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Abstract

Transfer entropy (TE) is a widely used tool for quantifying causal relationships in stochastic

dynamical systems. Traditionally, TE and its conditional variants are applied pairwise between

dynamic variables to infer these relationships. However, identifying key drivers in such systems

requires a measure of the causal influence exerted by each component on the entire system. I

propose using outgoing transfer entropy (OutTE), the transfer entropy from a given variable to

the collection of remaining variables, to quantify the causal influence of the variable on the rest of

the system. Conversely, the incoming transfer entropy (InTE) is also defined to quantify the causal

influence received by a component from the rest of the system. Since OutTE and InTE involve

transfer entropy between univariate and multivariate time series, naive estimation methods can

result in significant errors, especially when the number of variables is large relative to the number

of samples. To address this, I introduce a novel estimation scheme that computes outgoing and

incoming TE only between significantly interacting partners. The feasibility and effectiveness of

this approach are demonstrated using synthetic data and real oral microbiota data. The method

successfully identifies the bacterial species known to be key players in the bacterial community,

highlighting its potential for uncovering causal drivers in complex systems.
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I. INTRODUCTION

Causal inference in interacting dynamic systems is a critical area of study that aims to

understand the cause-and-effect relationships within complex systems, such as those found in

neuroscience, economics, ecology, and biology [1–22]. The goal is to distinguish true causal

interactions from mere correlations, which is essential for predicting system behavior and

designing effective interventions. Over the past several decades, frameworks like Granger

causality [1] and transfer entropy [2] have been developed to address these challenges. In

particular, transfer entropy (TE) [2] is a model-free, information-theoretic measure of causal

influence between two time series. TE uniquely detects non-linear and asymmetric inter-

actions, making it ideal for complex systems where traditional linear methods fall short.

The concept of TE has been extended to conditional transfer entropy, also known as cau-

sation entropy, to quantify direct causal relationship between a pair of components in a

dynamic system consisting of many interacting components [12–21]. Although there are

nuances in interpreting transfer entropy and its conditional variant as information flow or

causal influence quantification [23], these measures have been widely used to uncover causal

relationships in complex systems, including neural networks [24–26], social networks [27],

and gene regulatory networks [28, 29].

In all these applications, the causal relationships between pairs of components in the

system were estimated. Influential components in the system were identified within the

framework of such pairwise relationships. A directed binary network was constructed, where

each variable was treated as a node, and a directed edge was generated between nodes with

statistically significant values of transfer entropy or conditional transfer entropy. Nodes

with a number of outgoing links significantly larger than the average were then identified as

the most influential nodes. For instance, key regulatory genes in gene regulatory networks

have been identified in this manner by analyzing single-cell RNA sequencing data [28, 29].

However, constructing a binary network disregards the actual values of transfer entropy or

its conditional variant. It is possible that a component exerts a strong influence on only a few

other components, which in turn influence others in a hierarchical manner. Key components

in such a hierarchical structure cannot be identified by simply counting the number of

outgoing links in a directed network without considering their weights. A straightforward

approach to incorporating weights when computing the outward influence of a node in a
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weighted network is to sum the weights of the outgoing edges. Yet, as elaborated later,

transfer entropy and its conditional variant are not additive quantities. From an information-

theoretic perspective, the causal influence of a component on the rest of the system is better

quantified by the transfer entropy from the corresponding variable to the rest of the system,

which I will refer to as “outgoing TE (OutTE)”. Here, the system involves two variables:

a univariate source variable and a multivariate target variable. Components with OutTE

values significantly higher than the average can be identified as key components that exert

a strong influence on the rest of the system. Similarly, “incoming TE (InTE)”, defined as

the transfer entropy from the rest of the system to a given component, quantifies the causal

influence exerted on the component by the rest of the system. As will be elaborated further,

naive estimates of OutTE or InTE can lead to significant estimation errors, especially when

the number of variables is comparable to or larger than the length of the time series. In

this work, I will introduce the novel estimation method for the OutTE and InTE, where

estimation is performed only between significantly interacting partners.

The outline of the paper is as follows. In section II, I will review the concept of TE

and conditional TE, and introduce OutTE and InTE. In Section III, I will illustrate the

estimation problems of outTE and inTE using synthetic data from simple models, showing

how estimation errors grow as the number of unrelated variables increases. In section IV, I

will propose a novel estimation method for OutTE and InTE, which overcomes the estima-

tion problem. In section V, I will apply my method to microbiota data, showing that the

method successfully identifies the bacterial species known to be key players in the bacterial

community, where traditional network centrality measures fail. The section VI concludes

the paper.

II. OUTGOING AND INCOMING TRANSFER ENTROPY

Information theory offers rigorous foundation for causal inference by quantifying the

information shared between a pair of variables X and Y through mutual information I(X, Y )

defined as:

I(X, Y ) ≡

〈
log2

(
P (X, Y )

P (X)P (Y )

)〉
(1)

where P (X) and P (Y ) are the marginal probability distributions for the random variables X

and Y , P (X, Y ) are their joint probability distribution, and 〈〉 denote the expectation value.
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In systems with more than two variables, one often seeks the direct correlation between X

and Y after accounting for other variables. Denoting all variables other than X and Y by

Z, the conditional mutual information I(X, Y/Z) is defined as:

I(X, Y/Z) ≡

〈
log2

(
P (X, Y/Z)

P (X/Z)P (Y/Z)

)〉
, (2)

which quantifies the direct correlation between X and Y .

