) is
divergent at a boundary, say at x = b. Here, we cannot use Eq. (C3)
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at the subinterval [b − Δx, b], so the corresponding integral must be
treated separately. We utilize the asymptotic form for the function
f (x) for x→ b,

f (x) ∼
A

(b − x)α
(0 < α < 1), (C4)

to make the approximation

∫

b

b−Δx
f (x)dx ≃ ∫

b

b−Δx

A
(b − x)α

=
A(b − Δx)1−α

1 − α
. (C5)

By using Eqs. (C3) and (C5), we obtain

∫

b

a
f (x)dx ≃ Δx[

1
2
f (a) +

N−2

∑
k=1

f (a + kΔx) +
1
2
f (b − Δx)] +

A(b − Δx)1−α

1 − α
. (C6)

For the integral in Eq. (C1), we have

∫

θ

0
dθ′a(θ′)h̃ϵ(θ − θ′) ≃ Δθ[

1
2
a(0)h̃ϵ(θ) +

N−2

∑
k=1

a(kΔθ)h̃ϵ(θ − kΔθ) +
1
2
a(θ − Δθ)h̃ϵ(Δθ)] + ∫

θ

θ−Δθ
a(θ′)h̃ϵ(θ − θ′)dθ′. (C7)

The last integral must be treated separately using Eq. (C5) since h̃ϵ(θ) diverges at θ = 0. Therefore, we have to find the asymptotic form h̃ϵ(θ)
for θ→ 0. In fact, from Eq. (A1), we see that hϵ(t) is dominated by the value of ĥϵ(s) at s→∞ as t→ 0. The oscillatory contribution containing
the factor e−i

√
s(1−ϵ−1

) vanishes as s→∞, and we have

hϵ(t) ≃
1
π ∫

∞

0
Im
⎡
⎢
⎢
⎢
⎢
⎣

(1 − i
√
s − s

9)
2

s2( 1
9 + ϵ3

3 ) + i(1 + 2ϵ3)s3/2 + O(s)

⎤
⎥
⎥
⎥
⎥
⎦

e−st/τνds

=
1
π ∫

∞

0
Im [

s2 + 18is3/2 + O(s)
s2(9 + 27ϵ3) + i81(1 + 2ϵ3)s3/2 + O(s)

]e−st/τνds

=
1
π ∫

∞

0
Im

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(s2 + 18is3/2 + O(s))(s2
(9 + 27ϵ3

) − i81(1 + 2ϵ3
)s3/2 + O(s))

s4(9 + 27ϵ3)2 + O(s3)

⎤
⎥
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⎥
⎦

e−st/τνds

=
1
π ∫

∞

0
Im [
(1/9 + ϵ3

/3) + i(1 + 4ϵ3
)s−1/2 + O(s−1

)

(1 + 3ϵ3)2 + O(s−1/2)
]e−st/τνds

≃
1
π ∫

∞

0

1 + 4ϵ3

(1 + 3ϵ3)2
√
s
e−st/τνds =

1 + 4ϵ3

(1 + 3ϵ3)2

√ τν
πt

, (C8)

and consequently,

∫

θ

θ−Δθ
a(θ′)h̃ϵ(θ − θ′)dθ′ ≃ ∫

θ

θ−Δθ

(1 + 4ϵ3
)a(θ′)

(1 + 3ϵ3)2

√
τν

πτB(θ − θ′)
dθ′

≃ a(θ)∫
θ

θ−Δθ

(1 + 4ϵ3
)

(1 + 3ϵ3)2

√
τν

πτB(θ − θ′)
dθ′

=
2(1 + 4ϵ3

)

(1 + 3ϵ3)2

√
τνΔθ
πτB

a(θ). (C9)

Note that the right-hand side of Eq. (C1) contains u(θ) that is unde-
termined at the time when computing a(θ). It is to be computed
using the trapezoidal rule

u(θ) = u(θ − Δθ) +
Δθ
2
[a(θ) + a(θ − Δθ)]. (C10)

We simply substitute Eq. (C10) into Eq. (C1), along with and Eqs.
(C7) and (C9) to get

a(θ) = −F(ϵ)G(ϵ)u(θ − Δθ) −
Δθ
2
F(ϵ)G(ϵ)[a(θ) + a(θ − Δθ)]

−F(ϵ)Δθ[
1
2
a(0)h̃ϵ(θ) +

N−2

∑
k=1

a(kΔθ)h̃ϵ(θ − kΔθ)

+
1
2
a(θ − Δθ)h̃ϵ(Δθ)] − F(ϵ)

