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a b s t r a c t

I develop a transfermatrix algorithm for computing the exact partition function of a square lattice polymer
with nearest-neighbour interactions by extending a previous algorithm for computing the total number
of self-avoiding walks. The computation time scales as ∼1.6N with the chain length N , in contrast to the
explicit enumeration where the scaling is ∼2.7N . The exact partition function can be obtained faster with
the transfer matrix method than with the explicit enumeration for N > 25. The new results for up to
N = 42 are presented.

© 2018 Published by Elsevier B.V.

1. Introduction

Polymers play important roles in various fields of science,
including biology, where various biopolymers perform crucial
functions for life processes. Although the properties of heteropoly-
mers such as proteins are most interesting, many important
general properties of polymers can be learned from simpler ho-
mopolymer models. The simplest toy models for studying such
a polymer are lattice models, such as two-dimensional square
or three-dimensional cubic lattice polymers [1–4]. By introduc-
ing hydrophobic inter-monomer interactions, a lattice model can
be used as a model for a polymer in a dilute solution [1–30].
Various quantities such as the radius of gyration, end-to-end
distance, and specific heat have been calculated for the lattice
models.

One important advantage of the lattice polymer is that all the
possible conformations can be enumerated exactly [29–32]. The
exact partition function for lattice polymers up toN = 28 for cubic
lattices and N = 40 for square lattices has been computed by a
recently developed efficient enumeration algorithm [32], where
N is the number of monomers in the polymer. The most serious
obstacle for the explicit enumeration of lattice polymer confor-
mations of longer chain lengths is the fact that the number of
conformations and the corresponding computational time grows
exponentially with the chain length, as ∼2.7N [31,32].

In this work, I propose a new transfer matrix approach where
the exact partition function of a square lattice polymer can be
computedmuch faster than using the explicit enumeration for long
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chains. In the transfer matrix method, instead of generating one
conformation at a time, one keeps track of an ensemble of par-
tially built conformations. By discarding detailed information on
the partially built conformations and retaining only the essential
information required for the computation of the partition function,
the transfer matrix method drastically reduces the computational
time without sacrificing the exact nature of the computation. The
transfer matrix approach has been mostly used for computing
the partition function for spin systems [33,34], including a sim-
ple model of proteins [35,36]. The most relevant previous work
is the transfer matrix method used for the enumeration of self-
avoiding walks (SAWs) on the square lattice [37]. This method is
an improvement of earliermethods for enumerating SAWs [38,39],
and also an extension of the methods that enumerates the self-
avoiding polygons (SAPs) on the square lattice [40–42]. Because
a conformation of a lattice polymer is equivalent to a SAW, the
total number of polymer conformations on the square lattice is
enumerated by this method. The computation has been performed
for up to N = 80 [37]. We generalize this method so that the
nearest-neighbour contact between the monomers can be taken
into account. By computing the number of conformations for each
value of the contact number, the exact partition function can be
computed as a function of the temperature. We find that the
computational time scales as ∼1.6N , in contrast to ∼2.7N of the
explicit enumeration. The partition function can be obtainedmuch
faster with the transfer matrix method than with the explicit
enumeration for N > 25. All the known results up to N = 40 can
be reproduced within a day with a single CPU. The new results for
N = 41 and N = 42 will also be presented.

https://doi.org/10.1016/j.cpc.2018.03.022
0010-4655/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.cpc.2018.03.022
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2018.03.022&domain=pdf
mailto:jul@ssu.ac.kr
https://doi.org/10.1016/j.cpc.2018.03.022


12 J. Lee / Computer Physics Communications 228 (2018) 11–21

Fig. 1. Example of a conformation of a square lattice polymer, with N = 11 and
K = 5. The non-bonded contacts are denoted by dashed lines.

Fig. 2. Example of building polymer conformations of length N = 11 spanning the
box of rectangle 3 × 4. The current cut-line is shown as the thick line. The cell at
(i, j) = (1, 3) has been just been completed, and the signature at the cut-line is (3
4 1 2). An empty edge with a cross on it denotes that the site just beneath the edge
is occupied. Two examples of a partially built conformation with n = 6, k = 2,
corresponding to this signature, are also shown below the cut-line at the bottom
of the figure. Two examples of the upper parts of the conformations with K = 5,
generated from this cut-line signature, are shown at the top.

