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Abstract

Janus kinase 2 (JAK2) is emerging as a potential therapeutic target for many inflammatory

diseases such as myeloproliferative disorders (MPD), cancer and rheumatoid arthritis (RA).

In this study, we have collected experimental data of JAK2 protein containing 6021

unique inhibitors. We then characterized them based on Morgan (ECFP6) fingerprints fol-

lowed by clustering into training and test set based on their molecular scaffolds. These

data were used to build the classification models with various supervised machine learn-

ing (ML) algorithms that could prioritize novel inhibitors for future drug development

against JAK2 protein. The best model built by Random Forest (RF) and Morgan finger-

prints achieved the G-mean value of 0.84 on the external test set. As an application of

our classification model, virtual screening was performed against Drugbank molecules in

order to identify the potential inhibitors based on the confidence score by RF model. Nine

potential molecules were identified, which were further subject to molecular docking

studies to evaluate the virtual screening results of the best RF model. This proposed

method can prove useful for developing novel target-specific JAK2 inhibitors.
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1 | INTRODUCTION

The Janus kinases (JAKs) are a class of cytoplasmic non-receptor tyro-

sine kinase molecule consisting of four subtypes, namely JAK1, JAK2,

JAK3, and TYK2, which play predominant roles in the cytokine-

mediated JAK-STAT signaling.1,2 All the four subtypes contain a com-

mon structure region called Janus Kinase homology (JH2) domain,

which mainly regulates the adjacent protein kinase domain (JH1).3

Most of the known small molecules targeting JAKs bind to the adeno-

sine triphosphate (ATP) site of the JH1 domain.4 However, due to the

high structural similarity of ATP binding site across JAK family, it is

hard to discover potential molecule for a specific JAK family member

by conventional methods. Therefore, selective inhibitors against each

subtype of JAK protein are foremost important, as Bajusz and col-

leagues discovered subtype selective JAK inhibitors by structure-

based drug design (SBDD) approach.5 Pharmacophore- and docking-

based VS approach for the design of JAK2/JAK3 dual inhibitors by

Jasuja and colleagues.6 Pharmacophore filtering and 3D-QSAR in the

discovery of JAK2 inhibitors by Dhanachandra Singh and colleagues.7

Among the four JAK subtypes, JAK2 is crucial for cytokine recep-

tor signaling in blood formation and immune response. This protein is a

part of JAK-STAT signaling pathway, which transmits chemical signals

from extracellular region to the nucleus resulting in DNA transcription.3

The JAK2 V617F gene mutation results in the overproduction of JAK2

protein, which is crucial for controlling the production of blood cells

from hematopoietic stem cells.8 These mutations are associated with

myelofibrosis, a condition where bone marrow is replaced by fibroblast.

The V617F gene mutation is occasionally found in people with cancer

or other bone marrow disorders. Hence, JAK2 has emerged as a

potential therapeutic target for myeloproliferative disorders (MPD).9

Currently, various drugs targeting JAK2 are in clinical and preclinical

trials, among which some has been approved by the US Food and Drug
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Administration (FDA), the European Medical Agency and other regula-

tory agencies in recent years. In 2013, ruxolitinib, a selective JAK2

inhibitor, was approved by FDA for the treatment of patients with

intermediate and high-risk myelofibrosis.10 Similarly, momelotinib,

which is in Phase III clinical trial, was shown to be effective.11 However,

drugs such as AZD148012 and XL01913 had to be canceled in early

stage, owing to their severe side effects and poor bioavailability. Thus,

novel JAK2 inhibitors with more drug-like properties are highly desir-

able in order to overcome these problems.

In recent years, with the development of computing power and

the accumulation of experimental data, artificial intelligence (AI) has

made great progress in the field of drug discovery.14 These methods

are based on Structure-Activity-Relationship/Quantitative Structure

Relationship (SAR/QSAR) model, where pharmacological activities of

the molecules are inferred their structural properties. The underlying

theory is that molecules with same physical and chemical properties

tend to have similar bioactivity.15 Here, in order to design and develop

still better and more effective JAK2 inhibitors, we develop and pro-

pose various classification methods based on machine learning

(ML) using Extended-Connectivity Fingerprints (ECFP6) as input.