In dynamic systems, given two time series X(t) and Y (t), where the integer t is an index

for a discretized time, one might initially attempt to quantity the causal influence of X on

Y using I(X−, Y (t)), where X− ≡ (X(t − 1), X(t − 2), · · ·X(t − L)) represents the past

history of X , where L is the maximum time lag to be considered. However, as previously

mentioned, I(X−, Y (t)) only quantifies the shared information between the history of X and

the present state of Y , not the causal influence of X on Y . It is possible that Y actually

causes X , which could still result in a non-zero value of I(X−, Y (t)). Therefore, to quantify

the true causal influence of X on Y , we must correct for the effect due to the history of Y ,

using the measure:

TX→Y ≡ I(X−, Y (t)/Y−). (3)

This is known as transfer entropy (TE) from X to Y [2]. Transfer entropy can also be

expressed as:

TX→Y = H(Y (t)/Y−)−H(Y (t)/X−, Y−), (4)

where

H(Y (t)/Y−) ≡ 〈− log2 P (Y (t)/Y−)〉

H(Y (t)/X−, Y−) ≡ 〈− log2 P (Y (t)/X−, Y−)〉. (5)

Here, the conditional entropies H(Y (t)/Y−) andH(Y (t)/X−, Y−) represent the uncertainties

of Y (t) after observing the history of Y and after observing the histories of both X and Y ,

respectively. Thus, TX→Y can be interpreted as the reduction in the uncertainty of Y (t)

after observing the history of X , given that the we already know the history of Y . It can

be proved that a conditional entropy is non-negative [30], and consequently

H(Y (t)/Y−) ≥ 0, H(Y (t)/X−, Y−) ≥ 0.

It can also be shown that

H(Y (t)/Y−) ≥ H(Y (t)/X−, Y−),
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so that TEX→Y ≥ 0. Specifically, this implies that if Y (t) is completely determined by Y−

such that H(Y (t)/Y−) = 0, then TX→Y = 0. The intuitive interpretation is clear: If there is

no uncertainty on Y (t) after we observe Y−, then obviously there is no additional uncertainty

to be removed by knowing X−.

In systems with more than two time series, we are often interested in the direct causal

influence of X on Y after accounting for indirect effects due to other variables. Denoting the

multivariate time series of variables other than X and Y by Z, the direct causal influence

of X on Y is quantified by the measure [12–15]

T(X→Y )/Z ≡ I(X−, Y (t)/Y−, Z−) = H(Y (t)/Y−, Z)−H(Y (t)/X−, Y−, Z). (6)

This measure is called multivariate transfer entropy, conditional transfer entropy, causation

entropy, or full conditional mutual information [12–21].

As a simple example to illustrate the concept of transfer entropy, consider a system

consisting of two variables: a sender variable S and a recipient variable R. I will refer to

this system as the SR model (Fig. 1). The variable S(t) randomly takes the value of either

0 or 1 with equal probability. R(0) is also random, but for t > 0, R(t) is fully determined

by S(t− 1) and R(t− 1) according to the rule R(t) = S(t− 1)⊕R(t− 1), where ⊕ denotes

the exclusive OR operation. The dynamics here is Markovian, so we have S− = S(t−1) and

R− = R(t− 1). Without knowledge of the past of S, the dynamics of the recipient variable

appears entirely random, leading to H(R(t)/R−) = 1 bit. Furthermore, since R(t) is fully

determined by S(t− 1) and R(t− 1), we have H(R(t)/R−, S−) = 0, resulting in TS→R = 1

bit. In contrast, since H(S(t)/S−) = H(S(t)/R−, S−) = 1 bit, it follows that TR→S = 0.

The focus of this work is on identifying key variables that exert significant influence on the

rest of a stochastic dynamical system consisting of many interacting components. To achieve

this, we compute OutTE for each variable X , OutTE(X) ≡ TX→rest, where “rest” denotes

the collection of all variables except X . In this context, the “rest” is a multivariate target,

whereas the source variableX is univariate. Variables with exceptionally large OutTE values

are identified as key influencers of the system’s overall dynamics. Conversely, the incoming

transfer entropy (InTE) is defined as InTE(X) ≡ Trest→X , quantifying the causal influence

exerted on X by the rest of the system.

It is important to note that neither OutTE(X) nor InTE(X) can be decomposed into the

sum of bivariate (conditional) transfer entropies, unless the dynamics of remaining variables
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are completely decoupled from one another. For example, suppose we have three variables

S, R1, and R2, and R1(t) = R2(t) at all times. Let us assume that the dynamics of S and

R1 (R2) is the same as that of the SR model described above. We then have

OutTE(S) = TS→(R1,R2) = TS→R1
= TS→R2

= 1.

Also, we have

TS→R1/R2
= I(S(t− 1), R1(t)/R1(t− 1), R2(t− 1)) = I(S(t− 1), R1(t)/R1(t− 1)) = TS→R1

,

TS→R2/R1
= I(S(t− 1), R2(t)/R1(t− 1), R2(t− 1)) = I(S(t− 1), R2(t)/R2(t− 1)) = TS→R2

.

(7)

Therefore, TES→R1
+ TES→R2

= TES→R1/R2
+ TES→R2/R2

= 2 bits, leading to

OutTE(S) 6= TS→R1
+ TS→R2

,

OutTE(S) 6= TS→R1/R2
+ TS→R2/R1

. (8)

As another example, suppose now we have two copies of sender variables S1(t) = S2(t), and

the receiver variable R(t). Then we have

InTE(R) = T(S1,S1)→R = TS1→R = TS2→R = 1.

Since H(R(t)/R(t− 1), S1(t− 1)) = H(R(t)/R(t− 1), S2(t− 1)) = H(R(t)/R(t− 1), S1(t−

1), S2(t− 1)), we have

TS1→R/S2
= H(R(t)/R(t− 1), S2(t− 1))−H(R(t)/R(t− 1), S1(t− 1), S2(t− 1)) = 0,

TS2→R2/S1
= H(R(t)/R(t− 1), S1(t− 1))−H(R(t)/R(t− 1), S1(t− 1), S2(t− 1)) = 0.(9)

Therefore, we have

InTE(R) 6= TS1→R + TS2→R,

InTE(R) 6= TS1→R1/S2
+ TS2→R2/S1

. (10)

III. ESTIMATION PROBLEM OF OUTGOING AND INCOMING TRANSFER

ENTROPY.