2(1 + 4ϵ3
)

(1 + 3ϵ3)2

×

√
τνΔθ
πτB

a(θ) + F(ϵ)f (θ). (C11)

After moving the term proportional to a(θ) and solving for a(θ),
Eq. (C11)

a(θ) = −H(ϵ)F(ϵ)G(ϵ)u(θ − Δθ)

−H(ϵ)F(ϵ)Δθ[
1
2
a(0)h̃ϵ(θ) +

N−2

∑
k=1

a(kΔθ)h̃ϵ(θ − kΔθ)

+
1
2
a(θ − Δθ)(h̃ϵ(Δθ) + G(ϵ))] + H(ϵ)F(ϵ)f (θ), (C12)
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FIG. 10. The velocity of a single sphere as the function of time. Analytic and numer-
ical solutions are compared for ρs = 0. The integration parameters are Δθ = 10−3,
Δs = 10−4, and δ = 10−4.

where

H(ϵ) ≡
⎡
⎢
⎢
⎢
⎢
⎣

1 + F(ϵ)
2(1 + 4ϵ3

)

(1 + 3ϵ3)2

√
τνΔθ
πτB

+
Δθ
2
F(ϵ)G(ϵ)

⎤
⎥
⎥
⎥
⎥
⎦

−1

. (C13)

Equation (C12) allows us to compute a(θ) in terms of u(θ − Δθ)
and a(0), a(Δθ), . . ., a(θ − Δθ), by storing a(θ)’s as arrays during
the computation. Once a(θ) is obtained, u(θ) can be obtained by
Eq. (C10).

We also need to compute the integral in Eq. (A1) in order to
obtain h̃ϵ(θ). The upper limit of the integral is infinity, so we trun-
cate the integral when the integrand is sufficiently small. In other
words, we truncate the region with e−sτBθ/τν < δ. The remaining inte-
gral is obtained numerically by the trapezoidal rule. It would be com-
putationally inefficient to perform the integral in Eq. (A1) each time
we compute a(θ). Therefore, we compute h̃ϵ(0), h̃ϵ(Δθ),⋯h̃ϵ(NΔθ)
at the start of the computation and store them as arrays, where NΔθ
is the upper limit of θ that a(θ) will be computed.

For an isolated sphere, an analytic solution of Eq. (3) for a con-
stant pull is known39 which can be compared with our numerical
solution for ϵ = 0 to assess the accuracy of our method. We found
that using Δθ = 0.001, Δs = 0.0001, and δ = 0.0001 yields reason-
ably accurate solution, as can be seen in Fig. 10 where the numer-
ical and the analytic solutions for the velocities are compared for
ρs = 0.87 These parameters were also used for performing the
numerical integration of the two-sphere equation.

APPENDIX D: ASSESSMENT OF THE ACCURACY
OF THE TRUNCATION IN TWO-SPHERE EQUATION

As mentioned in the main text, Eq. (5), with hϵ(t) given by
Eqs. (A1)–(A3), is obtained by a truncation where the error is con-
sidered to be of order O(ϵ4) where ϵ ≡ R/d. It was argued in Ref. 40
that Eq. (5) is reasonably accurate for ϵ ≲ 0.25, by comparing the
Stokes drag in Eq. (5),

FIG. 11. The position of each sphere as the function of time. The result obtained
from the truncated expression and the exact one for the Stokes drag are compared,
for t = 20τB and ρs = ρf .

f (trunc)
Stokes = −

u
1 + 3

2 ϵ − ϵ3
, (D1)

with the known exact form50,88

f (exact)
Stokes = −

4u
3

∞

∑
n=1

sinhα
n(n + 1)

(2n − 1)(2n + 3)

×
⎡
⎢
⎢
⎢
⎣

1 −
4 sinh2

(n + 1
2)α − (2n + 1)2 sinh2 α

2 sinh(2n + 1)α + (2n + 1) sinh 2α

⎤
⎥
⎥
⎥
⎦

, (D2)

where

2 coshα ≡ ϵ−1. (D3)

The numerical result is quite robust as we replace f (trunc)
Stokes by f (exact)

Stokes up
to ϵ = 0.25, as shown in Fig. 11 where the results for the position x
are compared for t = 20τB and ρs = ρf . This provides circumstantial
evidence that Eq. (5), along with Eqs. (A1)–(A3), is quite accurate
for ϵ ≲ 0.25. We however do not use f exact

Stokes as we avoid ad hoc mixing
of exact and truncated expressions.
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