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Microcanonical analysis of a finite-size nonequilibrium system
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Microcanonical analysis is a powerful method that can be used to generalize the concept of phase transitions to
finite-size systems. However, microcanonical analysis has only been applied to equilibrium systems. I show that
it is possible to conduct the microcanonical analysis of a finite-size nonequilibrium system by generalizing the
concept of microcanonical entropy. A one-dimensional asymmetric diffusion process is studied as an example
for which such a generalized entropy can be explicitly found, and the microcanonical method is used to define a
generalized phase transition for the finite-size nonequilibrium system.
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I. INTRODUCTION

Microcanonical analysis is a powerful method that can be
used to generalize the concept of phase transitions to finite-size
systems [1,2]. In this approach, the form of microcanonical
entropy is examined to determine whether there is a convex
region. The existence of such a region signals the onset of
inhomogeneity, and the system is considered to undergo a
first-order-like transition in this region. Such a generalized
notion of phase transition stands in contrast to the phase
transition in traditional canonical ensemble approaches in that
the latter is defined only in terms of singularities of physical
quantities in the infinite-size limit. Microcanonical analysis
has been applied to the study of generalized phase transitions of
various finite-size systems, such as spin models [3–6], atomic
clusters and nuclei [2,7], polymers [8–16], peptides [17], and
proteins [18–22].

Because the probability distribution of energy is propor-
tional to the exponential of microcanonical entropy only in an
equilibrium system, the microcanonical method has thus far
been exclusively used to analyze equilibrium systems. In this
work I show that it is possible to apply this method to analyze
generalized phase transitions in a finite-size nonequilibrium
system [23–30] through the proper generalization of the
concept of microcanonical entropy.

Let us first briefly review the connection between the
convex region of microcanonical entropy and generalized
phase transition [1,2]. We consider a finite closed system with
a conserved quantity, say energy E, and denote the number
of corresponding microstates as �L(E), where the subscript
denotes the dependence on the system size L. Microcanonical
entropy is then defined as

SL(E) = ln �L(E), (1)

where we use the unit with kB = 1. Now, suppose that
we construct a larger system by assembling two identical
subsystems of energy E and size L. We let the two sub-
systems make thermal contact, but we also let the coupling
between the two subsystems be weak enough so that the total
energy is Etot = 2E = EA + EB , where EA and EB are the
energy values of the two subsystems. We then determine
the most probable distribution of the energy values of the
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subsystems, (EA,EB), under the constraint EA + EB = 2E.
Because P (EA,EB) ∝ exp[SL(EA) + SL(EB)], it is sufficient
to find the value of EA that maximizes SL(EA) + SL(2E − EA)
with respect to EA.

If SL(E) is a concave function, then by definition

SL[pEA + (1 − p)EB] > pSL(EA) + (1 − p)SL(EB) (2)

for any values of EA, EB , and p such that EA �= EB and
0 < p < 1. Substituting p = 1/2 and EB = 2E − EA, we find
that 2SL(E) > SL(EA) + SL(2E − EA), leading to P (E,E) >

P (EA,2E − EA) for any value of E satisfying EA �= E.
Therefore, the homogeneous distribution of energy among the
subsystems is preferred.

On the other hand, if there is a convex region in SL(E)
and E is in that region, then one can find EA �= E such that
2SL(E) < SL(EA) + SL(E − EA). In this case, an inhomoge-
neous distribution is favored over the homogeneous distribu-
tion, and we say that the system is in the phase coexistence
region. In fact, if the total system is assembled from a large
number of subsystems with convex microcanonical entropy,
the sizes of the droplets of high-energy and low-energy phases
increase and decrease, respectively, with increasing energy,
and the system can be considered to undergo first-order-like
transition. The argument can be easily generalized to the
case of subsystems of different sizes and multiple conserved
quantities [1,2].

