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Transfer entropy (TE) is a widely used tool for quantifying causal relationships in stochastic dynamical
systems. Traditionally, TE and its conditional variants are applied pairwise between dynamic variables to infer
these relationships. However, identifying key drivers in such systems requires a measure of the causal influence
exerted by each component on the entire system. I propose using outgoing transfer entropy (OutTE), the transfer
entropy from a given variable to the collection of remaining variables, to quantify the causal influence of the
variable on the rest of the system. Conversely, the incoming transfer entropy (InTE) is also defined to quantify
the causal influence received by a component from the rest of the system. Since OutTE and InTE involve transfer
entropy between univariate and multivariate time series, naive estimation methods can result in significant errors,
especially when the number of variables is large relative to the number of samples. To address this, I introduce
a novel estimation scheme that computes outgoing and incoming TE only between significantly interacting
partners. The feasibility and effectiveness of this approach are demonstrated using synthetic data and real oral
microbiota data. The method successfully identifies the bacterial species known to be key players in the bacterial
community, highlighting its potential for uncovering causal drivers in complex systems.
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I. INTRODUCTION

Causal inference in interacting dynamic systems is a criti-
cal area of study that aims to understand the cause-and-effect
relationships within complex systems, such as those found in
neuroscience, economics, ecology, and biology [1–22]. The
goal is to distinguish true causal interactions from mere cor-
relations, which is essential for predicting system behavior
and designing effective interventions. Over the past several
decades, frameworks like Granger causality [1] and transfer
entropy [2] have been developed to address these chal-
lenges. In particular, transfer entropy (TE) [2] is a model-free,
information-theoretic measure of causal influence between
two time series. TE uniquely detects nonlinear and asymmet-
ric interactions, making it ideal for complex systems where
traditional linear methods fall short. The concept of TE has
been extended to conditional transfer entropy, also known as
causation entropy, to quantify the direct causal relationship
between a pair of components in a dynamic system consisting
of many interacting components [12–21]. Although there are
nuances in interpreting transfer entropy and its conditional
variant as information flow or causal influence quantification
[23], these measures have been widely used to uncover causal
relationships in complex systems, including neural networks
[24–26], social networks [27], and gene regulatory networks
[28,29].

In all these applications, the causal relationships between
pairs of components in the system were estimated. Influ-
ential components in the system were identified within the
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framework of such pairwise relationships. A directed binary
network was constructed, where each variable was treated as
a node, and a directed edge was generated between nodes
with statistically significant values of transfer entropy or con-
ditional transfer entropy. Nodes with a number of outgoing
links significantly larger than the average were then identified
as the most influential nodes. For instance, key regulatory
genes in gene regulatory networks have been identified in
this manner by analyzing single-cell RNA sequencing data
[28,29]. However, constructing a binary network disregards
the actual values of transfer entropy or its conditional vari-
ant. It is possible that a component exerts a strong influence
on only a few other components, which in turn influence
others in a hierarchical manner. Key components in such a
hierarchical structure cannot be identified by simply counting
the number of outgoing links in a directed network without
considering their weights. A straightforward approach to in-
corporating weights when computing the outward influence
of a node in a weighted network is to sum the weights of
the outgoing edges. Yet, as elaborated later, transfer entropy
and its conditional variant are not additive quantities. From
an information-theoretic perspective, the causal influence of a
component on the rest of the system is better quantified by the
transfer entropy from the corresponding variable to the rest of
the system, which I will refer to as “outgoing TE (OutTE).”
Here, the system involves two variables: a univariate source
variable and a multivariate target variable. Components with
OutTE values significantly higher than the average can be
identified as key components that exert a strong influence
on the rest of the system. Similarly, “incoming TE (InTE),”
defined as the transfer entropy from the rest of the system to
a given component, quantifies the causal influence exerted on
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the component by the rest of the system. As will be elabo-
rated further, naive estimates of OutTE or InTE can lead to
significant estimation errors, especially when the number of
variables is comparable to or larger than the length of the
time series. In this work I will introduce the novel estima-
tion method for the OutTE and InTE, where estimation is
performed only between significantly interacting partners.

The outline of the paper is as follows. In Sec. II, I will
review the concept of TE and conditional TE, and introduce
OutTE and InTE. In Sec. III, I will illustrate the estimation
problems of OutTE and InTE using synthetic data from simple
models, showing how estimation errors grow as the number of
unrelated variables increases. In Sec. IV I will propose a novel
estimation method for OutTE and InTE which overcomes the
estimation problem. In Sec. V I will apply my method to mi-
crobiota data, showing that the method successfully identifies
the bacterial species known to be key players in the bacte-
rial community, where traditional network centrality measures
fail. Section VI concludes the paper.

II. OUTGOING AND INCOMING TRANSFER ENTROPY

Information theory offers rigorous foundation for causal
inference by quantifying the information shared between a
pair of variables X and Y through mutual information I (X,Y )
defined as

I (X,Y ) ≡
〈
log2

(
P(X,Y )

P(X )P(Y )

)〉
(1)

where P(X ) and P(Y ) are the marginal probability distribu-
tions for the random variables X and Y , P(X,Y ) are their joint
probability distribution, and 〈〉 denotes the expectation value.
In systems with more than two variables, one often seeks the
direct correlation between X and Y after accounting for other
variables. Denoting all variables other than X and Y by Z , the
conditional mutual information I (X,Y/Z ) is defined as

I (X,Y/Z ) ≡
〈
log2

(
P(X,Y/Z )

P(X/Z )P(Y/Z )