In practice, the true values of OutTE and InTE are not available and must be estimated

from data, which can introduce estimation errors. Recall that TX→Y , H(Y (t)/Y−), and
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H(Y (t)/X−, Y−) are all nonnegative quantities. Assume TX→Y > 0, so H(Y (t)/Y−) > 0.

Also, let X be univariate and Y multivariate with dimension DY . On one hand, the esti-

mator Ĥ(Y (t)/Y−) tends to underestimate the true value H(Y (t)/Y−) when DY & Nsamp,

where Nsamp is the number of samples, due to insufficient observation of events (Appendix

A). From the fact that Ĥ(Y (t)/Y−) ≥ Ĥ(Y (t)/X−, Y−), we see that if the underestima-

tion is so severe that Ĥ(Y (t)/Y−) ≃ 0, then Ĥ(Y (t)/X−, Y−) ≃ 0, leading to T̂X→Y =

Ĥ(Y (t)/Y−) − Ĥ(Y (t)/X−, Y−) ≃ 0 even if TX→Y > 0. That is, T̂X→Y underestimates the

true value of TX→Y . On the other hand, the estimator Ĥ(X(t)/X−, Y−) tends to under-

estimate the true value for DY & Nsamp, while Ĥ(X(t)/X−) remains unaffected by DY .

Consequently, T̂Y→X = Ĥ(X(t)/X−) − Ĥ(X(t)/X−, Y−) overestimates the true value of

TY→X . Representing the collection of variables in the system other than X as Y , we find

that the estimators ÔutTE(X) and ÎnTE(X) tend to underestimate and overestimate their

true values, OutTE(X) and InTE(X), respectively, if the true values are positive.

For the special cases where OutTE(X) and InTE(X) are zero, underestimation cannot

occur since these quantities are nonnegative. In such cases, overestimation is possible, but

ÔutTE(X) will vanish if the number of samples is sufficiently small compared to the number

of variables. However, our primary goal is to identify a few variables with the highest values

of ÔutTE and ÎnTE. Therefore, cases where the true values vanish are of limited relevance

in real data applications.

To illustrate the issue of underestimation of OutTE, consider the SR model introduced in

the previous section (Fig. 1). Suppose we have four observed transitions of variables (S,R):

(0, 0) → (0, 0), (0, 1) → (1, 1), (1, 0) → (1, 1), (1, 1) → (1, 0). (11)

In this case, the empirical conditional probability distributions P̂ (R(t)/R−) and P̂ (R(t)/S−, R−)

coincide with the true conditional probability distributions P (R(t)/R−) and P (R(t)/S−, R−),

respectively, so T̂S→R = TS→R = 1 bit.

Next, suppose we add some variables C1, C2, · · ·Cn each of which takes random value of

either 0 or 1 and is entirely disconnected from the rest of the system. I will refer to these as

“confounding variables” (see Fig. 1). The true values of OutTE(S) and OutTE(R) remain

unaffected, as the dynamics of C1, C2, · · ·Cn are independent of S and R. However, they

can severely impact the estimated values of OutTE(S) and OutTE(R). Let us assume just

one confounding variable C is added to the example in Eq.(11) so that the four observed
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transitions of the variables (S,R, C) become:

(0, 0, 1) → (0, 0, 1), (0, 1, 0) → (1, 1, 1), (1, 0, 0) → (1, 1, 0), (1, 1, 1) → (1, 0, 0)(12)

Now the dynamics of (R,C) estimated by the data above is completely deterministic. Specif-

ically, the only four observed transitions for (R,C) are

(0, 1) → (0, 1), (1, 0) → (1, 1), (0, 0) → (1, 0), (1, 1) → (0, 0), (13)

which are all unique. This leads to Ĥ(R(t), C(t))/R−, C−) = Ĥ(R(t), C(t))/R−, C−, S−) =

0, resulting in ÔutTE(S) = T̂S→(R,C) = 0. This represents a drastic underestimation com-

pared to the true value of OutTE(S) = 1. As mentioned earlier, such an artifact occurs

when the number of variables is comparable to or larger than the number of samples. In

such situations, most observed transitions become rare events, typically appearing only once

in the data, leading to the underestimation of the values of conditional entropy (Appendix

A). Examples of overestimation will be demonstrated with simulations below.

A synthetic time series of length 300 were generated using the probability distribution

of the SR model, and the estimators ÔutTE and ÎnTE were computed from the empirical

distribution using partial series of length T . I assumed Markovian dynamics from the start,

so the number of observed transitions is T − 1. The values of ÔutTE and ÎnTE were

computed using the JIDT toolkit [31], where empirical distributions were estimated by

counting the frequencies of events, such as a variable taking a specific value or a transition

occurring between a given pair of values. The graphs of ÔutTE(S), ÔutTE(R), ÎnTE(S)

and ÎnTE(R) are shown as functions of T in Figs. 2, 3, 4, and 5, respectively, for different

numbers of confounding variables: n = 0 (black line), n = 3 (blue line), and n = 6 (green

line). We observe that ÔutTE(S) is lower than the true value of OutTE(S) = 1 bit for small

sample sizes, but begins to converge to the true value around T ≃ 10 for n = 0 (Fig. 2).