2. Model

We consider a polymer on a square lattice, where a pair of
non-bonded monomers that are neighbouring with each other is
regarded as being in contact. The energy value of −ϵ is associated
with each of these nearest-neighbour contacts. Therefore, the en-
ergy of a given conformation can be expressed as E = −ϵK , where
K is the number of contacts formed in the conformation,whichwill
simply be called the contact number from now on. An example of
a square-lattice polymer conformation with N = 11 and K = 5 is
shown in Fig. 1. The partition function is then given by

Z =

∑
all confs

e−βE
=

Kmax∑
K=0

Ω(K )eβϵK , (1)

where β ≡ 1/kBT andΩ(K ) indicate the number of conformations
for a given contact number K , also called the density of states.
For the polymer on the square lattice, the maximum number of
possible contacts Kmax is given as [1]:

Kmax(N) =

{
N − 2m for m2 < N ≤ m(m + 1),
N − 2m − 1 for m(m + 1) < N ≤ (m + 1)2,

(2)

where m is a positive integer and N is the number of monomers
forming the polymer chain. It is clear from Eq. (1) that the partition
function for any temperature T can be computed once the density
of statesΩ(K ) is obtained. The purpose of the algorithm developed
in the current study is the efficient computation of Ω(K ). The
current model is also called the interacting self-avoiding walk
(ISAW) on the square lattice. When β = 0, the partition function
of ISAW in Eq. (1) gets reduced to the total number of SAWs that
has been computed by the transfer matrix approach [37,38].

3. Transfer matrix method

The transfer matrix method developed in the current study is
based on a previous method for enumerating the total number
of SAWs on the square lattice [37]. First, the conformations are
classified according to the rectangular box they span. For a given
box, only the conformations touching all four walls of the box are
enumerated. This idea has also been implemented in a parallel
algorithm for explicit enumeration [31]. Let us denote the width
and height of the box asw and h, respectively. It is convenient to vi-
sualize the box as consisting ofw×h cells, with each cell enclosing
a lattice site (Fig. 2). Because the conformation is required to touch
all the walls of the box, we get the upper bound for the box size,
w + h− 1 ≤ N . In fact, the number of conformations spanning the
box with w + h− 1 = N can be obtained with an analytic formula,
so only the conformations spanning the boxes with w +h−1 < N
need to be enumerated [31]. Because the polymer conformations
must fit inside the box, there is also a lower bound w × h ≥ N .

In the transfer matrix method, a cut-line bisecting the lattice
is considered, which is moved to build conformations, cell by
cell (Fig. 2). Themain idea of the transfermatrixmethod is to count
the number of partial conformations built up to the cut-line, and
use this information to obtain the number of partial conformations
when the cut-line is moved so that the next cell is incorporated
into the lattice space for the partial conformation. This iterative
procedure eventually leads to the full density of states when the
cut-line reaches the topof the box and all the cells are incorporated.
Wewill take the convention that the initial cut-line is at the bottom
of the box, which is moved upwards as the algorithm proceeds.
For a given row, the cells will be constructed from left to right.
Denoting the coordinates of a cell as (i, j) (1 ≤ i ≤ w, 1 ≤

j ≤ h), the cut-line has a kink on the right-hand side of the cell
that is included in the partial conformation most recently, and
consequently there are w + 1 edges in the cut-line (Fig. 2).

In an earlier version of the algorithm for SAW, the partially built
conformations were classified according to their topology of the
connection to the current cut-line [38]. In the improved newer
version, they were classified by the connection topology of the
part that is yet to be built, leading to a much simpler procedure
for pruning out unnecessary conformations [37]. This topological
information can be represented by a sequence of digits si (i =

1, . . . , w + 1), called the cut-line signature, associated with each
edge of the cut-line. In the algorithm for SAW, each digit ranges
from 0 to 3, where 0 represents no line crossing the edge, called
the empty edge, 1 and 2 the left and the right stems of a loop,
respectively, and 3 the free end [37]. The new element in the
transfermatrixmethod for ISAW is that in order to keep track of the
contact numbers of partial conformations, we need to introduce
two types of empty edges depending on whether the site just
below the empty edge is occupied or not, denoted by the digits
0 and 4, respectively. Therefore, in the algorithm for ISAW, each
digit of the signature ranges from 0 to 4 (Fig. 2). We will refer to
the edge with the digit 4 as being ‘‘charged’’. At most two digits of
the signature can take the value 3, and the number of digits with
the values 1 and 2 must be equal [37,38].