)〉
, (2)

which quantifies the direct correlation between X and Y .
In dynamic systems, given two time series X (t ) and Y (t ),

where the integer t is an index for a discretized time, one
might initially attempt to quantity the causal influence of
X on Y using I[X−,Y (t )], where X− ≡ [X (t − 1), X (t −
2), . . . X (t − L)] represents the past history of X , where L
is the maximum time lag to be considered. However, as
previously mentioned, I[X−,Y (t )] only quantifies the shared
information between the history of X and the present state of
Y , not the causal influence of X on Y . It is possible that Y
actually causes X , which could still result in a nonzero value
of I[X−,Y (t )]. Therefore, to quantify the true causal influence
of X on Y , we must correct for the effect due to the history of
Y , using the measure

TX→Y ≡ I[X−,Y (t )/Y−]. (3)

This is known as transfer entropy (TE) from X to Y [2].
Transfer entropy can also be expressed as:

TX→Y = H[Y (t )/Y−] − H[Y (t )/X−,Y−], (4)

FIG. 1. The SR model with a sender variable S and a receiver
variable R. The variables C1, . . .Cn represent confounding variables
that are independent of the dynamics of S and R.

where

H[Y (t )/Y−] ≡ 〈− log2 P[Y (t )/Y−]〉
H[Y (t )/X−,Y−] ≡ 〈− log2 P[Y (t )/X−,Y−]〉. (5)

Here, the conditional entropies H[Y (t )/Y−] and
H[Y (t )/X−,Y−] represent the uncertainties of Y (t ) after
observing the history of Y and after observing the histories
of both X and Y , respectively. Thus, TX→Y can be interpreted
as the reduction in the uncertainty of Y (t ) after observing the
history of X , given that we already know the history of Y . It
can be proved that a conditional entropy is non-negative [30],
and consequently,

H[Y (t )/Y−] � 0, H[Y (t )/X−,Y−] � 0.

It can also be shown that

H[Y (t )/Y−] � H[Y (t )/X−,Y−],

so that T EX→Y � 0. Specifically, this implies that if Y (t ) is
completely determined by Y− such that H[Y (t )/Y−] = 0, then
TX→Y = 0. The intuitive interpretation is clear: If there is no
uncertainty on Y (t ) after we observe Y−, then obviously there
is no additional uncertainty to be removed by knowing X−.

In systems with more than two time series, we are often
interested in the direct causal influence of X on Y after ac-
counting for indirect effects due to other variables. Denoting
the multivariate time series of variables other than X and Y by
Z , the direct causal influence of X on Y is quantified by the
measure [12–15]:

T(X→Y )/Z ≡ I[X−,Y (t )/Y−, Z−]

= H[Y (t )/Y−, Z] − H[Y (t )/X−,Y−, Z]. (6)

This measure is called multivariate transfer entropy, condi-
tional transfer entropy, causation entropy, or full conditional
mutual information [12–21].

As a simple example to illustrate the concept of trans-
fer entropy, consider a system consisting of two variables:
a sender variable S and a recipient variable R. I will re-
fer to this system as the SR model (Fig. 1). The variable
S(t ) randomly takes the value of either 0 or 1 with equal
probability. R(0) is also random, but for t > 0, R(t ) is fully
determined by S(t − 1) and R(t − 1) according to the rule
R(t ) = S(t − 1) ⊕ R(t − 1), where ⊕ denotes the exclusive
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OR operation. The dynamics here is Markovian, so we have
S− = S(t − 1) and R− = R(t − 1). Without knowledge of the
past of S, the dynamics of the recipient variable appears en-
tirely random, leading to H[R(t )/R−] = 1 bit. Furthermore,
since R(t ) is fully determined by S(t − 1) and R(t − 1), we
have H[R(t )/R−, S−] = 0, resulting in TS→R = 1 bit. In con-
trast, since H[S(t )/S−] = H[S(t )/R−, S−] = 1 bit, it follows
that TR→S = 0.

The focus of this work is on identifying key variables
that exert significant influence on the rest of a stochastic
dynamical system consisting of many interacting components.
To achieve this, we compute OutTE for each variable X ,
OutTE(X ) ≡ TX→rest, where “rest” denotes the collection of
all variables except X . In this context, the “rest” is a mul-
tivariate target, whereas the source variable X is univariate.
Variables with exceptionally large OutTE values are identified
as key influencers of the system’s overall dynamics. Con-
versely, the incoming transfer entropy (InTE) is defined as
InTE(X ) ≡ Trest→X , quantifying the causal influence exerted
on X by the rest of the system.

It is important to note that neither OutTE(X ) nor InTE(X )
can be decomposed into the sum of bivariate (conditional)
transfer entropies, unless the dynamics of remaining variables
are completely decoupled from one another. For example, sup-
pose we have three variables S, R1, and R2, and R1(t ) = R2(t )
at all times. Let us assume that the dynamics of S and R1 (R2)
is the same as that of the SR model described above. We then
have

OutTE(S) = TS→(R1,R2 ) = TS→R1 = TS→R2 = 1.

Also, we have

TS→R1/R2 = I[S(t − 1), R1(t )/R1(t − 1), R2(t − 1)]

= I[S(t − 1), R1(t )/R1(t − 1)] = TS→R1 ,

TS→R2/R1 = I[S(t − 1), R2(t )/R1(t − 1), R2(t − 1)]

= I[S(t − 1), R2(t )/R2(t − 1)] = TS→R2 . (7)

Therefore, TES→R1 + TES→R2 = TES→R1/R2 + TES→R2/R2 =
2 bits, leading to

OutTE(S) �= TS→R1 + TS→R2 ,

OutTE(S) �= TS→R1/R2 + TS→R2/R1 . (8)

As another example, suppose now we have two copies of
sender variables S1(t ) = S2(t ), and the receiver variable R(t ).
Then we have

InTE(R) = T(S1,S1 )→R = TS1→R = TS2→R = 1.

Since H[R(t )/R(t − 1), S1(t − 1)] = H[R(t )/R(t − 1),
S2(t − 1)] = H[R(t )/R(t − 1), S1(t − 1), S2(t − 1)], we
have

TS1→R/S2 = H[R(t )/R(t − 1), S2(t − 1)]

− H[R(t )/R(t − 1), S1(t − 1), S2(t − 1)] = 0,

TS2→R2/S1 = H[R(t )/R(t − 1), S1(t − 1)]

− H[R(t )/R(t − 1), S1(t − 1), S2(t − 1)] = 0.