These models would serve as potential tools to virtually screen JAK2

inhibitors from Drugbank molecules. It is expected that the identified

virtual hits would provide some useful insights for the development of

novel JAK2 inhibitors.

2 | MATERIALS AND METHODS

2.1 | Data curation for training and test set

The known inhibitors of JAK2 targets were retrieved from the

ChEMBL (version 30) (https://www.ebi.ac.uk/chembl/). Six criteria

were taken for data preparation: (1) Compounds without experimental

activities were removed; (2) Removal of stereoisomers; (3) Removal of

large and Invalid compounds; (4) Compounds with IC50, EC50, Ki, or

Kd were taken, and converted into negative logarithmic scale (pIC50)

for the uniform distribution of values; (5) Compounds with pIC50

value >7 were considered as highly active, while the compound ≤6

were considered as weakly active/inactive.16 (6) Molecular normaliza-

tion and tautomerization was performed using MolVS to standardize

chemical structures for improving the data quality.17

2.2 | Preparation of training and test dataset

In order to evaluate the performance of a machine-leaning algorithm

without bias, we have to check whether it correctly classifies new,

unseen data. For this purpose, we have to construct a test set consist-

ing of data that are dissimilar from the training set as much as possi-

ble. In order to evaluate the pairwise similarity between the

molecules, a Murcko-scaffold analysis18 was performed to reduce the

chemical structure of a compound to its core components by remov-

ing the side chains and keeping only ring system and parts which link

ring system together. The fingerprint score needed for the similarity

score calculations were obtained using ECFP6 of length 2048 bits and

Tanimoto coefficient (Tc), given by

Tc a,bð Þ¼ NC
NaþNb�Nc

ð1Þ

where N represents the number of attributes in each a and

b molecules, and c is the common attribute in a and b. The range of Tc

varies from 0 to 1, where 0 represents minimal and 1 maximal similar-

ity. Using the Tanimoto similarity score, we performed the Butina

clustering19 of the scaffolds with a threshold of 0.7. We picked the

first cluster as the test data, while the rest were used for training. This

procedure ensures that the scaffolds of the molecules in the test set

are dissimilar from those in the training set in terms of the Tanimoto

score. All the analyses were performed using open-source cheminfor-

matics library RDKit (2022.03.01) (http://www.rdkit.org). We also

performed the principal component analysis (PCA) to assess the

chemical dissimilarity of the training set and the test set, where

Extended-Connectivity Fingerprints (ECFP6) of length 2048 were

reduced to two dimensions by PCA algorithm to view the distributions

of active and inactive molecules.

2.3 | Machine learning

Classification models were developed by eight machine learning

(ML) algorithms including Random Forest (RF), Support Vector

Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression

(LogReg), Decision Tree (DT), Naïve Bayes (NB), Neural Network

(MLP_NN) and Extreme Gradient Boosting (XGBoost). These methods

exhibit high robustness, and therefore have been widely used in drug

discovery. Scikit-learn ML python module was used for model build-

ing, tuning and validation. The developed ML models comprise of

scaffolds as input data, which were grouped into training and test data

based on similarity threshold (Tc = 0.7). Initially, Morgan fingerprints

(ECFP) were computed for both training data and test data. Morgan

fingerprints encode the chemical information of a compound as a

sequence of binary bits. The ECFP represent chemical structure by

means of circular atomic type connectivity, and their features repre-

sent the presence of substructures that can be found on different

compound sets. It can theoretically characterize molecule of any size

and any number of features. During the calculation, the connectivity

of each atom is analyzed to a given radius and bits. Each element of

the ECFP vector indicates the presence or absence of a specific

feature in a compound. For this work, radius and bits were set to

3 and 2048 respectively, which is so called ECFP6, 2048 bits. The

hyperparameter optimization was adjusted for top performing base

models with grid search and 5-fold stratified cross validation on train-

ing data for better model generalization.