The number of partial conformations F (n, k, v, s), called the par-
tial density of states, is recorded for given values of the chain length
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Fig. 3. Incoming pair of lines (1 2) forms a loop at the new cell to yield a pair of
digits (si, si+1) = (4, 4) in the new signature. The partial chain length n increases by
one. The partial contact number k remains unchanged.

n, the contact number k of the partial conformations, a variable v
that records whether the partial conformation has touched the left
and the right walls of the box, and the cutline signature s. We will
call n and k the partial chain length and the partial contact num-
ber, respectively, from now on. The variable v is required for the
purpose of pruning out unnecessary partial conformations [37,38],
as will be explained later. The value of v takes four possible values
depending onwhether the partial conformation has touched either
of the two walls.

In the example of Fig. 2, polymer conformations of N = 11
spanning the rectangular box with w = 3 and h = 4 are
considered. In the lower part of the figure, the conformations have
been built up to the cell at (i, j) = (1, 3), and the current cut-
line is shown as the thick line. The signature, denoted as (3 4 1 2),
describes how the lines coming out of this cut-line will eventually
be connected: the line crossing the leftmost edge will become a
free end, and the two lines crossing the rightmost edges will join
each other to form a loop. The second edge is empty and also
charged, because the site beneath the edge, inside the cell at (1, 3),
is occupied by a monomer. Only the partial conformations consis-
tent with these conditions are being considered. Two examples of
such conformations that touch both of the left and rightwalls, with
n = 6 and k = 2, are shown at the lower part of the figure. Full
conformations generated from a signaturemust be consistent with
the connection topology dictated by the signature. Two examples
of the completion of the partial conformations, with N = 11 and
K = 5, are shown at the upper part of the figure.

The cell-by-cell construction of an ensemble of partial confor-
mations can be described in general terms by the update rules of a
cell. This is exactly the same as that in the previous method for
SAW [37], except that we distinguish empty edges according to
whether the site directly beneath is occupied by a monomer, in
order to keep track of contact numbers. At the moment, when a
new cell is being added to the lattice space for the partial confor-
mation, wewill call the left and the bottom edges of the cell, which
used to be the parts of the previous cut-line, the incoming edges.
Similarly, the right and the top edges, which will become the parts
of the new cut-line, will be called the outgoing edges. We will also
call the polymer bonds that cross the incoming and outgoing edges
the incoming and outgoing lines, respectively (Figs. 3–10).

The simplest case is when both of the incoming edges are occu-
pied, as shown in Fig. 3. The lines crossing the left and bottom and
edges must be 1 and 2 to be consistent. In this case, they join at the
monomer in this cell and become part of the partial conformation
below the new cut-line. The numbers (si si+1) = (1 2) encoding
this loop in the previous cut-line signature turn into charged empty
edges (si si+1) = (4 4) in the new signature. Any other incoming
pair of lines leads to an inconsistency and is not allowed. In fact,
the update rule for a single incoming line is such that incoming
pairs of lines other than (1 2) never appear, as elaborated below.
The partial chain length n increases by one and the partial contact
number k remains unchanged after this update.

When there is a horizontal single incoming line of the form
(si si+1) = (A 0) or (A 4), where A = 1, 2, or 3, this line can
continue through either the right or the top edge. The vertical
and the horizontal continuation lead to the pair (si si+1) = (A 4)

Fig. 4. Single incoming line from the left edge. The small square at the end of the
line denotes either a loop stem or a free end, and the corresponding digit is denoted
by A = 1, 2, or 3. The incoming line can continue vertically or horizontally. A free
end can also terminate at the new cell. The partial chain length n increases by one.
The partial contact number k remains unchanged if the digit associated with the
empty edge is 0, or increases by one if it is 4.

Fig. 5. Single incoming line from the bottom edge. A square denotes either a loop
stem or a free end, and the corresponding digit is denoted by A = 1, 2, or 3. The
incoming line can continue vertically or horizontally. A free end can also terminate
at the new cell. The partial chain length n increases by one. The partial contact
number k remains unchanged if the digit associated with the empty edge is 0, or
increases by one if it is 4.

and (4 A) in the new cut-line signature, respectively, as shown in
the upper part of Fig. 4. The horizontal continuation is allowed
only if si+2 = 0, or A = 1 and si+2 = 2. This ensures that
the inconsistent pair of incoming lines at the next cell does not
appear. For the case when the incoming line is a free end, A = 3,
there is another possibility that the line terminates in the new cell.
This leads to (si si+1) = (4 4) in the new cut-line signature,
as shown in the lower part of the figure. A similar update rule
applies for the vertical input line (Fig. 5). Again, the horizontal
continuation is allowed only if si+2 = 0, or A = 1 and si+2 = 2. The
partial chain length n increases by one for all of these updates. The
partial contact number k increases by one or remains unchanged
depending on whether the empty edge is charged or not.