(9)

Therefore, we have

InTE(R) �= TS1→R + TS2→R,

InTE(R) �= TS1→R1/S2 + TS2→R2/S1 . (10)

III. ESTIMATION PROBLEM OF OUTGOING
AND INCOMING TRANSFER ENTROPY

In practice, the true values of OutTE and InTE are not
available and must be estimated from data, which can in-
troduce estimation errors. Recall that TX→Y , H[Y (t )/Y−],
and H[Y (t )/X−,Y−] are all non-negative quantities. Assume
TX→Y > 0, so H[Y (t )/Y−] > 0. Also, let X be univariate
and Y multivariate with dimension DY . On one hand, the
estimator Ĥ [Y (t )/Y−] tends to underestimate the true value
H[Y (t )/Y−] when DY � Nsamp, where Nsamp is the number of
samples, due to insufficient observation of events (Appendix).
From the fact that Ĥ [Y (t )/Y−] � Ĥ [Y (t )/X−,Y−], we see
that if the underestimation is so severe that Ĥ[Y (t )/Y−] � 0,
then Ĥ [Y (t )/X−,Y−] � 0, leading to T̂X→Y = Ĥ [Y (t )/Y−] −
Ĥ [Y (t )/X−,Y−] � 0 even if TX→Y > 0. That is, T̂X→Y under-
estimates the true value of TX→Y . On the other hand, the es-
timator Ĥ [X (t )/X−,Y−] tends to underestimate the true value
for DY � Nsamp, while Ĥ [X (t )/X−] remains unaffected by DY .
Consequently, T̂Y →X = Ĥ [X (t )/X−] − Ĥ [X (t )/X−,Y−] over-
estimates the true value of TY →X . Representing the collection
of variables in the system other than X as Y , we find that
the estimators ̂OutTE(X ) and ̂InTE(X ) tend to underestimate
and overestimate their true values, OutTE(X ) and InTE(X ),
respectively, if the true values are positive.

For the special cases where OutTE(X ) and InTE(X ) are
zero, underestimation cannot occur since these quantities are
non-negative. In such cases, overestimation is possible, but
̂OutTE(X ) will vanish if the number of samples is sufficiently
small compared to the number of variables. However, our
primary goal is to identify a few variables with the highest
values of ̂OutTE and ̂InTE. Therefore, cases where the true
values vanish are of limited relevance in real data applications.

To illustrate the issue of underestimation of OutTE, con-
sider the SR model introduced in the previous section (Fig. 1).
Suppose we have four observed transitions of variables (S, R):

(0, 0) → (0, 0), (0, 1) → (1, 1), (1, 0) → (1, 1),

(1, 1) → (1, 0). (11)

In this case, the empirical conditional probability distri-
butions P̂[R(t )/R−] and P̂[R(t )/S−, R−] coincide with the
true conditional probability distributions P[R(t )/R−] and
P[R(t )/S−, R−], respectively, so T̂S→R = TS→R = 1 bit.

Next, suppose we add some variables C1,C2, . . .Cn, each
of which takes random value of either 0 or 1 and is entirely
disconnected from the rest of the system. I will refer to these
as “confounding variables” (see Fig. 1). The true values of
OutTE(S) and OutTE(R) remain unaffected, as the dynamics
of C1,C2, . . .Cn are independent of S and R. However, they
can severely impact the estimated values of OutTE(S) and
OutTE(R). Let us assume just one confounding variable C is
added to the example in Eq. (11) so that the four observed
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FIG. 2. ̂OutTE(S) in the SR model as a function of T , without
pruning (black, blue, and green lines for n = 0, 3, 6, respectively)
and with pruning (red and orange lines for n = 0 and 6, respectively).

transitions of the variables (S, R,C) become

(0, 0, 1) → (0, 0, 1), (0, 1, 0) → (1, 1, 1),

(1, 0, 0) → (1, 1, 0), (1, 1, 1) → (1, 0, 0). (12)

Now the dynamics of (R,C) estimated by the data above is
completely deterministic. Specifically, the only four observed
transitions for (R,C) are

(0, 1) → (0, 1), (1, 0) → (1, 1), (0, 0) → (1, 0),

(1, 1) → (0, 0), (13)

which are all unique. This leads to Ĥ [R(t ),C(t )]/[R−,C−] =
Ĥ [R(t ),C(t )]/[R−,C−, S−] = 0, resulting in ̂OutTE(S) =
T̂S→(R,C) = 0. This represents a drastic underestimation com-
pared to the true value of OutTE(S) = 1. As mentioned
earlier, such an artifact occurs when the number of variables
is comparable to or larger than the number of samples. In
such situations, most observed transitions become rare events,

FIG. 3. ̂OutTE(R) in the SR model as a function of T , without
pruning (black, blue, and green lines for n = 0, 3, 6, respectively)
and with pruning (red and orange lines for n = 0 and 6, respectively).

FIG. 4. ̂InTE(S) in the SR model as a function of T , without
pruning (black, blue, and green lines for n = 0, 3, 6, respectively)
and with pruning (red and orange lines for n = 0 and 6, respectively).

typically appearing only once in the data, leading to the under-
estimation of the values of conditional entropy (Appendix).
Examples of overestimation will be demonstrated with simu-
lations below.