In order to explore the impact of balanced learning on model's

performance, SMOTE (Synthetic Minority Oversampling Technique)

was applied on the training set to balance the active/inactive class,
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and the test set was kept unbalanced. This technique aims to balance

class distribution by randomly increasing minority class by replicating

them between the existing minority classes. These synthetic training

records are generated by randomly selecting one or more of the k-

nearest neighbors for each in the minority class.20 Later, several classi-

fication models were applied for the processed data.

Random Forest is an ensemble method that combines randomly

built multiple decision tree in the form of forest structure to improve

the robustness over a single estimator. In order to classify the data,

each decision tree is given a classification, the score of each tree is

calculated to make the final decision.21,22 SVM is one of the most

popular and widely used algorithm, which uses sum function to trans-

fer data into high-dimensional space and establish the optimal separa-

tion hyperplane.23 KNN is an instance-based learning which uses k

closet samples from the training dataset to assess the predicted value,

which is also a non-parametric ML algorithm that works for both clas-

sifier and regressor methods.24 LogReg is a linear model for classifica-

tion rather than regression. The logical function was used to model

the probabilities, which describe the possible outcomes of one single

trail.25 DT is a non-parametric supervised learning to build models that

can learn decision rules from the input data and make predictions on

the value of a target variable.26 NB algorithms are supervised learning

methods based on Bayes' theorem, that have an assumption of condi-

tional independence between every pair of features. In this work,

Bernoulli NB algorithm was applied to the datasets with fingerprints

as features, represented as binary-valued vectors. The prior probabil-

ity of the classes were set to none.27 MLP_NN has the capacity to

learn the nonlinear models in real time. It can have one or more non-

linear hidden layers between the input and output layers. For each

layer's different numbers of hidden neurons can be assigned, which

gives a weighted linear summation for the values from the previous

layers followed by the activation of nonlinear function.28 XGBoost are

a kind of ensemble technique where predictors are ensembled

sequentially one after the other. XGBoost is an optimized gradient

boosting library designed to be highly efficient and flexible.29

2.4 | Model evaluation

In order to evaluate the model's performance, various metrics such as

accuracy (ACC), Matthew's correlation coefficient (MCC), precision,

recall, F1-score, and ROC-AUC score were calculate using Scikit-learn.

The ration of true positive (TP)/true negative (TN) and false positive

(FP)/false negative (FN) were used to describe these matrices. Briefly,

TP and TN represent the correctly predicted active and inactive com-

pounds, respectively. Whereas, FP indicates that inactive compounds

have been incorrectly predicted as active compounds, and FN

indicates that active compounds have been incorrectly predicted as

inactive compounds.

Accuracy represents the proportion of correctly predicted classes

to the total number of classes. MCC is generally used to measure the

quality of classification models, it is a balanced measure that both

TP/FP and TN/FN are considered. Precision indicates how many of

the positive classes are the real positives. Recall measures the ability

of a model to find out all of the positive classes. F1-score is the har-

monic mean of recall and precision. The geometric mean (G-mean) is

the squared root of the products of specificity and sensitivity, where

specificity and sensitivity combined to give single score that balances

both concerns. ROC-AUC score is the area under the ROC curve,

AUC value of 1 specifies a perfect model while 0.5 specifies a random

classifier. The formulas for all the metric calculation are as follows:

ACC¼ TPþTN
TPþTNþFPþFN

ð2Þ

MCC¼ TP�TN�FP�FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þp ð3Þ

Precision¼ TP
TPþFP

ð4Þ

Recall¼ TP
TPþFN

ð5Þ

F1� score¼2� precision� recallð Þ
precisionþ recall

ð6Þ

G�mean¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity�Specificity

p
ð7Þ

2.5 | Virtual screening

Virtual screening of unknown dataset using the predictive model is a

crucial step in identifying novel potential JAK2 inhibitors. The best

performing model, which is the one obtained by the Random Forest

(RF) method, was utilized to virtually screen the Drugbank database

(https://go.drugbank.com/) (see Results). The Drugbank database

contains 11,912 purchasable compounds. Before the application of the

RF model for the activity prediction, the compounds were prioritized

by Lipinski's rule of five (RO5) followed by removing PAINS (Pan-Assay

Interference Compounds), invalid compounds (whose parameters could

not be calculated by RDKit) and salts. The final set of 9136 compounds

was left after this procedure, for which the descriptors and ECFP6

fingerprints were calculated using RDKit library (March 01, 2022). Then,

the descriptors were used to predict the confidence of highly efficient

compounds with the classification model.