When there are no incoming lines, the simplest case is the one
where there is no monomer in the new cell, with the resulting pair
of digits given as (si si+1) = (0 0) in the new signature (Fig. 6).
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Fig. 6. No incoming lines. If there is no monomer in the cell, the resulting pair of
digits is (si, si+1) = (0, 0) in the new cut-line signature. The partial chain length n
and the partial contact number k remain unchanged.

This is the only update where the partial chain length n remains
the same as in the previous state. Consequently, k also remains
unchanged.

The case with a monomer in the new cell is more complicated.
This could be the first time we encounter a monomer of the partial
conformation, inwhich case theremay be one line or two lines con-
nected to this monomer going vertically upwards or horizontally
right, leading to one free end or two free ends (Fig. 7). Because we
are considering a single connected chain, and the conformation is
required to touch the bottomwall of the box, this kind of update is
allowed only at the first row, and only for n = 0. As a consequence
of n = 0, sk = 0 for all k in the previous signature. The partial chain
length and the partial contact number are n = 1 and k = 0 after
any of these updates.

Fig. 7. No incoming lines, where all the digits of the previous signature are zero. The
monomer in the cell is the first one to be encountered. The resulting pair of digits
is (si, si+1) = (3, 4), (4, 3), or (3, 3), depending on the number of lines emitted from
themonomer and the edge the line is crossing. The partial chain length n is one and
the partial contact number k is zero after any of these updates.

If the monomer in the current cell is not the first monomer we
encountered, then it is a part of the loop or free end protruding out

Fig. 8. No incoming lines. The monomer in the cell comes from the loops or free ends protruding out from the cut-line. The case when the corresponding loop or the free
end is located at the left-hand side of the cell is depicted here. The partial chain length n increases by one. The partial contact number k remains unchanged if both of the
digits associated with the empty edges are 0, increases by one if one of them is 4, or by two if both of them are 4.



J. Lee / Computer Physics Communications 228 (2018) 11–21 15

Fig. 9. No incoming lines. The monomer in the cell comes from the loops or free ends protruding out from the cut-line. The case when the corresponding loop or the free
end is located at the right-hand side of the cell is depicted here. The partial chain length n increases by one. The partial contact number k remains unchanged if both of the
digits associated with the empty edges are 0, increases by one if one of them is 4, or by two if both of them are 4.

from the cut-line, coming back into the cut line through the top
or the right edge. The case where the corresponding loop or the
free end is located at the left of the new cell is depicted in Fig. 8. In
contrast to the update rules considered so far, the update rule here
is non-local in that a digit far away from the edges of the current
cell is also modified. Consider the case of loop joining, shown at
the top of the figure. Not only does the pair (si, si+1) of the cut-line
signature get updated to (2 2), but the digit associated with the
right stem of the loop that has been joined changes from sk = 2
to sk = 1. Note that this ensures the balance of 1 and 2 in the new
cut-line signature. Similar non-locality appears when a terminal is
joined, as shown for four cases in the lower part of the figure. Again,
not only does (si, si+1) get modified, but the digit associated with
the edge where the free end is coming out, changes from sk = 3 to
sk = 1 in the new cut-line signature, because now the protruding
line forms a loop. The new pair of digits at the edges of the current
cell is (2 3), (3 2), (2 4), or (4 2), depending on whether this line is
entering through the right or the top edge, and whether the free
end protrudes out of the current cell or terminates there, as shown
in the figure. Similar update rules exist for the case when a loop or
a free end at the right side of the cell passes through or terminates
at the current cell (Fig. 9). Finally, the loop whose stems are at the
left and the right-hand side of the current cell can be joined. In this
case, only the digits associated with the current cell get modified,
to (si, si+1) = (2 1) (Fig. 10). Themost difficult and time-consuming
part of this update procedure is to find all the loops and free ends
that can be joined in this manner. The method is exactly the same
as that for SAW [37]. After any of these updates, the partial chain

length n increases by one. The partial contact number k increases
by the number of charged edges.