A synthetic time series of length 300 were generated us-
ing the probability distribution of the SR model, and the
estimators ̂OutTE and ̂InTE were computed from the empir-
ical distribution using partial series of length T . I assumed
Markovian dynamics from the start, so the number of ob-
served transitions is T − 1. The values of ̂OutTE and ̂InTE
were computed using the JIDT toolkit [31], where empiri-
cal distributions were estimated by counting the frequencies
of events, such as a variable taking a specific value or a
transition occurring between a given pair of values. The
graphs of ̂OutTE(S), ̂OutTE(R), ̂InTE(S), and ̂InTE(R) are
shown as functions of T in Figs. 2–5, respectively, for dif-
ferent numbers of confounding variables: n = 0 (black line),

FIG. 5. ̂InTE(R) in the SR model as a function of T , without
pruning (black line for n = 0, 3, 6) and with pruning (red and orange
lines for n = 0 and 6, respectively).
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FIG. 6. The ISXR model with a source variable I , a sender vari-
able S, a sink variable X , and a receiver variable R. The variables
C1, . . .Cn represent confounding variables that are independent of
the dynamics of I , S, X , and R.

n = 3 (blue line), and n = 6 (green line). We observe that
̂OutTE(S) is lower than the true value of OutTE(S) = 1 bit
for small sample sizes, but begins to converge to the true
value around T � 10 for n = 0 (Fig. 2). As the confounding
variables are added, the underestimation becomes more severe
for a given T , and convergence becomes slower. In the case
of OutTE(R), whose true value is zero, we now encounter
an overestimation problem in the presence of confounding
variables (Fig. 3). We also observe that the estimation error
increases with T over the range shown in the figure, and
that the estimation with n = 6 is better for small T but be-
comes worse for T � 300. This occurs because, for small
T and large n, Ĥ [S(t ),C1(t ), . . . ,Cn(t )]/[S(t − 1),C1(t −
1), · · · ,Cn(t − 1)] � 0 and Ĥ[S(t ),C1(t ), . . . ,Cn(t )]/[R(t −
1), S(t − 1),C1(t − 1), . . . ,Cn(t − 1)] � 0, due to the under-
estimation problem, resulting in ̂OutTE(R) � 0. Thus, the
small value of ̂OutTE(R) for small T and large n is an artifact
of the limited sample size rather than an accurate estimation.

For InTE(S), whose true value is zero, we also encounter
an overestimation problem, but the artifact observed for
̂OutTE(R) does not appear here because the target is univari-
ate. The overestimation becomes progressively worse as the
confounding variables are added (Fig. 4). Finally, the estimate
of InTE(R), whose true value is one bit, remains unaffected
by the presence of the confounding variables, as shown by the
black line in Fig. 5. Note that according to the definition of the
transfer entropy in Eq. (4), the estimate ̂InTE(R) of InTE(R)
can be written as

̂InTE(R) ≡ T̂rest→R = T̂(S,C1,...,CN )→R = Ĥ [R(t )/R−]

− Ĥ [R(t )/R−, S−,C1−, . . . ,CN −]. (14)

Since the first term Ĥ [R(t )/R−] in Eq. (14) does not depend
on the confounding variables, the only possible dependence
on the confounding variables originates from the second term
Ĥ [R(t )/R−, S−,C1−, . . . ,CN −]. However, in this model, the
values of R(t − 1) and S(t − 1) uniquely determine the value
of R(t ), which also holds true for the observed transitions.
The addition of confounding variables does not affect this
determinism. Therefore, Ĥ [R(t )/R−, S−,C1−, . . . ,CN −] = 0,
regardless of the number of confounding variables, leading
to Ĥ [R(t )/R−, S−,C1−, . . . ,CN −] = 0, which is independent
of the confounding variables. This property is specific to this

FIG. 7. ̂OutTE(I ) in the ISXR model as a function of T , for n =
0, 3, 6 without pruning (black, blue, and green lines for n = 0, 3, 6,
respectively) and with pruning (red and orange lines for n = 0 and 6,
respectively).

model. In general, ̂InTE(R) tends to overestimate the true
value, as mentioned earlier in this section.

I conducted a similar analysis on a system containing a
source variable I , a sender variable S, a sink variable X , and
a receiver variable R, as shown in Fig. 6. I will refer to this
system as the ISXR model. In this model the variable I sends
two independent bits of information to two nodes X and R, and
S sends one bit of information to X . As a result, X receives
one bit of information from both I and S (total two bits),
while R receives one bit of information from I alone. The esti-
mates ̂OutTE(I ), ̂OutTE(S), ̂OutTE(X ), ̂OutTE(R), ̂InTE(I ),
̂InTE(S), ̂InTE(X ), and ̂InTE(R) are shown in Figs. 7–14
for different numbers of confounding variables (n = 0, 3, 6),
represented by black, blue, and green lines, respectively.

The results are qualitatively similar to those of the SR
model. Although ̂OutTE(I ) and ̂OutTE(S) converge towards
their true values (2 bits for I and 1 bit for S) as T increases,

FIG. 8. ̂OutTE(S) in the ISXR model as a function of T , without
pruning (black, blue, and green lines for n = 0, 3, 6, respectively)
and with pruning (red and orange lines for n = 0 and 6, respectively).
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FIG. 9. ̂OutTE(X ) in the ISXR model as a function of T , without
pruning (black, blue, and green lines for n = 0, 3, 6, respectively)
and with pruning (red and orange lines for n = 0 and 6, respectively).

FIG. 10. ̂OutTE(R) in the ISXR model as a function of T , with-
out pruning (black, blue, and green lines for n = 0, 3, 6, respectively)
and with pruning (red line for n = 0 and 6).

FIG. 11. ̂InTE(I ) in the ISXR model as a function of T , without
pruning (black, blue, and green lines for n = 0, 3, 6, respectively)
and with pruning (red and orange lines for n = 0 and 6, respectively).

FIG. 12. ̂InTE(S) in the ISXR model as a function of T , without
pruning (black, blue, and green lines for n = 0, 3, 6, respectively)
and with pruning (red line for n = 0 and 6).

FIG. 13. ̂InTE(X ) in the ISXR model as a function of T , without
pruning (black line for n = 0, 3, 6) and with pruning (red and orange
lines for n = 0 and 6, respectively).