As the confounding variables are added, the underestimation becomes more severe for a

given T , and convergence becomes slower. In the case of OutTE(R), whose true value is

zero, we now encounter an overestimation problem in the presence of confounding variables

(Fig. 3). We also observe that the estimation error increases with T over the range shown

in the figure, and that the estimation with n = 6 is better for small T , but becomes worse

for T & 300. This occurs because, for small T and large n, Ĥ(S(t), C1(t), · · · , Cn(t))/(S(t−

1), C1(t − 1), · · · , Cn(t − 1)) ≃ 0 and Ĥ(S(t), C1(t), · · · , Cn(t))/(R(t − 1), S(t − 1), C1(t −
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1), · · · , Cn(t − 1)) ≃ 0, due to the underestimation problem, resulting in ÔutTE(R) ≃ 0.

Thus, the small value of ÔutTE(R) for small T and large n is an artifact of the limited

sample size rather than an accurate estimation.

For InTE(S), whose true value is zero, we also encounter an overestimation problem, but

the artifact observed for ÔutTE(R) does not appear here because the target is univariate.

The overestimation becomes progressively worse as the confounding variables are added

(Fig. 4). Finally, the estimate of InTE(R), whose true value is one bit, remains unaffected

by the presence of the confounding variables, as shown by the black line in Fig. 5. Note

that according to the definition of the transfer entropy in Eq. (4), the estimate ÎnTE(R) of

InTE(R) can be written as

ÎnTE(R) ≡ T̂rest→R = T̂(S,C1,··· ,CN )→R = Ĥ(R(t)/R−)− Ĥ(R(t)/R−, S−, C1−, · · · , CN−
).

(14)

Since the first term Ĥ(R(t)/R−) in Eq. (14) does not depend on the confounding vari-

ables, the only possible dependence on the confounding variables originates from the second

term Ĥ(R(t)/R−, S−, C1−, · · · , CN−
). However, in this model, the values of R(t − 1) and

S(t− 1) uniquely determine the value of R(t), which also holds true for the observed tran-

sitions. The addition of confounding variables does not affect this determinism. Therefore,

Ĥ(R(t)/R−, S−, C1−, · · · , CN−
) = 0 regardless of the number of confounding variables, lead-

ing to ÎnTE(R) = Ĥ(R(t)/R−), which is independent of the confounding variables. This

property is specific to this model. In general, ÎnTE(R) tends to overestimate the true value,

as mentioned earlier in this section.

I conducted a similar analysis on a system containing a source variable I, a sender variable

S, a sink variable X , and a receiver variable R, as shown in Fig. 6. I will refer to this system

as the ISXR model. In this model, the variable I sends two independent bits of information

to two nodes X and R, and S sends one bit of information to X . As a result, X receives

one bit of information from both I and S (total two bits), while R receives one bit of

information from I alone. The estimates ÔutTE(I), ÔutTE(S), ÔutTE(X), ÔutTE(R),

ÎnTE(I), ÎnTE(S), ÎnTE(X), and ÎnTE(R), are shown in Figs.7 through 14 for different

numbers of confounding variables (n = 0, 3, 6), represented by black, blue, and green lines,

respectively.

The results are qualitatively similar to those of the SR model. Although ÔutTE(I) and

9



ÔutTE(S) converge towards their true values (2 bits for I and 1 bit for S) as T increases,

the convergence slows down for larger n. For OutTE(X) and OutTE(R), the estimates are

larger than their true values (which are zero). However, this overestimation is mitigated

for large n and small T , due to the same artifact as in the case of ÔutTE(R) in the SR

model. The overestimation of InTE(I) and InTE(S), whose true values are zero, worsens

with increasing n, much like the overestimation of InTE(S) in the SR model. Finally,

ÎnTE(X) and ÎnTE(R) remain unaffected by the presence of confounding variables for the

same reason as in ÎnTE(R) in the SR model.

IV. THE METHOD FOR ACCURATE ESTIMATION OF OUTGOING AND IN-

COMING TRANSFER ENTROPY

In the previous examples, the estimation errors were due to the proliferation of con-

founding variables. If we had eliminated unrelated variables beforehand, the estimation

error would have been reduced. Therefore, instead of estimating OutTE and InTE between

a variable and the collection of all the other variables, we first take a pruning step where

only variables causally related to the variable of interest are selected. That is, we construct a

directed binary network in which each variable is represented by a node, and an edge X → Y

exists if and only if T̂(X→Y )/Z is statistically significant, where Z denotes the collection of all

variables except X and Y . The construction of such a network using the exact computation

of T̂(X→Y )/Z , along with rigorous statistical tests, is computationally costly, and various ap-

proximation schemes have been proposed to construct the causal network [13, 15, 20, 32–34].

Here, I used the method developed in ref. [20], where the set of source variables with statis-

tically meaningful causal influence is constructed step by step for each target variable. To

elaborate, for a given target variable Y , let S denote the set of candidate source variables,

initialized as an empty set. Assuming Markovian dynamics, where X− = X(t− 1) for any

variable X , the procedure is as follows:

1. Forward Selection of Source Variables:

• First, select the candidate source variable X1 that maximizes the conditional

mutual information I(X1(t−1), Y (t)/Y (t−1)) and test its statistical significance.
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• If X1 is statistically significant, include it in S. Then select X2 such that I(X2(t−

1), Y (t)/Y (t− 1), X1(t− 1)) is maximal and test its significance.

• Repeat this process until no further statistically significant source variables are

found.

2. Backward Elimination of Redundant Variables:

• Among the candidate source variables X1, · · · , Xn ∈ S, identify the variable

X̃1 that minimizes the conditional mutual information I(X̃1(t − 1), Y (t)/Y (t −

1), X1(t− 1), · · · ,
✘
✘
✘
✘
✘✘❳

❳
❳
❳
❳❳

X̃1(t− 1) · · · , Xn(t− 1)).

• Test the statistical significance of this value. If it is not significant, exclude X̃1

from S and repeat the process with X̃2, X̃3, and so on.

• Stop when the variable with the minimal conditional mutual information in S is

statistically significant or when S becomes empty.