We note that conformations of ISAW related by discrete rota-
tions and reflections contribute the same amount to the partition
function. It is rather straightforward to remove this symmetry in
the case of explicit enumeration [31,32], but this is not the case for
the transfer matrix computation. Because the discrete rotational
and reflectional symmetry is eight-fold [31], only a four-fold sym-
metry remains for the conformations spanning a non-square box if
we consider only the boxes with w < h. We also note that in the
transfer matrix method, only undirected conformations of lattice
polymers are generated, whereas we want the number of con-
formations for directed polymers where the two directions along
the polymer chain are distinguished. Therefore, for the number of
conformations spanning a non-square box, we have to divide the
density of states by two to obtain the symmetry-reduced density of
statesω(K ) for directed polymers. In the case of a square boxwhere
the rotational and reflection symmetry is eight-fold, we have to
divide the result by four to obtain ω(K ).

4. Pruning

In the cell-by-cell building procedure described above, many
unnecessary cut-line signatures appear which cannot lead to le-
gitimate full conformations. By removing these unnecessary states
as early as possible, the computational time can be drastically
reduced. In fact, the reason that the future connection topology
was used for the cut-line signature in the new version of the SAW



16 J. Lee / Computer Physics Communications 228 (2018) 11–21

Fig. 10. Joining of the loopwhose stems are located at the left- and right-hand sides
of the cell. The partial chain length n increases by one. The partial contact number
k remains unchanged if both of the digits associated with the empty edges are 0,
increases by one if one of them is 4, or by two if both of them are 4.

transfer algorithm, rather than the past connection topology aswas
used in the older version, is because the specification of the future
connection topology simplifies the pruning procedure consider-
ably [37]. One can compute the minimal number of monomers re-
quired for making connections specified by the cut-line signature.

Additional monomers may be needed to touch the top of the box.
Also, if the value of v indicates that the partial conformation does
not touch either the left or the right walls of the w × h box, then
additional monomers may be required in order for the remaining
part of the conformation to touch the corresponding wall. If the
number of unused monomers, N − n, is less than the minimal
required number of monomers, than the current combination of
{si}, v, and n is pruned out and prevented from generating future
conformations. The method is exactly the same as that in the case
of the enumeration of SAWs [37].

In addition, if theminimal required number ofmonomers is less
than the remaining volumeof the box, or theheight of theminimal-
length configuration exceeds the remaining height of the box, the
current state is pruned out.

5. Example

An example of the explicit step-by-step building procedure for
N = 4 and w × h = 2 × 2 is illustrated in Fig. 11. The non-zero

Fig. 11. An example of the step-by-step building procedure of the partial conformations, for N = 4 and w × h = 2 × 2. The nonzero values of F (n, k, v, s) are also shown.
Partial conformations that are pruned out are crossed out with grey X. Unique partial conformations below the cutline are drawn with dashed lines, and two alternative
partial conformations are drawn with zigzag and wiggly lines for (n, k, v, s) = (3, 1, B, 012). The four full conformations are shown below the complete 2 × 2 box.
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Fig. 12. Computational times of the transfer matrix and the explicit enumeration compared.

Fig. 13. Ratio of the computational times for the chain length N to that for N − 1, shown for both the transfer matrix computation and explicit enumeration.

values of the partial density F (n, k, v, s) are also shown, where v
takes the value of N, L, R, and B, depending on whether the partial
conformation is touching none of the boundaries, only the left
boundary, only the right boundary, or both of them, respectively.
There are a total of four conformations with K = 1 for this box,
which are related by rotations. As mentioned earlier, the density
of the states has to be divided by four to remove this symmetry.

6. Computational time

In each cell of the lattice, the transfer matrix generates new
cut-line signatures from the old ones. From the update rules, it is
clear that the number of new cut-line signatures generated from a
given old cut-line signature is of order one; therefore, the compu-
tational time for processing a cell at (i, j) will be proportional to the

number of cut-line signatures prior to processing the cell, denoted
as Ns(i, j;N, w, h), and the total computational time t(N, w, h)
for computing the density of states of the polymer conformation
of length N spanning the box of width w and height h will be
proportional to

t(N, w, h) ∝

h∑
j=1

w+1∑
i=1

Ns(i, j;N, w, h). (3)

Because only the numbers 0, 1, 2, 3, or 4 can appear for each digit
of the cut-line signatures, Ns(i, j;N, w, h) < 5w+1. This is a strict
inequality because there are actually many constraints, such as the
fact that the terminals appear at most twice, the loop stems have
to be balanced, etc. This bound leads to the upper bound for the
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Fig. 14. Memory requirement for the partial density of states as a function of the chain length N .