FIG. 14. ̂InTE(R) in the ISXR model as a function of T , without
pruning (black line for n = 0, 3, 6) and with pruning (red and orange
lines for n = 0 and 6, respectively).
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the convergence slows down for larger n. For OutTE(X ) and
OutTE(R), the estimates are larger than their true values
(which are zero). However, this overestimation is mitigated
for large n and small T , due to the same artifact as in the case
of ̂OutTE(R) in the SR model. The overestimation of InTE(I )
and InTE(S), whose true values are zero, worsens with in-
creasing n, much like the overestimation of InTE(S) in the SR
model. Finally, ̂InTE(X ) and ̂InTE(R) remain unaffected by
the presence of confounding variables for the same reason as
in ̂InTE(R) in the SR model.

IV. THE METHOD FOR ACCURATE ESTIMATION OF
OUTGOING AND INCOMING TRANSFER ENTROPY

In the previous examples, the estimation errors were due
to the proliferation of confounding variables. If we had elim-
inated unrelated variables beforehand, the estimation error
would have been reduced. Therefore, instead of estimating
OutTE and InTE between a variable and the collection of
all the other variables, we first take a pruning step where
only variables causally related to the variable of interest are
selected. That is, we construct a directed binary network in
which each variable is represented by a node, and an edge
X → Y exists if and only if T̂(X→Y )/Z is statistically signifi-
cant, where Z denotes the collection of all variables except
X and Y . The construction of such a network using the ex-
act computation of T̂(X→Y )/Z , along with rigorous statistical
tests, is computationally costly, and various approximation
schemes have been proposed to construct the causal net-
work [13,15,20,32–34]. Here, I used the method developed in
Ref. [20], where the set of source variables with statistically
meaningful causal influence is constructed step by step for
each target variable. To elaborate, for a given target vari-
able Y , let S denote the set of candidate source variables,
initialized as an empty set. Assuming Markovian dynamics,
where X− = X (t − 1) for any variable X , the procedure is as
follows:

(1) Forward selection of source variables:
(a) First, select the candidate source variable X1 that

maximizes the conditional mutual information I[X1(t −
1),Y (t )/Y (t − 1)] and test its statistical significance.

(b) If X1 is statistically significant, include it in S. Then
select X2 such that I[X2(t − 1),Y (t )/Y (t − 1), X1(t − 1)]
is maximal and test its significance.

(c) Repeat this process until no further statistically sig-
nificant source variables are found.
(2) Backward elimination of redundant variables:

(a) Among the candidate source variables X1, . . . , Xn ∈
S, identify the variable X̃1 that minimizes the conditional
mutual information I (X̃1(t − 1),Y (t )/Y (t − 1), X1(t −
1), · · · ,����������X̃1(t − 1) · · · , Xn(t − 1)].

(b) Test the statistical significance of this value. If it is
not significant, exclude X̃1 from S and repeat the process
with X̃2, X̃3, and so on.

(c) Stop when the variable with the minimal condi-
tional mutual information in S is statistically significant or
when S becomes empty.

(3) Final test and edge construction:
(a) If S is nonempty, test the statistical significance of

the transfer entropy from the collection of variables in S to
the target variable Y .

(b) If significant, S is finalized as the set of source vari-
ables for Y . Otherwise, no source variables are identified
for Y .

(c) Draw directed edges from each variable in S to the
target variable Y .
This process is repeated for each variable in the system,

taking it as the target and identifying its source variables.
The resulting directed edges form a causal network. This
method has been implemented as a publicly available PYTHON

package called IDTxl [35] and has been used for constructing
a causal network from the brain record data comprising 100
variables and 10 000 samples [20].

By computing OutTE and InTE only between the node of
interest and its connected nodes in the directed binary net-
work derived from the causal inference algorithm described
above, estimation errors are significantly reduced, as shown
in Figs. 2–5 for the SR model and Figs. 7–14 for the ISXR
model for n = 0 (red lines) and n = 6 (orange lines). We find
that the estimation error with pruning does not significantly
increase, even as the number of confounding variables rises
from 0 to 6.

In the SR model, the pruned estimate ̂OutTE(S) quickly
converges to the true value of 1 bit around T � 10 (Fig. 2) re-
gardless of n, overcoming the underestimation problem. Prun-
ing also reduces the overestimation problem of ̂OutTE(R),
even for n = 6, where ̂OutTE(R) < 0.1 for T � 112 (Fig. 3).
The same applies to ̂InTE(S), where ̂InTE(S) < 0.1 for T �
97 even for n = 6 (Fig. 4). In the case of ̂InTE(R) where
confounding variables are not problematic, pruning is not
useful; in fact, it increases estimation error for very small
sample sizes. However, this error quickly diminishes once T
reaches 6 (Fig. 5), so the damage is minimal.

In the ISXR model, the pruned estimate ̂OutTE(I ) is zero
up to T � 30 because the network construction algorithm
could not detect the outgoing edges from the node I . How-
ever, the estimate quickly converges to the true value of 2
bits for T � 30, regardless of n (Fig. 7). In this range, the
pruned estimate of OutTE(I ) outperforms the unpruned esti-
mate, even for n = 0, as variable S, which is unrelated to I in
terms of OutTE(I ), acts as a confounding variable for I . The
same behavior is observed for ̂OutTE(S), where the estimate
with pruning converges to the true value of 1 bit at around
T � 100. Again, for T � 100, pruning proves beneficial even
for n = 0, because it eliminates the confounding effect from
the variable I (Fig. 8). Pruning also reduces the overestimation
problem of ̂OutTE(X ) (Fig. 9) by removing the confounding
effect from the variable R as well as those from the variables
Ci (i = 1, . . . n). The effect of the pruning is even more drastic
in the case of the estimate ̂OutTE(R), since it makes the
estimate coincide with the true value of zero, as the network
algorithm does not detect any meaningful connection from the
variable R to any other variable for any sample size (Fig. 10).
The difference in the behavior of the network construction
algorithm for OutTE(R) compared to OutTE(X ) suggests that
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FIG. 15. ̂OutTE of oral microbiota, obtained with pruning, sorted
in descending order of their values (black line) shown for top 100
bacteria, compared with estimates obtained without pruning (blue
line).

the presence of many incoming edges for X , which should
not affect the true value of OutTE(X ), somehow confuses the
network construction algorithm at small sample sizes. This
might result in the introduction of some false outgoing edges,
leading to small but nonzero values of ̂OutTE(X ).