2.6 | Molecular docking

The crystallographic structure of the human JAK2 with inhibitors

were retrieved through Biotite30 python module with search query

“O60674” (UniProt ID). From RCSB Protein Data Bank (https://www.

rcsb.org/), a total of 129 different JAK2 structures were identified and

among them 127 JAK2 structures with non-covalently bound inhibitors

were selected for the analysis. The crystallographic JAK2 structures

were processed further by removing heteroatoms (cofactors, water

BELENAHALLI SHEKARAPPA ET AL. 3

https://go.drugbank.com/
https://www.rcsb.org/
https://www.rcsb.org/


molecules, and metal ions) by using UCSF Chimera 1.14 (University of

California, USA).31 Only chain A of JAK2 structures with bound inhibi-

tors were retained and superimposed using UCSF Chimera 1.14 to map

the inhibitors' location. As is customary in the molecular docking proce-

dure, we constructed a box shaped search region divided into a grid of

evenly spaced points for evaluation of energy, called the grid box,

which was centered on the bound inhibitors based on superimposed

JAK2 structures (Figure S1). The JAK2 crystal structure (PDB id: 7LL4)

was considered for docking due to its high resolution (1.31 Å). The

JAK2 structure was prepared by adding polar hydrogens and parame-

terize it based on pKa of each aminoacid at pH 7.4 with AMBER99ff

force field using pdb2pqr package, followed by deletion of non-polar

hydrogens and conversion into PDBQT format using the prepare-

receptor4.py Python scripts from Auto Dock Tools (ADT),32 as

described in the AutoDock Vina manual. Similarly, ligands were pre-

pared using the prepare-ligand4.py Python scripts from ADT. Initially,

the SMILES of the ligands were collected and processed in RDKit

library as described in our earlier report.33

The docking was performed using GNINA 1.034 that is a fork of

smina35 and AutoDock (ADT) Vina,36 a Convolution Neural Network

(CNN)-based molecular docking algorithm with integrated support for

conformational sampling, ligand optimization and scoring function.

Here we used custom scoring function called vinardo,37 a scoring

function based on ADT vina that focus mainly on improving accuracy

of docking. Validation of docking approach was assessed by cross-

docking the crystallized ligand with other JAK2 protein (PDB id:

5AEP; 1.95 Å resolution). For crossdocking, we utilized various dock-

ing algorithms such as ADT-Vina,36 QVina2,38 QVina-W,39 Smina,35

Smina-vinardo, GNINA,34 GNINA-vinardo to facilitate the validation

of our docking studies. The post-docking analysis were performed

using PyMOL and Chimera.

2.7 | Computing

All computing was performed using 8 core DDR4 64GiB (16 � 4),

Intel(R) Core (TM) i7-6700 CPU @ 3.40GHz. The following packages

were used in the study: Python 3.7.12, scikit-learn 1.0.2, RDKit

2022.03.2, Seaborn 0.11.2, pandas 1.3.4, numpy 1.21.6, Jupyter note-

book 6.4.11, matplotlib 3.5.2, Autodock Vina, PyMOL, Chimera 1.14.