Fig. 15. Ratio of the memory size for the chain length N to that for N − 1.

computational time:

t(N, w, h) < (w + 1)h5w+1
× const. (4)

Because of the symmetry of the problem, we may restrict the
computation to the boxes with w ≤ h or w ≥ h, both of which
yield the same result, but the restriction to the boxes with w ≤ h
will lead to a lesser number of intermediate cut-line signatures and
hence less computational time. From the conditions w ≤ h and
w + h ≤ N , we get the upper bound for w, w ≤ N/2. Therefore,
the computational time T (N) for the chain length N satisfies the
inequality:

T (N) =

∑
w,h

t(N, w, h) <
∑

1≤w≤N/2

N(N/2 + 1)5N/2
× const

= N2(N + 2)5N/2
× const

= N2(N + 2)2.24N
× const. (5)

Asymptotically, this upper bound is better than the 2.7N of ex-
plicit enumeration, showing that in the limit of N → ∞, the
transfer matrix is superior to the explicit enumeration in terms
of computational time. Of course this asymptotic result may be
of little use if the overall multiplicative constant in Eq. (5) is too
large. Considering the worst-case scenario, it might be the case
that the transfer matrix is slower for short chain lengths, and
the length where the computational time of the transfer matrix
method becomes comparable to that of the explicit enumeration
is much longer than the range of lengths accessible to present day
computers. One fortunate thing is that the upper bound in Eq. (5)
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Fig. 16. Specific heat per monomer, C/NkB , as a function of T/ϵ, for N = 40, 41, 42.

is very loose, and there is a large gap between the actual T (N) and
this upper bound. It is crucial to reduce T (N) further by pruning out
unnecessary cut-line signatures in the early stages, as explained in
the previous section.

The actual computational time of the transfer matrix, as well as
that of the explicit enumeration, is shown in Fig. 12 as functions of
the chain length, up to N = 32 for the explicit enumeration and up
to N = 42 for the transfer matrix. We find that the computational
time of the explicit enumeration follows the same scaling as that
for the total number of conformations, and scales as ∼2.7N . On the
other hand, the computational time for the transfer matrix scales
as ∼1.6N . This is more clearly seen in Fig. 13 where the ratio of the
computational time for the chain lengthN to that forN−1 is shown
as a function of N for each method. The scaling of ∼1.6N for the
computational time of the transfer matrix is a rather conservative
estimate: the ratio of the computational time forN = 42 to that for
N = 41 is in fact about 1.52, suggesting that the ratiomay approach
1.5 asymptotically (Fig. 13).

From these results, we see that the transfermatrix computation
is faster than the explicit enumeration for N > 21. We note
that the recent efficient implementation of explicit enumeration
has increased the computational speed considerably [32]. The im-
provement relevant for the serial computation in a single CPU is
the one-step generation of the last two monomers in the chain.
This will correspond to a decrease of the effective chain length by
two in terms of the computational time, resulting in the rightward
horizontal shift of the graph for the explicit enumeration in Fig. 12.
Taking this into account, we can safely say that the transfer matrix
is faster than the explicit enumeration for N > 25. In fact, the
computation time for chain length 42 using the transfer matrix
method takes only 15 h on a single Intel i3-3220 CPU, whereas the
explicit enumeration is expected to take about six years even if we
generate the last two monomers in one step.

7. Memory requirement

In the case of the explicit enumeration, only the occupa-
tion statuses of the lattice sites are to be recorded at any mo-
ment, so the demand for the memory is virtually negligible.
On the other hand, the transfer matrix requires a considerable

amount of memory, because the intermediate cut-line signa-
tures must be stored at each step. In each step, we generate the
new partial densities Fnew(s1, . . . , sw+1, v, n, k) from the old ones
Fold(s1, . . . , sw+1, v, n, k). After the generation of Fnew, Fold is no
longer needed, its memory space can be recycled and be used as
that for Fnew at the next step. Therefore, we only need the memory
storage for Fnew and Fold.

We cannot allocate the memory space of a reasonable size for
F (s1, . . . , sw+1, v, n, k) using a standard dynamic array, especially
because we cannot predetermine a reasonable value of the up-
per bound for the number of possible signatures (s1, . . . , sw+1).
Therefore, we used the red–black tree [43], a data structure whose
size increases as new items are inserted, which also supports fast
retrievals and insertions of items, to store the combinations of
(s1, . . . , sw+1, v). Because 0 ≤ n ≤ N and 0 ≤ k ≤ Kmax(N),
the density of states may be stored as an array of size (N +