Regarding InTE, pruning resolves the overestimation prob-
lem of InTE(I ), where all of the S, R, and X variables act
as additional confounding variables (Fig. 11). For ̂InTE(S),
the pruned estimate coincides with the true value of 0 bits
(Fig. 12). The difference between the effect of pruning on
̂InTE(I ) and ̂InTE(S) is similar to that between ̂OutTE(X ) and
̂OutTE(R). Pruning does not benefit ̂InTE(X ) or ̂InTE(R), as
confounding variables are not an issue. However, introducing
pruning does no harm for T � 100 for ̂InTE(X ) and T � 30
for ̂InTE(R). The situation is similar to that of ̂InTE(R) in the
SR model.

FIG. 16. ̂InTE of oral microbiota, obtained with pruning, sorted
in descending order of their values (black line) shown for top 100
bacteria, compared with estimates obtained without pruning (blue
line).

FIG. 17. Histogram of ̂OutTE (black dots) of oral microbiota,
along with a power-law fit (red dashed line).

V. APPLICATION TO MICROBIOTA DATA

We now apply the current method to microbiota data
obtained from a saliva sample observed over 226 days,
consisting of 879 variables [36]. Most of the variables
represent operational taxonomic units (OTUs), the lowest tax-
onomic levels for bacteria, but some of the bacteria could only
be resolved at higher taxonomic levels.

For reduced computational costs, we assume Markovian
dynamics so X− = X (t − 1) for any variable X . The causal
network was constructed using the IDTxl package [35], and
transfer entropy was computed with the JIDT toolkit [31].
The values of ̂OutTE and ̂InTE for all variables are compared,
with and without pruning, in Figs. 15 and 16, respectively,
where the variables are sorted in descending order of the
pruned estimates, and the top 100 are shown. We observe that
̂OutTE = 0 for all variables without pruning, due to severe
underestimation, while the pruned estimates range between 0
and 0.9 (Fig. 15). In the case of ̂InTE, the estimated values are
nonzero even without pruning. However, while the estimates
obtained with pruning range between 0 and 0.5, those obtained
without pruning can be as high as 3 and are unrelated to those
obtained with pruning (Fig. 16), suggesting large estimation
errors without pruning. Also, compared to ̂OutTE, where

FIG. 18. Histogram of ̂INTE (black dots) of oral microbiota,
along with a power-law fit (red dashed line).
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TABLE I. Top five microbiota with highest values of ̂OutTE and ̂InTE.

Rank ̂OutTE ̂InTE

1 Corynebacterium Durum 0.90 Gemellales (order)a 0.51
2 Fusobacterium (genus)b 0.90 Oribacterium (genus)c 0.47
3 Prevotella melaninogenica 0.62 Rothia mucilaginosa 0.45
4 Unknown 0.62 SR1 (phylum)d 0.45
5 Coriobacteriaceae (family)e 0.52 Flavobacterium succinicans 0.39

aFamilies other than Gemellaceae.
bIncludes all the OTUs.
cIncludes all the OTUs.
dIncludes all the classes.
eGenera other than Adlercreutzia, Atopobium, Collinsella, ggerthella, Slackia, and Rubrobacter.

a few variables have very high values, such peaks are less
pronounced for ̂InTE, where no values exceed 0.5. This
difference in behavior is also evident in the histograms, which
were constructed using 50 bins to count the frequency of oc-
currence (Figs. 17 and 18). In network analysis, the power-law
distribution of the number of links is often investigated, as it
indicates the presence of hubs, nodes with disproportionately
high connectivity compared to others in the network [37–39].
To explore whether ̂OutTE (̂InTE), the information theoretic
analog of the number of outgoing (incoming) edges in a
directed binary network, exhibits such behavior, I examined
their histograms. The histogram of ̂OutTE indeed follows a
power-law behavior, suggesting the presence of nodes acting
as information sources (Fig. 17). In contrast, the histogram of
̂InTE fits the power law less well (Fig. 18).

The top five bacteria ranked by ̂OutTE and ̂InTE are
shown in the Table I. We find that the OTU Corynebacterium
durum and the genus Fusobacterium stand out in terms of high
̂OutTE values. C. durum is indeed known to play a crucial
role in the community of oral microbiota. As a gram-positive
bacterium, it is a prolific biofilm and extracellular matrix
producer [40], and a decrease in this bacterium is associated
with a disease [41]. The genus Fusobacterium, particularly
the OTU Fusobacterium nucleatum, is also well known as a
key player in the community of oral bacteria [42,43]. As a
gram-negative bacterium, F. nucleatum is a major coaggrega-
tion bridge organism linking early and late colonizers in dental
biofilm [44] and plays a role in carcinogenesis [45,46]. Note
that the fourth rank, denoted as “unknown,” represents a group

of bacteria unidentified at any taxonomic level. Relatively
high OutTE of this group may simply result from its hetero-
geneity, as it likely comprises a diverse mixture of bacteria.
No particular bacterium stands out in terms of ̂InTE values,
as noted above. Moreover, since InTE measures how much a
variable acts as an information sink rather than an information
source, it is unclear whether such downstream species can
be easily identified experimentally. Therefore, the biological
relevance of the top microbiota in terms of ̂InTE is less evident
compared to those ranked by ̂OutTE.