3 | RESULTS

We developed a ML-based drug discovery platform to predict the

activity of compounds for the inhibition of JAK2 protein. Initially we

built eight ML base models, then we finalized to top three based on

the performance of the base models. Prior to modeling, we collected

F IGURE 1 Visualization of logP
(hydrophobicity) and molecular weight of
all the molecules by pIC50 size
distribution.
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bioactivity data of human tyrosine-protein kinase JAK2 from the

ChEMBL database (target id: CHEMBL2971), which consists of

12,349 compounds. We curated the dataset by removing duplicates,

stereoisomers and compounds without experimental activities (IC50,

EC50, Ki, and Kd), deletion of large compounds (which behaves like

outliers and make the training process longer) followed by molecular

standardization and validation using MolVS for improving the data

quality by identifying relationship between the molecules, which

mainly includes metal ion disconnection, functional group normaliza-

tion, reionization, removal of salts/solvents, tautomerization and

charge neutralization. A total of 6021 unique compounds, including

3699 highly active and 2322 weakly active (inactive) inhibitors were

selected for model building.

3.1 | Chemical diversity and scaffold-clustering
analysis

To evaluate the chemical diversity of the final dataset, we calculated

the logP and molecular weight of all the compounds. logP (the log of

F IGURE 2 Visualization of the train and test data with PCA and ECFP6 for all the molecules: (A & B) Train data distributed by random split

and scaffold split methods, respectively. (C & D) Test data distributed by random split and scaffold split, respectively.
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the partition coefficient), is the measure of hydrophobicity, defined as

the logarithm of ratio of the concentrations of the compound in octa-

nol and in water at equilibrium. The logP distribution of all the com-

pounds was between �4.53 and 9.87, and the distribution of

molecular weight was between 156.06 and 926.29. The scatter plot

of logP against Molecular weight is shown in Figure 1. Here, each

compound in the input data was clustered together by Murcko-

scaffold such that the scaffolds in each cluster are as distant from the

other. Clustering the scaffolds at 0.7 similarity index leads to reduc-

tion of the data from 6021 molecules to only 1906 cluster representa-

tives. It can be seen from Supplementary material (Figure S2), that the

distribution of the training and test set in both scaffold-split and ran-

dom split are distant, indicating that the distribution by scaffold-split

in chemical space has less overlap between the training and test set.

In order to assess the bioactivity distribution, we have con-

structed PCA plot for the distributions of active and inactive classes in

the training and test set obtained from the scaffold-split, which are

shown to be distinct (Figure 2B,D). For comparison, we also plotted

the result for the random split, where we randomly selected 20% of

the data as the test set (Figure 2A,C). We indeed see that the two dis-

tributions obtained from the scaffold split are more dissimilar com-

pared to the result obtained from the random split. The significance of

this result is that every single molecule in the test set obtained from

the scaffold-split method is molecularly distant form the training set.

3.2 | Dataset building and machine learning

In order to increase the chemical diversity, training and test data were

built using scaffold-split method (explained in Method section). Subse-

quently, the training set consisted of 3255/1535 compounds in the

active and inactive class, respectively, while the test set has 444/787

TABLE 1 Performance metrics of
base models on test dataset with default
parameters.

Algorithm ACC Precision Recall F1-score ROC AUC MCC G-mean

RF 0.847 0.778 0.806 0.847 0.838 0.671 0.84

DT 0.705 0.576 0.684 0.709 0.7 0.389 0.69

NB 0.801 0.849 0.547 0.789 0.746 0.56 0.72

KNN 0.848 0.862 0.689 0.843 0.813 0.664 0.79

LogReg 0.816 0.728 0.783 0.817 0.809 0.609 0.81

SVM 0.839 0.761 0.806 0.84 0.832 0.656 0.83

XGBoost 0.798 0.696 0.783 0.8 0.795 0.577 0.79

NN_MLP 0.79 0.696 0.743 0.791 0.78 0.552 0.78

Note: Bolded rows indicate the top three best base models taken for hyperparameter optimization.

F IGURE 3 ROC curve
comparison of top performing
models with AUC value.
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active and inactive compounds, respectively. All the models

constructed by scaffold-clustering method exhibited reasonably good

performance, which authenticates the rationality of the training/test

dataset constructed by the scaffold-clustering method.