3. Final Test and Edge Construction:

• If S is non-empty, test the statistical significance of the transfer entropy from the

collection of variables in S to the target variable Y .

• If significant, S is finalized as the set of source variables for Y . Otherwise, no

source variables are identified for Y .

• Draw directed edges from each variable in S to the target variable Y .

This process is repeated for each variable in the system, taking it as the target and

identifying its source variables. The resulting directed edges form a causal network. This

method has been implemented as a publicly available Python package called IDTxl [35] and

has been used for constructing causal network from the brain record data comprising 100

variables and 10,000 samples [20].

By computing OutTE and InTE only between the node of interest and its connected

nodes in the directed binary network derived from the causal inference algorithm described

above, estimation errors are significantly reduced, as shown in Figs. 2-5 for the SR model

and Figs. 7-14 for the ISXR model for n = 0 (red lines) and n = 6 (orange lines). We find

that the estimation error with pruning does not significantly increase even as the number of

confounding variables rises from 0 to 6.
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In the SR model, the pruned estimate ÔutTE(S) quickly converges to the true value

of 1 bit around T ≃ 10 (Fig. 2) regardless of n, overcoming the underestimation problem.

Pruning also reduces the overestimation problem of ÔutTE(R), even for n = 6, where

ÔutTE(R) < 0.1 for T ≥ 112 (Fig. 3). The same applies to ÎnTE(S), where ÎnTE(S) < 0.1

for T ≥ 97 even for n = 6 (Fig. 4). In case of ÎnTE(R) where confounding variables are not

problematic, pruning is not useful: in fact, it increases estimation error for very small sample

sizes. However, this error quickly diminishes once T reaches 6 (Fig. 5), so the damage is

minimal.

In the ISXR model, the pruned estimate ÔutTE(I) is zero up to T ≃ 30 because the net-

work construction algorithm could not detect the outgoing edges from the node I. However,

the estimate quickly converges to the true value of 2 bits for T & 30 regardless of n (Fig. 7).

In this range, the pruned estimate of OutTE(I) outperforms the unpruned estimate, even

for n = 0, as variable S, which is unrelated to I in terms of OutTE(I), act as a confound-

ing variable for I. The same behavior is observed for ÔutTE(S), where the estimate with

pruning converges to the true value of 1 bit around T ≃ 100. Again, for T & 100, prun-

ing proves beneficial even for n = 0, because it eliminates the confounding effect from the

variable I (Fig. 8). Pruning also reduces the overestimation problem of ÔutTE(X) (Fig. 9)

by removing the confounding effect from the variable R as well as those from the variables

Ci (i = 1, · · ·n). The effect of the pruning is even more drastic in the case of the estimate

ÔutTE(R), since it makes the estimate coincide with the true value of zero, as the network

algorithm does not detect any meaningful connection from the variable R to any other vari-

able for any sample size (Fig. 10). The difference in the behavior of the network construction

algorithm for OutTE(R) compared to OutTE(X) suggests that the presence of many incom-

ing edges for X , which should not affect the true value of OutTE(X), somehow confuses the

network construction algorithm at small sample sizes. This might result in the introduction

of some false outgoing edges, leading to small but non-zero values of ÔutTE(X).

Regarding InTE, pruning resolves the overestimation problem of InTE(I), where all of

the S, R, and X variables act as additional confounding variables (Fig. 11). For ÎnTE(S),

the pruned estimate coincides with the true value of 0 bits (Fig. 12). The difference between

the effect of pruning on ÎnTE(I) and ÎnTE(S) is similar to that between ÔutTE(X) and

ÔutTE(R). Pruning does not benefit ÎnTE(X) or ÎnTE(R), as confounding variables are

not an issue. However, introducing pruning does no harm for T & 100 for ÎnTE(X) and
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T & 30 for ÎnTE(R). The situation is similar to that of ÎnTE(R) in the SR model.

V. APPLICATION TO MICROBIOTA DATA

We now apply the current method to microbiota data obtained from a saliva sample

observed over 226 days, consisting of 879 variables [36]. Most of the variables represent

Operational Taxonomic units(OTUs), the lowest taxonomic levels for bacteria, but some of

the bacteria could only be resolved at higher taxonomic levels.

For reduced computational costs, we assume Markovian dynamics so X− = X(t− 1) for

any variable X . The causal network was constructed using the IDTxl package [35], and

transfer entropy was computed with the JIDT toolkit [31]. The values of ÔutTE and ÎnTE

for all variables are compared, with and without pruning, in Figs. 15 and 16, respectively,

where the variables are sorted in descending order of the pruned estimates, and the top 100

are shown. We observe that ÔutTE = 0 for all variables without pruning, due to severe

underestimation, while the pruned estimates range between 0 and 0.9 (Fig. 15). In the

case of ÎnTE, the estimated values are non-zero even without pruning. However, while the

estimates obtained with pruning range between 0 and 0.5, those obtained without pruning

can be as high as 3, and are unrelated to those obtained with pruning (Fig. 16), suggesting

large estimation errors without pruning. Also, compared to ÔutTE, where a few variables

have very high values, such peaks are less pronounced for ÎnTE, where no values exceed 0.5.

This difference in behavior is also evident in the histograms, which were constructed using

50 bins to count the frequency of occurrence (Figs. 17,18). In network analysis, the power-

law distribution of the number of links is often investigated as it indicates the presence of

hubs, nodes with disproportionately high influence or connectivity compared to others in

the network [37–39]. To explore whether ÔutTE (ÎnTE), the information theoretic analogue

of the number of outgoing (incoming) edges in a directed binary network, exhibits such

behavior, I examined their histograms. The histogram of ÔutTE indeed follows a power-

law behavior, suggesting the presence of nodes acting as information sources (Fig. 17). In

contrast, the histogram of ÎnTE fits the power law less well (Fig. 18).