Since we constructed a directed binary network from the
causal inference in the pruning step, we can compare the
information-theoretic measures OutTE and InTE with tra-
ditional network centrality measures. Here I consider three
measures: The number of outgoing edges, referred to as the
out-degree; the number of incoming edges, referred to as the
in-degree; and the number of shortest paths passing through
a node, known as the betweenness centrality. For weighted
directed networks, the out-degree and in-degree are typically
generalized by summing the weights of the out-going and
incoming edges, respectively. In the network obtained from
the causal inference on a stochastic dynamical system, the
transfer entropy or its conditional version can be assigned to
each directed edge. However, as explained in Sec. II, there is
no theoretical justification for summing these values.

The correlation between the rankings obtained from var-
ious centrality measures are shown in Table II. Positive
correlations are observed between rankings obtained from
conceptually similar centrality measures, ̂OutTE (̂InTE), sum

TABLE II. Correlations between rankings obtained from various centrality measures. The labels bv ̂OutTE and bv̂InTE denote the sum of
bivariate ̂OutTEs and sum of bivariate ̂InTEs, repectively.

̂OutTE bv ̂OutTE Out-degree ̂InTE bv̂InTE In-degree Betweenness

̂OutTE 1.000 0.734 0.560 0.109 0.101 0.052 0.542
bv ̂OutTE 1.000 0.865 −0.059 −0.036 0.000 0.742
Out-degree 1.000 −0.120 −0.103 0.047 0.826
̂InTE 1.000 0.936 0.513 0.135
bv̂InTE 1.000 0.578 0.168
In-degree 1.000 0.330
Betweenness 1.000
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TABLE III. Top five microbiota with highest values of out-degree, in-degree, and betweenness.

Rank Out-degree In-degree Betweenness

1 Ellin6067 (order)a 57 Oxalobacter (genus)b 28 258ds10 (order)c 0.052
2 Rhodobacter (genus)d 51 Cellvibrio (genus)e 28 Blautia producta 0.050
3 Alphaproteobacteria (class)f 50 Aliivibrio fischeri 25 Ellin6067 (order)g 0.044
4 Nelumbo nucifera 49 Chitinophagaceae (family)h 24 Bacillaceae (family)i 0.039
5 Chromatiales (order)j 46 258ds10 (order)k 24 Volucribacter psittacicida 0.037

aIncludes all the families.
bOTUs other formigenes.
cIncludes all the families.
dIncludes all the OTUs.
eIncludes all the OTUs.
fOrders other than BD7-3, Caulobacterales, Ellin329, RF32, Rhizobiales, Rhodobacterales, hodospirillales, Rickettsiales, and
Sphingomonadales.
gIncludes all the families.
hGenera other than Chitinophaga, Flavihumibacter, Flavisolibacter, Niabella, Sediminibacterium, and Segetibacter.
iGenera other than Anoxybacillus, Bacillus, Geobacillus, and Natronobacillus.
jFamilies other than Chromatiaceae.
kIncludes all the families.

of bivariate ̂OutTEs (sum of bivariate ̂InTEs), Out-degree
(In-degree), as expected. However, as shown in Table III,
where the top five microbiota are selected based on centrality
measures of the directed binary network, measures that do not
account for the magnitude of causal influence fail to identify
key oral microbiota such as C. durum and Fusobacterium.

In fact, the out-degrees of both C. Durum and
Fusobacterium are only 3, suggesting that they exert signifi-
cant causal influence on the rest of the system hierarchically
through a few neighboring nodes. In contrast, all the top five
nodes with highest out-degrees have values of ̂OutTE values
less than 0.065. This behavior is highlighted in Fig. 19, which
shows a portion of the network including C. Durum, Fusobac-
terium, and Rhodobacter (with an out-degree of 51). In the
figure, node sizes are proportional their ̂OutTE values.

As shown in Table IV, which lists the top five bacteria
with highest values of the sum of bivariate TEs, the sum of
outgoing bivariate TEs outperforms the centrality measures
of the directed binary network by identifying C. durum as
the fourth-ranking species. This is likely because it accounts
for the weight in the network. However, its performance is
inferior to the more rigorous information theoretic measure
OutTE, which ranks C. durum and Fusobacterium as the top
two bacterial groups.

Note that if the out-degree or the in-degree of a node in the
causal inference network is too large, the effect of pruning is
reduced, and underestimation of OutTE or overestimation of
InTE may still occur. This suggests that when selecting nodes
with high values of ̂OutTE and ̂InTE, we may encounter false
negatives for the former and false positives for the latter. For
the ten bacterial groups listed in Table I, all degrees are at most
five, except for Flavobacterium succinicans, which is ranked
as fifth in terms of InTE and has an in-degree of 20. This
degree is still small compared to the Nobs = 225. As shown in
Table III, the largest value of out-degree is only 57, which is
also smaller than Nobs = 225. Although there is a possibility
that the values of OutTE are underestimated for nodes with

large out-degrees, no bacteria known to play an important role
in the oral bacterial community appears in the list of five nodes
with the largest out-degrees (Table III).

VI. CONCLUSION

In this study I introduced outgoing transfer entropy
(OutTE) and incoming transfer entropy (InTE) as novel mea-
sures for quantifying the causal influence of each component

FIG. 19. A subgraph containing two nodes with highest values
of ̂OutTE, C. Durum (red) and Fusobacterium (green), along with
Rhodbacter whose out-degree is 51. The size of the nodes are pro-
portional to the values of ̂OutTE. The nodes outside this subgraph are
placed above the figure. The figure was drawn using NeworkX [47]
and Matplotlib [48].
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TABLE IV. Top five microbiota with highest values of sum of bivariate ̂OutTEs and sum of bivariate ̂InTEs.