1) × (Kmax(N) + 1) for a given combination of (s1, . . . , sw+1, v).
However, in order to save further memory space, we stored the
partial density of states only for the values of n with a non-
zero number of conformations, using the linked list. The partial
density of states F (s1, . . . , sw+1, v, n, k) for a given combination of
(s1, . . . , sw+1, v, n) was then stored as an array of size Kmax(N)+1.
Because F (s1, . . . , sw+1, v, n, k) is stored as an eight-byte unsigned
long integer, the memory requirement Nmem in bytes is

Nmem = 16Nmax
c (Kmax(N) + 1), (6)

neglecting the space for other variables. Here, Nmax
c denotes the

maximum number of combinations (s1, . . . , sw+1, v, n) encoun-
tered during the progression of the algorithm. The extra factor of
two comes from the fact that memory space for both Fnew and Fold
is required 1 . The values of (Kmax + 1), Nmax

c , (Kmax + 1) ·Nmax
c , and

Nmem are given in Table 1 as functions of N , and the graph for Nmem
is shown in Fig. 14. The memory asymptotically scales as ∼1.5N ,
as can be seen from the graph for the ratio of memory space for
chain length N to that for N − 1 (Fig. 15). A chain length of up to

1 Of course the numbers of the old and the new signatures are different at any
moment in general, so thememory space neededwill be slightly less than that given
in Eq. (6) but we neglect this small difference.
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Table 1
Memory space required, Nmem , as functions of the chain length N . The factors con-
tributing to Nmem are also shown.

N Kmax + 1 Nmax
c

a (Kmax + 1) · Nmax
c Nmem

b

3 1 0 0 0
4 2 4 8 128
5 2 11 22 352
6 3 34 102 1632
7 3 50 150 2400
8 4 79 316 5056
9 5 197 985 15760

10 5 318 1590 25440
11 6 416 2496 39936
12 7 718 5026 80416
13 7 1190 8330 133280
14 8 1786 14288 228608
15 9 2355 21195 339120
16 10 3577 35770 572320
17 10 5413 54130 866080
18 11 7520 82720 1323520
19 12 10819 129828 2077248
20 13 16196 210548 3368768
21 13 22768 295984 4735744
22 14 32820 459480 7351680
23 15 48165 722475 11559600
24 16 68046 1088736 17419776
25 17 99033 1683561 26936976
26 17 143609 2441353 39061648
27 18 206856 3723408 59574528
28 19 296976 5642544 90280704
29 20 428236 8564720 137035520
30 21 626008 13146168 210338688
31 21 890622 18703062 299248992
32 22 1298532 28567704 457083264
33 23 1886902 43398746 694379936
34 24 2662054 63889296 1022228736
35 25 3951437 98785925 1580574800
36 26 5669758 147413708 2358619328
37 26 8082368 210141568 3362265088
38 27 11957233 322845291 5165524656
39 28 17019325 476541100 7624657600
40 29 24664128 715259712 11444155392
41 30 36042443 1081273290 17300372640
42 31 50797197 1574713107 25195409712

a The maximal number of combinations (s1, . . . , sw+1, n), encountered during the
progression of the algorithm.
b The memory requirement in bytes.

N = 46 seems feasible with 128 GB of memory. Memory space
can be further saved by storing only the non-zero partial density
of states for a given combination of (s1, . . . , sw+1, v, n), instead of
using an array of fixed size Kmax(N)+1.We have not implemented
this additional flexibility at this stage, because itwillmake the code
unnecessarily complicated.

8. New results

With the transfermatrix, all the known results for up toN = 40
could be reproduced [31,32,44], and the new results for N = 41
and N = 42 could be obtained. The symmetry reduced densities
of states ω(K ) are shown for N = 41 and N = 42 in Table 2. The
correctness of the result can be also cross checked against the total
number of SAWs,

∑
KΩ(K ), previously obtained using a transfer

matrix algorithm for up to N = 80 [37,38,45].
It is straightforward to compute the exact partition function

from the density of states using the formula Eq. (1), from which
various physical quantities can be obtained. One example of such
a quantity is the specific heat per monomer:

C
kBN

=
1

NkB

∂⟨E⟩

∂T
=

1
Nk2BT 2

(
∂2 ln Z
∂β2

)

Table 2
Densities of states for N = 41 and N = 42. The conformations related by rotation
or reflection are counted only once.