The top five bacteria ranked by ÔutTE and ÎnTE are shown in the table I. We find

that the OTU Corynebacterium durum and the genus Fusobacterium, stand out in terms

of high ÔutTE values. C. durum is indeed known to play a crucial role in the community
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of oral microbiota. As a gram-positive bacterium, it is a prolific biofilm and extracellular

matrix producer [40], and a decrease in this bacterium is associated with a disease [41]. The

genus Fusobacterium, particularly the OTU Fusobacterium nucleatum, is also well known

as a key player in the community of oral bacteria [42, 43]. As a gram-negative bacterium,

F. nucleatum is a major coaggregation bridge organism linking early and late colonizers in

dental biofilm [44], and plays a role in carcinogenesis [45, 46]. Note that the 4th rank, denoted

as “unknown”, represents a group of bacteria unidentified at any taxonomic level. Relatively

high OutTE of this group may simply result from its heterogeneity, as it likely comprises a

diverse mixture of bacteria. No particular bacterium stands out in terms of ÎnTE values, as

noted above. Moreover, since InTE measures how much a variable acts as an information

sink rather than an information source, it is unclear whether such downstream species can

be easily identified experimentally. Therefore, the biological relevance of the top microbiota

in terms of ÎnTE is less evident compared to those ranked by ÔutTE.

Rank ÔutTE ÎnTE

1 Corynebacterium Durum 0.90 Gemellales (order)a 0.51

2 Fusobacterium (genus)b 0.90 Oribacterium (genus)c 0.47

3 Prevotella melaninogenica 0.62 Rothia mucilaginosa 0.45

4 Unknown 0.62 SR1 (phylum)d 0.45

5 Coriobacteriaceae (family)e 0.52 Flavobacterium succinicans 0.39

a Families other than Gemellaceae
b Includes all the OTUs
c Includes all the OTUs
d Includes all the classes
e Genera other than Adlercreutzia, Atopobium, Collinsella, Eggerthella, Slackia, and Rubrobacter

TABLE I: Top five microbiota with highest values of ÔutTE and ÎnTE.

Since we constructed a directed binary network from the causal inference in the pruning

step, we can compare the information-theoretic measures OutTE and InTE with traditional

network centrality measures. Here I consider three measures: The number of outgoing edges,

referred to as the out-degree; the number of incoming edges, referred to as the in-degree, and

the number of shortest paths passing through a node, known as the betweenness centrality.

For weighted directed networks, the out-degree and in-degree are typically generalized by
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summing the weights of the out-going and incoming edges, respectively. In the network

obtained from the causal inference on a stochastic dynamical system, the transfer entropy

or its conditional version can be assigned to each directed edge. However, as explained in

Section II, there is no theoretical justification for summing these values.

ÔutTE bvÔutTE out-degree ÎnTE bvÎnTE in-degree betweenness

ÔutTE 1.000 0.734 0.560 0.109 0.101 0.052 0.542

bvÔutTE 1.000 0.865 -0.059 -0.036 0.000 0.742

out-degree 1.000 -0.120 -0.103 0.047 0.826

ÎnTE 1.000 0.936 0.513 0.135

bvÎnTE 1.000 0.578 0.168

in-degree 1.000 0.330

betweenness 1.000

TABLE II: Correlations between rankings obtained from various centrality measures. The

labels bvÔutTE and bvÎnTE denote the sum of bivariate ÔutTEs and sum of bivariate

ÎnTEs, repectively.

The correlation between the rankings obtained from various centrality measures are shown

in Table II. Positive correlations are observed between rankings obtained from conceptually

similar centrality measures, ÔutTE (ÎnTE), sum of bivariate ÔutTEs (sum of bivariate

ÎnTEs), Out-degree (In-degree), as expected. However, as shown in Table III, where the top

five microbiota are selected based on centrality measures of the directed binary network,

measures that do not account for the magnitude of causal influence, fail to identify key oral

microbiota such as C. durum and Fusobacterium.

In fact, the out-degrees of both C. Durum and Fusobacterium are only 3, suggesting that

they exert significant causal influence on the rest of the system hierarchically through a few

neighboring nodes. In contrast, all the top five nodes with highest out-degrees have values of

ÔutTE values less than 0.065. This behavior is highlighted in Fig 19, which shows a portion

of the network including C. Durum, Fusobacterium, and Rhodobacter (with an out-degree of

51). In the figure, node sizes are proportional their ÔutTE values.

As shown in Table IV, which lists the top five bacteria with highest values of the sum

of bivariate TEs, the sum of outgoing bivariate TEs outperforms the centrality measures
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Rank Out-degree In-degree Betweenness

1 Ellin6067 (order)a 57 Oxalobacter (genus)b 28 258ds10 (order)c 0.052

2 Rhodobacter (genus)d 51 Cellvibrio (genus)e 28 Blautia producta 0.050

3 Alphaproteobacteria (class)f 50 Aliivibrio fischeri 25 Ellin6067 (order)g 0.044

4 Nelumbo nucifera 49 Chitinophagaceae (family) h 24 Bacillaceae (family) i 0.039

5 Chromatiales (order)j 46 258ds10 (order)k 24 Volucribacter psittacicida 0.037

a Includes all the families
b OTUs other formigenes
c Includes all the families
d Includes all the OTUs
e Includes all the OTUs
f Orders other than BD7-3, Caulobacterales, Ellin329, RF32, Rhizobiales, Rhodobacterales,

Rhodospirillales, Rickettsiales, and Sphingomonadales
g Includes all the families
h Genera other than Chitinophaga, Flavihumibacter, Flavisolibacter, Niabella, Sediminibacterium, and

Segetibacter
i Genera other than Anoxybacillus, Bacillus, Geobacillus, and Natronobacillus
j Families other than Chromatiaceae
k Includes all the families

TABLE III: Top five microbiota with highest values of out-degree, in-degree, and

betweenness.

of the directed binary network by identifying C. durum as the 4th-ranking species. This is

likely because it accounts for the weight in the network. However, its performance is inferior

to the more rigorous information theoretic measure OutTE , which ranks C. durum and

Fusobacterium as the top two bacterial groups.