Rank Sum of bivariate ̂OutTEs Sum of bivariate ̂InTEs

1 Porphyromonas (genus)a 1.79 Flavobacterium succinicans 0.52
2 Nelumbo nucifera 1.69 Gemellales (order)b 0.51
3 Rhodobacter (genus)c 1.50 Rothia mucilaginosa 0.50
4 Corynebacterium durum 0.96 Rikenellaceae (familyd 0.45
5 Ellin6067 (order)e 0.94 Marinomonas (genus)f 0.43

aOTUs other than endodontalis.
bFamilies other than Gemellaceae.
cIncludes all the OTUs.
dGenera other than Alistipes and Rikenella.
eIncludes all the families.
fIncludes all the OTUs.

on the entire system and vice versa in stochastic dynamical
systems. OutTE and InTE are analogous to out-degree and
in-degree in network analysis but uniquely quantify the causal
influence based on information theory. Variables with excep-
tionally high values of OutTE can be considered as key drivers
of the dynamical system.

To address estimation errors, particularly when the number
of variables approaches or exceeds the number of samples,
I proposed an estimation method enhanced by pruning. A
directed binary network was first constructed using causal
inference to prune unrelated variables. Through simulations
on synthetic data, I demonstrated the effectiveness of this
pruning-enhanced method in accurately estimating OutTE and
InTE values. These results suggest that the method reliably
highlight key drivers in a dynamical system. The application
of this method to microbiota data from human saliva further
validated its utility, successfully identifying Corynebacterium
durum and Fusobacterium, known to play critical roles in the
oral bacterial community. These two bacterial groups would
have not been identified using traditional centrality measures,
such as out-degree or the sum of bivariate outgoing transfer
entropies in the causal interaction network.

For some time series data, the estimation of OutTE after
pruning may fail to detect certain key drivers of the system
if their out-degrees remain comparable to the sample size. In
such cases, examining nodes with high out-degrees or large
values of the sum of bivariate ̂OutTEs can serve as comple-
mentary approaches to identify missing drivers, albeit without
theoretical rigor.

Constructing a binary network of meaningful causal rela-
tionships is a crucial first step for pruning in this approach, for
which a publicly available state-of-the-art tool has been used
[20,35]. Selecting parameters and options that best match the
underlying data distribution is essential for optimal efficacy.
For the oral microbiota data, assuming Markovian dynamics
still yielded good results. In the absence of prior knowledge
about the distribution, trial and error may be required. The
development of faster and more accurate causal network re-
construction algorithms would further enhance the application
of the estimation method presented here. Additionally, ap-
plying this method to larger and more diverse datasets could
validate its broader utility and uncover new insights into the
structure and function of complex systems.
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APPENDIX: UNDERESTIMATION OF CONDITIONAL
ENTROPY FOR SMALL SAMPLE SIZES

Conditional entropy H (Y/X ) measures the amount of un-
certainty remaining in a random variable Y given that the
value of another random variable X is known. The true condi-
tional entropy is defined as

H (Y/X ) = −
∑

x

P(X = x)
∑

y

P(Y = y/X = x)

× log P(Y = y/X = x).

When estimating conditional entropy from a finite sample, the
empirical conditional entropy Ĥ (Y/X ) is calculated by sub-
stituting the true probabilities with their empirical estimates
based on the observed data:

Ĥ (Y/X ) = −
∑

x

P̂(X = x)
∑

y

P̂(X = y/X = x)

× log P̂(X = y/X = x),

where empirical probabilities are calculated as

P̂(X = x) ≡ N (x)

N
, P̂(Y = y/X = x) ≡ N (x, y)

N (x)
,

with N (x, y) being the number of times the pair (x, y) occurs,
and N (x) the number of times x occurs, and N the total number
of observations. In practice, the estimated conditional entropy
Ĥ (Y/X ) tends to be smaller than the true entropy H (Y/X )
when the sample size is small. This underestimation occurs
due to insufficient observations, which leads to a biased esti-
mation of probabilities.

The primary reason for the underestimation of conditional
entropy lies in the concavity of the logarithm function and
the bias introduced by finite sample sizes. Note that Jensen’s
inequality can be written in the form

〈 f (X )〉 � f (〈X 〉) (A1)

024308-11



JULIAN LEE PHYSICAL REVIEW E 111, 024308 (2025)

for any random variable X and a concave function f (x). The
logarithm function log(x) is concave, which means that for
any random variable Z ,

〈log Z〉 � log〈Z〉.
In the context of conditional entropy, this inequality implies
that the expected value of the logarithm of the estimated prob-
ability is less than the logarithm of the true probability. When
probabilities are estimated from a small sample, the estimates
P̂(Y = y/X = x) are typically more concentrated around zero
for rare events, leading to a lower average entropy. That is,
for small sample sizes, many possible pairs (x, y) may not
be observed at all, leading to P̂(Y = y/X = x) = 0 for these
pairs. Since P̂(Y = y/X = x) log P̂(Y = y/X = x) is defined
as limp→0 p log p = 0 when P̂(Y = y/X = x) = 0, this results
in a lower estimated entropy. In contrast, the true probability
P(Y = y/X = x) might be nonzero, leading to a nonzero con-
tribution to the true entropy H (Y/X ).

For example, consider a simple case where X and Y are
binary variables, and the true conditional probabilities are

P(Y = 0/X = 0) = 1/2, P(Y = 1/X = 0) = 1/2,

P(Y = 0/X = 1) = 1/2, P(Y = 1/X = 1) = 1/2.

Suppose we have just two observations, with (X,Y ) = (0, 0)
and (X,Y ) = (1, 1). The empirical conditional probabilities
are

P̂(Y = 0/X = 0) = 1, P̂(Y = 1/X = 0) = 0,

P̂(Y = 0/X = 1) = 0, P̂(Y = 1/X = 1) = 1.

The empirical conditional entropy Ĥ (Y/X ) = 0 calculated
from these estimates is less than the true conditional entropy
H (Y/X ) = 1 calculated from the true probabilities, illustrat-
ing the underestimation bias.
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