In this work, we first developed all the models with default

parameters (base models). Later, we choose best models from cross

validation and hyperparameter tuning based on the training and test

accuracy. The performance of the all the models except NB on the

training set were above 0.9 (>90%) accuracy. However, the prediction

results on the test dataset were rather varied (Table 1), where all the

models show relatively good mean accuracy score on test set except

DT and NB. Since there is imbalance in active and inactive compounds

of the test set, the G-mean value was considered as reference metrics

to determine the top models. The RF, kNN, LogReg, SVM, XGBoost,

and NN_MLP models achieved a G-value value of 0.84, 0.79, 0.81,

0.83, 0.79, and 0.78, respectively. Then, the performance of top

F IGURE 4 (A)) Crossdocking procedure. (B) Crossdocking analysis of co-crystallized structure (gray) and docked pose (blue) in the JH1
domain of JAK2 protein (PDB id: 5AEP).

TABLE 2 Evaluation metrices of top performing models on test set.

Algorithm TP TN FP FN Sensitivity (%) Specificity (%) Balanced accuracy (%) G-mean

RF 358 700 87 86 80.6 88.9 84.7 0.84

KNN 322 720 67 122 72.5 91.4 82 0.81

SVM 360 612 175 84 81 77.7 79.4 0.79

LogReg 352 657 130 92 79.2 83.4 81.3 0.81

XGBoost 357 603 184 87 80.4 76.6 78.5 0.77

MLP_NN 300 630 114 92 76.5 84.6 80.6 0.79

Note: Bolded rows indicate the best performing models based on G-mean value.

BELENAHALLI SHEKARAPPA ET AL. 7



TABLE 3 Docking score of top compounds against the JH1 domain of JAK2.

Drug bank ID Structure of the molecule Binding energy (kcal/mol) ML confidence score CNN pose score CNN affinity

DB08148 �7.91 0.85 0.67 7.023

DB08149 �7.47 0.87 0.806 7.161

DB08150 �7.01 0.86 0.653 6.829

DB11697 �8.4 0.99 0.33 7.266

DB12154 �8.3 0.70 0.42 7.26

DB12218 �7.67 0.85 0.696 7.139

DB15191 �8.58 0.75 0.785 7.613

DB15294 �6.61 0.75 0.492 5.58

DB16133 �6.14 0.77 0.33 6.32

8 BELENAHALLI SHEKARAPPA ET AL.



trained models was evaluated using 5-fold stratified cross validation

(CV). The best estimators and CV score for the top models are dis-

played in Table S1 in the supplementary material.

All the top performing base models were improved significantly

on the tests set after cross-validation and hyperparameter tuning, and

have a remarkable identification ability of JAK2 inhibitors with low

TABLE 3 (Continued)

Drug bank ID Structure of the molecule Binding energy (kcal/mol) ML confidence score CNN pose score CNN affinity

Momelotinib �7.79 0.72 0.78 6.707

Ruxolitinib �9.03 0.92 0.986 7.608

F IGURE 5 Docking pose and interaction comparison of potential JAK2 inhibitors DB08149 (red) and DB15191 (green) with known inhibitors
momelotinib (blue) and ruxolitinib (magenta).

BELENAHALLI SHEKARAPPA ET AL. 9



false positive rate. This suggest that, the RF, KNN, LogReg, SVM,

XGBoost, and NN_MLP models performed relatively well in predicting

positive and negative classes after the tuning.

The scikit-learn confusion metrics of the top models shows the per-

centage of TP/TN and FP/FN in Figure S3 in the Supplementary mate-

rial, while their ROC curves with AUC value above 0.85 are displayed in

Figure 3. Although, the performance of RF, kNN, SVC, LogReg,

XGBoost and NN_MLP models were comparable., KNN was found to

be least sensitive (72.5%), while RF and SVM showed a sensitivity of

80.6% and 81%, respectively. Similarly, KNN has showed high specific-

ity of 91.4%, while specificity of RF and SVM were found to be 84.7%

and 79.4%, respectively. However, since sensitivity and specificity do

not provide accurate classification of positive and negative classes, the

geometric-mean (G-mean) was calculated for all the top performing

models. RF algorithm performed the best and had a G-mean value of

0.84 (Table 2). Such a model can be potentially used for drug repurpos-

ing. Altogether, the results of scaffold-clustering method can be used

for drug discovery by reduced bias in chemical space of training/test

set. Considering the best performance of these models by scaffold-

clustering method in predicting compounds outside the training data,

we used them to virtually screen external data such as Drugbank library,

in order to prioritize compounds for experimental testing in future.