Note that if the out-degree or the in-degree of a node in the causal inference network is

too large, the effect of pruning is reduced, and underestimation of OutTE or overestimation

of InTE may still occur. This suggests that when selecting nodes with high values of ÔutTE

and ÎnTE, we may encounter false negatives for the former and false positives for the lat-

ter. For the ten bacterial groups listed in Table I, all degrees are at most five, except for

Flavobacterium succinicans, which is ranked as 5th in terms of InTE and has an in-degree of

20. This degree is still small compared to the Nobs = 225. As shown in Table III, the largest

value of out-degree is only 57, which is also smaller than Nobs = 225. Although there is a
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Rank Sum of bivariate ÔutTEs Sum of bivariate ÎnTEs

1 Porphyromonas (genus) a 1.79 Flavobacterium succinicans 0.52

2 Nelumbo nucifera 1.69 Gemellales (order)b 0.51

3 Rhodobacter (genus)c 1.50 Rothia mucilaginosa 0.50

4 Corynebacterium durum 0.96 Rikenellaceae (family) d 0.45

5 Ellin6067 (order)e 0.94 Marinomonas (genus)f 0.43

a OTUs other than endodontalis
b Families other than Gemellaceae.
c Includes all the OTUs
d Genera other than Alistipes and Rikenella
e Includes all the families
f Includes all the OTUs

TABLE IV: Top five microbiota with highest values of sum of bivariate ÔutTEs and sum

of bivariate ÎnTEs

possibility that the values of OutTE are underestimated for nodes with large out-degrees,

no bacteria known to play important role in the oral bacterial community appear in the list

of five nodes with the largest out-degrees (Table III).

VI. CONCLUSION

In this study, I introduced outgoing transfer entropy (OutTE) and incoming transfer

entropy(InTE) as novel measures for quantifying the causal influence of each component on

the entire system and vice versa in stochastic dynamical systems. OutTE and InTE are

analogous to out-degree and in-degree in network analysis, but uniquely quantify the causal

influence based on information theory. Variables with exceptionally high values of OutTE

can be considered as key drivers of the dynamical system.

To address estimation errors, particularly when the number of variables approaches or

exceeds the number of samples, I proposed an estimation method enhanced by pruning.

A directed binary network was first constructed using causal inference to prune unrelated

variables. Through simulations on synthetic data, I demonstrated the effectiveness of this

pruning-enhanced method in accurately estimating OutTE and InTE values. These results
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suggest that the method reliably highlight key drivers in a dynamical system. The appli-

cation of this method to microbiota data from human saliva further validated its utility,

successfully identifying Corynebacterium durum and Fusobacterium known to play critical

roles in the oral bacterial community. These two bacterial groups would have not been

identified using traditional centrality measures, such as out-degree or the sum of bivariate

outgoing transfer entropies in the causal interaction network.

For some time series data, the estimation of OutTE after pruning may fail to detect

certain key drivers of the system if their out-degrees remain comparable to the sample size.

In such cases, examining nodes with high out-degrees or large values of the sum of bivariate

ÔutTEs can serve as complementary approaches to identify missing drivers, albeit without

theoretical rigor.

Constructing a binary network of meaningful causal relationships is a crucial first step

for pruning in this approach, for which a publicly available state-of-the-art tool has been

used [20, 35]. Selecting parameters and options that best match the underlying data distri-

bution is essential for optimal efficacy. For the oral microbiota data, assuming Markovian

dynamics still yielded good results. In the absence of prior knowledge about the distribu-

tion, trial and error may be required. The development of faster and more accurate causal

network reconstruction algorithms would further enhance the application of the estimation

method presented here. Additionally, applying this method to larger and more diverse

datasets could validate its broader utility and uncover new insights into the structure and

function of complex systems.
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Appendix A: Underestimation of Conditional Entropy for Small Sample Sizes

Conditional entropy H(Y/X) measures the amount of uncertainty remaining in a random

variable Y given that the value of another random variable X is known. The true conditional

entropy is defined as:

H(Y/X) = −
∑

x

P (X = x)
∑

y

P (Y = y/X = x) logP (Y = y/X = x).

When estimating conditional entropy from a finite sample, the empirical conditional entropy

Ĥ(Y/X) is calculated by substituting the true probabilities with their empirical estimates

based on the observed data:

Ĥ(Y/X) = −
∑

x

P̂ (X = x)
∑

y

P̂ (X = y/X = x) log P̂ (X = y/X = x),
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where empirical probabilities are calculated as:

P̂ (X = x) ≡
N(x)

N
, P̂ (Y = y/X = x) ≡

N(x, y)

N(x)

with N(x, y) being the number of times the pair (x, y) occurs, and N(x) the number of times

x occurs, and N the total number of observations. In practice, the estimated conditional

entropy Ĥ(Y/X) tends to be smaller than the true entropy H(Y/X) when the sample size is

small. This underestimation occurs due to insufficient observations, which leads to a biased

estimation of probabilities.

The primary reason for the underestimation of conditional entropy lies in the concavity

of the logarithm function and the bias introduced by finite sample sizes. Note that Jensen’s

inequality can be written in the form

〈f(X)〉 ≤ f(〈X〉) (A1)

for any random variable X and a concave function f(x). The logarithm function log(x) is

concave, which means that for any random variable Z:

〈logZ〉 ≤ log〈Z〉

In the context of conditional entropy, this inequality implies that the expected value of the

logarithm of the estimated probability is less than the logarithm of the true probability.