K N = 41 N = 42

0 204215004596272 476389994800229
1 885251445177512 2115847261636492
2 2079694461161427 5084598808157791
3 3464902826469576 8657251498020670
4 4595250741229180 11720220074174806
5 5156290616308466 13411555823963447
6 5083784125308556 13473468289589989
7 4512952758682396 12179635324640045
8 3670155319845554 10081627576356447
9 2768628794352198 7738288654944187

10 1955769586807773 5560932203029585
11 1302911413863672 3768601894558080
12 823108147575701 2422174369581956
13 495137600489206 1482830916877836
14 284503636510917 867529474495897
15 156477901312440 486206027920648
16 82492824518467 261467916938889
17 41702482928294 135033618385132
18 20209523024356 66985846124393
19 9372380538742 31891765478273
20 4149991633601 14547520272987
21 1746712880458 6339793465387
22 693139648771 2627364285081
23 257015560326 1027082613128
24 87861707542 375429560638
25 26600160006 125822825988
26 6879377897 37442098467
27 1268269356 9537009150
28 95375740 1636035133
29 744882 106244025
30 810017

Total 37 599781156059284 100047629074894793

=
1

Nk2BT 2

⎡⎣∑q q
2Ω(q)eβqϵ∑

p Ω(p)eβpϵ −

(∑
q qΩ(q)eβqϵ∑
p Ω(p)eβpϵ

)2
⎤⎦ . (7)

The specific heats for 40 ≤ N ≤ 42 are shown in Fig. 16 as
functions of the temperature T/ϵ. The two peaks at T/ϵ ≃ 1.0
and T/ϵ ≃ 0.2 correspond to the collapse and freezing transitions,
respectively [27–29]. As can be seen in the figure, in contrast to the
peak for the collapse transition that changes smoothly with N , the
peak for the freezing transition becomes especially prominent as
N approaches 42. This is because 42 = 6 × 7 is the magic number
where the ground states have a special form and their numbers
are smaller than for neighbouring values of N [27,28,46]. There
is a possibility that this transition is only a finite-size effect and
does not exist in the infinite-size limit. The study of polymers with
longer chain sizes may shed more light on this issue.

9. Discussion

In this work, I developed a transfer matrix method for comput-
ing the exact partition function of the ISAW model on the square
lattice, by extending the previous algorithm for the enumeration
of the total number of SAW conformations [37,38]. We found that
the computational time scales as 1.6N , in contrast to 2.7N in the
case of explicit enumeration, and all the densities of states for chain
lengths of up to N = 42 could be obtained within two days with a
single CPU.

However, the transfer matrix method developed in this work is
not meant to replace the explicit enumeration. Rather, the transfer
matrix method is a tool which is complementary to the explicit
enumeration. In its current form, the method can be used only for
the square-lattice homopolymer, and cannot be applied to other
lattice models such as three-dimensional polymer or HP protein
models. Even in the context of the square-lattice homopolymer,
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only the quantities solely determined by the spatial distribution
of the monomers, regardless of their positions along the chain,
can be computed by the present method. The contact numbers
considered in the current work, and other geometrical quantities
such as radius of gyration [37,38], are such examples. On the other
hand, if we want to compute the average length of monomers
connecting two monomers that are in spatial contact, the transfer
matrix method cannot be used, because such non-local informa-
tion about the chain is not maintained in the building process of
conformations. Another limitation is the requirement of memory
resources, which is virtually zero in the case of explicit enumer-
ation. Therefore, in these situations where the transfer matrix
method does not work, explicit enumeration remains a valuable
tool.

The tremendous amounts of computational time required for
the explicit enumeration of polymer chains have been overcomeby
parallelization [32,36].We can expect the same for the transferma-
trix algorithms. For the algorithm developed in the current work,
the simplest method for parallelization would be to distribute the
boxes to the nodes, because the enumerations of conformations
spanning distinct boxes are independent tasks. The same idea
has been used in the context of explicit enumeration [31]. The
efficiency of this simple method is far from ideal, because the
number of conformations varies greatly from box to box, and some
of the nodes will keep working while the others have already
finished the task. It is crucial to distribute the load evenly among
the computational nodes to obtain maximal efficiency. In fact, an
efficient parallel implementation of the transfer matrix method
for enumerating self-avoiding polygon (SAP) has been developed
where cut-line signatures rather than boxes are distributed among
the nodes [47]. This idea is also similar to the recent efficient paral-
lelization of the explicit enumeration where the partial conforma-
tions rather than the boxes are distributed among the nodes [32].
Because themethod developed in the current work is an extension
of the method for SAW enumeration [37,38], which is in turn an
extension of themethod for SAP [40,41], and thus shares a common
backbone structure, it is in principle straightforward to implement
such parallelization. It is expected that the parallelization based on
the distribution of cut-line signatures will also reduce thememory
burden of each node, allowing us to compute the density of states
for longer chains with ease.
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