3.3 | Virtual screening by deploying the best model

Since RF model exhibited the best performance, we used this method

to select the potential JAK2 protein inhibitor from the Drugbank com-

pounds. By performing a pre-screening on 11,912 initial compounds

to remove invalid compounds (see Section 2.5), we obtained 9136

molecules, whose activities were then predicted by the RF model. The

top nine compounds predicted as actives by RF model are DB08148,

DB08149, DB08150, DB11697, DB12154, DB12218, DB15191,

DB15294, and DB16133, which mostly belongs to the class of piperi-

dines and phenols. The potential activities of these nine molecules

were further reassessed by molecular docking.

3.4 | Molecular docking analysis

Molecular docking is highly beneficial technique for understanding the

protein-ligand interaction. All the nine molecules were docked sequen-

tially on JAK2 protein (PDB id: 7LL4) to calculate their best binding affin-

ity. Prior to docking, crossdocking of co-crystallized ligand Y5D was

performed against other JAK2 protein (PDB id: 5AEP) by removing its

original ligand QUP, followed by docking of Y5D in the active pocket of

5AEP (Figure 4A). The docking accuracy was assessed by calculating dif-

ference RMSD, which is shown in Table S2 in the supplementary mate-

rial. Among all the docking algorithms, GNINA using vinardo scoring

function has shown least RMSD difference of 1.64 Å, and position and

orientation were in excellent agreement with the original docked struc-

ture (Figure 4B). This confirms the validation of the docking procedure.

Henceforth, all the lead molecules identified based on ML confidence

score were docked using GNINA-vinardo. Based on the binding affinity,

the ligands were compared with known inhibitors such as Momelotinib

and Ruxolitinib.

The detailed results of their binding affinity, pose scoring and

CNN-affinity with ML confidence score are shown in Table 3. All the

molecules except DB15294 and DB16133 have shown the binding

affinity and CNN-affinity better than �7 kcal/mol and 7 pKa for JAK2

subtype. Wherein, DB08149 and DB15191 have better hydrogen

bond interactions, binding affinity (kcal/mol), CNN-pose score and

CNN-affinity (pKa) when compared to the known inhibitor Momeloti-

nib and Ruxolitinib (Figure 5). The compounds we found could simul-

taneously bind to JH1 domain of JAK2, and inhibit the JAK2 activity

by forming various intramolecular interactions (Figure S4). These ana-

lyses were consistent with the results of ECFP6 fingerprint analysis,

indicating that our ML using ECFP6 fingerprint descriptors was accu-

rate and reliable.

We also performed docking of all nine lead molecules against

other subtypes of JAK family, such as JAK1 (PDB id: 6N7D, 1.78 Å),

JAK3 (PDB id: 5LWM, 1.55 Å) and TYK2 (PDB id: 6AAM, 1.98 Å),

where we see that they have reasonably good binding affinities and

CNN-affinities for all the JAK subtypes (Table S3).

4 | DISCUSSION

Over the past decades, there has been dramatic increase in research

expenditure on drug discovery and development for the treatment of

various diseases. With the progress of computer-aided drug design

(CADD), the application of machine learning (ML) in discovering novel

molecules has increased rapidly. ML integrates vast amount of data

sources to solve biological problems with the combination of computer

science and statistics. Now a days, ML has become an essential tool for

mining chemical information from large compound databases, to design

novel drugs with important biological features. For instance, Sean Ekins

et al. used ML to discover the novel antiviral compounds against yellow

fever virus.40 Akansha Rajput et al. used ML for the prediction of repur-

posed drugs for coronavirus (Covid-19).41 Similarly, Zhao et al. used

CADD to identify JAK2 inhibitors, which mainly utilizes structure-based

drug designing approach.42 Thus, the virtual screening combining both

the ligand-based machine learning and structure based molecular dock-

ing is promising for the discovery of novel molecules.