When probabilities are estimated from a small sample, the estimates P̂ (Y = y/X = x) are

typically more concentrated around zero for rare events, leading to a lower average entropy.

That is, for small sample sizes, many possible pairs (x, y) may not be observed at all, leading

to P̂ (Y = y/X = x) = 0 for these pairs. Since P̂ (Y = y/X = x) log P̂ (Y = y/X = x) is

defined as limp→0 p log p = 0 when P̂ (Y = y/X = x) = 0, this results in a lower estimated

entropy. In contrast, the true probability P (Y = y/X = x) might be nonzero, leading to a

nonzero contribution to the true entropy H(Y/X).

For example, consider a simple case where X and Y are binary variables, and the true

conditional probabilities are:

P (Y = 0/X = 0) = 1/2, P (Y = 1/X = 0) = 1/2

P (Y = 0/X = 1) = 1/2, P (Y = 1/X = 1) = 1/2,
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Suppose we have just two observations, with (X, Y ) = (0, 0) and (X, Y ) = (1, 1). The

empirical conditional probabilities are:

P̂ (Y = 0/X = 0) = 1, P̂ (Y = 1/X = 0) = 0

P̂ (Y = 0/X = 1) = 0, P̂ (Y = 1/X = 1) = 1

The empirical conditional entropy Ĥ(Y/X) = 0 calculated from these estimates is less than

the true conditional entropy H(Y/X) = 1 calculated from the true probabilities, illustrating

the underestimation bias.
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FIG. 1: The SR model with a sender variable S and a receiver variable R. The variables

C1, · · ·Cn represent confounding variables that are independent of the dynamics of S and

R.
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FIG. 2: ÔutTE(S) in the SR model as a function of T , without pruning (black, blue, and

green lines for n = 0, 3, 6, respectively), and with pruning (red and orange lines for n = 0

and 6, respectively).
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FIG. 3: ÔutTE(R) in the SR model as a function of T , without pruning (black, blue, and

green lines for n = 0, 3, 6, respectively), and with pruning (red and orange lines for n = 0

and 6, respectively).
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FIG. 4: ÎnTE(S) in the SR model as a function of T , without pruning (black, blue, and

green lines for n = 0, 3, 6, respectively), and with pruning (red and orange lines for n = 0

and 6, respectively).
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FIG. 5: ÎnTE(R) in the SR model as a function of T , without pruning (black line for

n = 0, 3, 6), and with pruning (red and orange lines for n = 0 and 6, respectively).
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FIG. 6: The ISXR model with a source variable I, a sender variable S, a sink variable X ,

and a receiver variable R. The variables C1, · · ·Cn represent confounding variables that are

independent of the dynamics of I, S, X , and R.
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FIG. 7: ÔutTE(I) in the ISXR model as a function of T , for n = 0, 3, 6 without pruning

(black, blue, and green lines for n = 0, 3, 6, respectively) and with pruning (red and orange

lines for n = 0 and 6, respectively).
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FIG. 8: ÔutTE(S) in the ISXR model as a function of T , without pruning (black, blue,

and green lines for n = 0, 3, 6, respectively), and with pruning (red and orange lines for

n = 0 and 6, respectively).
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FIG. 9: ÔutTE(X) in the ISXR model as a function of T , without pruning (black, blue,

and green lines for n = 0, 3, 6, respectively), and with pruning (red and orange lines for

n = 0 and 6, respectively).

33



0 200 400 600 800 1000
T

0.0

0.2

0.4

0.6

0.8
Ou

tT
E(
R)

n=0
n=3
n=6
n=0,6 (pruned)

FIG. 10: ÔutTE(R) in the ISXR model as a function of T , without pruning (black, blue,

and green lines for n = 0, 3, 6, respectively), and with pruning (red line for n = 0 and 6).

34



0 200 400 600 800 1000
T

0.0

0.4

0.8

1.2

1.6

2.0
In
TE

(I)

n=0
n=3
n=6
n=0 (pruned)
n=6 (pruned)

FIG. 11: ÎnTE(I) in the ISXR model as a function of T , without pruning (black, blue, and

green lines for n = 0, 3, 6, respectively), and with pruning (red and orange lines for n = 0

and 6, respectively).
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FIG. 12: ÎnTE(S) in the ISXR model as a function of T , without pruning (black, blue, and

green lines for n = 0, 3, 6, respectively), and with pruning (red line for n = 0 and 6).
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FIG. 13: ÎnTE(X) in the ISXR model as a function of T , without pruning (black line for

n = 0, 3, 6), and with pruning (red and orange lines for n = 0 and 6, respectively).
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FIG. 14: ÎnTE(R) in the ISXR model as a function of T , without pruning (black line for

n = 0, 3, 6), and with pruning (red and orange lines for n = 0 and 6, respectively).
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FIG. 15: ÔutTE of oral microbiota, obtained with pruning, sorted in descending order of

their values (black line) shown for top 100 bacteria, compared with estimates obtained

without pruning (blue line).
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FIG. 16: ÎnTE of oral microbiota, obtained with pruning, sorted in descending order of

their values (black line) shown for top 100 bacteria, compared with estimates obtained

without pruning (blue line).
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FIG. 17: Histrogram of ÔutTE (black dots) of oral microbiota, along with a power law fit

(red dashed line)
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FIG. 18: Histrogram of ÎNTE (black dots) of oral microbiota, along with a power law fit

(red dashed line)
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Rhodobacter

FIG. 19: A subgraph containing two nodes with highest values of ÔutTE, C. Durum (red)

and Fusobacterium (green), along with Rhodbacter whose out-degree is 51. The size of the

nodes are proportional to the values of ÔutTE. The nodes outside this subgraph is placed

above the figure. The figure was drawn using NeworkX [47] and Matplotlib [48]
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