In the present study, we have used molecular fingerprints

(ECFP6) as descriptors to construct a binary classification model of

JAK2 inhibitors. ECFPs are the most popular and efficient methods

among other fingerprint descriptors. However, in some cases, the lim-

ited reach of the ECFP fingerprint radius does not resolve to different

atom identities, which subsequently fails to distinguish the chirality of

the molecules. The chirality of a molecule is an important feature that

often determines the activity of known drugs or drug candidates. The

respective stereoisomers may show different interactions with desired

molecular targets, so this has become significance for the final bioac-

tivity of chiral molecules. Therefore, in order to maintain the consis-

tency in our data, we removed stereoisomers followed by molecular
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standardization using MolVS for improving the data quality. Here, var-

ious supervised models (RF, KNN, SVM, LogReg, XGBoost, MLP_NN,

NB, and DT) were chosen to build the ML models. While the perfor-

mance of RF, KNN, and LogReg models were comparable, overall, the

RF algorithm performed better in terms of all the metrices (explained

in Result section). A study by Minjian Yang et al.43 on discovery of

JAK2 inhibitors by ML lacks interpretation on the chemical diversity

of training and test set, which is certainly important nowadays to use

bias-free datasets for the accurate prediction.44,45 Hence, in this

study, we performed scaffold-clustering to distinguish training and

test sets-based on molecular similarity cut-off (Tc > 0.7), which pro-

vides better insight to design novel JAK2 inhibitors, and generalize

better than a random split method (explained in Result section). Later,

by combining ML based on scaffold-clustering and structure-based

molecular docking approach, nine potential JAK2 inhibitors were

found, which mostly belongs to the class of piperidines and phenols.

Among them, Pacritinib (DB11697; ML confidence score 0.9, binding

affinity = �8.4 Kcal/mol and CNN-affinity of 7.26 pKa) is mainly used

to target JAK2 signaling in myelofibrosis (MF),46 while the others are

under investigational and experimental category. The compounds we

found could simultaneously bind to JH1 domain of JAK2, and inhibit

the JAK2 activity by forming various intramolecular interactions

(Supplementary Figure S4). We also performed docking of all nine lead

molecules against other subtypes of JAK family, such as JAK1 (PDB

id: 6N7D, 1.78 Å), JAK3 (PDB id: 5LWM, 1.55 Å) and TYK2 (PDB id:

6AAM, 1.98 Å). Except DB16133 and DB15294, all other lead mole-

cule has shown decent inhibition based on binding affinity and CNN-

affinity for all the JAK subtypes. In addition, the molecules DB08148,

DB08149, DB0150, DB116971, DB12154, DB12218, and DB15191

has shown the binding affinity and CNN-affinity above �7 kcal/mol

and 7 pKa for JAK2 subtype. Wherein, DB08149 and DB15191 are

having better hydrogen bond interactions, binding affinity (kcal/mol),

CNN-pose score and CNN-affinity (pKa) when compared to known

inhibitor momelotinib and ruxolitinib (Figure 6). The docking analysis

of all the JAK family subtypes were furnished in Table S3 in the

supplementary material.

There are several limitations to our study: it is worth nothing that

the classification methods based on ML followed by molecular dock-

ing did not ensure compound activity, and even compounds with high

docking score may have the possibility of false positive. However, this

systematic study identified several potential novel JAK2 inhibitors

through scaffold-clustering method, which can improve the efficiency

of computational drug discovery. This approach not only augment

prediction efficiency, but also generalization ability to predict the

unknown data. Further experimental studies are required to deter-

mine the therapeutic potential and side effect of these compounds on

JAK2 target.

5 | CONCLUSION

In this work, we developed a prediction protocol for potential JAK2

inhibitors by combining machine learning and molecular docking.

Using this protocol, we could select nine novel inhibitor candidates

from the DrugBank database. Our findings suggest that the developed

classification model has a potential for distinguishing between active

and inactive compounds. Overall, the current method has the benefits

of being accurate, interpretable, and bias-free for quantitative predic-

tion of selective JAK inhibitors.
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