We note that the only relevant property of SL(E) exploited
in the argument is that when a conserved quantity Q = QA +
QB of the total system is distributed over two subsystems A and
B, the probability distribution of QA and QB is proportional
to exp[SL(QA) + SL′(QB)], where L and L′ denote the sizes
of the subsystems A and B. In terms of �, the relation can be
written as

P (QA,QB) ∝ �L(QA)�L′(QB). (3)

We can also impose a certain boundary condition at the
interface between the subsystems. For example, there can be
a free-energy cost for creating a phase boundary. In this case,
P (QA,QB) becomes a conditional probability which can be
used to analyze whether the system prefers inhomogeneous or
homogeneous distribution of the conserved quantity Q with
respect to the boundary, under the given condition. Again,
SL(E) in Eq. (3) can be used to define the generalized phase
transition of the finite-size system.
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Therefore, it is clear that even for a nonequilibrium system,
if the probability of the distribution of a conserved quantity Q
among subsystems under appropriate boundary conditions can
be expressed in the form Eq. (3), then we can consider �L(Q)
as the generalized density and

SL(Q) ≡ log �L(Q) (4)

as the generalized entropy, which can then be used as the
target of the microcanonical analysis. Below, I will consider an
asymmetric diffusion model on a periodic lattice as an example
of a nonequilibrium model for which the microcanonical
analysis can be performed, and show that the concept of phase
transition can be generalized to a finite-size nonequilibrium
system.

II. THE GENERALIZED MICROCANONICAL ENTROPY
FOR AN ASYMMETRIC DIFFUSION MODEL

In this work, I consider a diffusion model where two types of
particles, labeled 1 and 2, move asymmetrically on a periodic
lattice of length L [24,28–32]. Treating the vacancy as a
particle with label 0, the transition rates gαβ for the particle
exchanges of the type (α,β) → (β,α) at neighboring sites are
given as [28–32]

g10 = g02 = 1, g12 = q, g21 = 1, (5)

with all other components of gs being zero. We note that the
numbers of both types of particles are separately conserved,
which we will denote as n1 and n2. The matrix representation
of the stationary state for this process has already been found
and is given as [28–32]

Pst (β1, . . . βL) ∝ trGβ1 · · · GβL
, (6)

where βk denotes the particle type at the kth site, and
the components of the three infinite-dimensional matrices
Gβ (β = 0,1,2) are given as

(G0)ij = δ1iδ1j , (G1)ij = aiδij + tiδij−1,

(G2)ij = aiδij + sj δi−1j , (7)

where

ak = 1 + q2−k − 2q1−k

q − 1
,

sktk = 1 − q−k

(q − 1)2
(1 − q3−k + 4q2−k − 4q1−k). (8)

Now let us suppose that there are vacancies at sites a and
b. The entire periodic lattice can be divided into two regions
bounded by these two sites, and we would like to obtain the
conditional probability for the particles in these two regions
being nA = (n(A)

1 ,n
(A)
2 ) and nB = (n(B)

1 ,n
(B)
2 ). Obviously, we

see from Eq. (6) that it is proportional to

P (nA,nB) ∝
∑

γ1,··· ,γL

tr(Gγ1 · · · Gγa−1 G0Gγa+1 · · · Gγb−1

×G0Gγb+1 · · · GγL
)δ

(∑
i∈A

δγi ,1,n
(A)
1

)

× δ

⎛
⎝∑

j∈A

δγj ,2,n
(A)
2

⎞
⎠δ

(∑
k∈B

δγk,1,n1

)(B)

×δ

(∑
l∈B

δγl,2,n
(B)
2

)
, (9)

where δ(a,b) = δa,b denotes the Kronecker δ function that
vanishes when the indices are not equal. Note that

tr(Gγ1 · · · Gγa−1 G0Gγa+1 · · · Gγb−1 G0Gγb+1 · · · GγL
)

= tr(G0Gγa+1 · · · Gγb−1 G0Gγb+1 · · · Gγa−1 )

= [Gγa+1 · · · Gγb−1 ]11[Gγb+1 · · · Gγa−1 ]11

= tr(G0Gγa+1 · · · Gγb−1 )tr(G0Gγb+1 · · · Gγa−1 ). (10)

Therefore, the conditional probability for the steady state is
expressed in the form of Eq. (3), where the generalized density
for a system of size L is now defined as

�L(n)

=
∑

γ1,··· ,γL−1

tr

(
G0

L−1∏
k=1

Gγk

)
δ

(
L−1∑
i=1

δγi ,1,n1

)
δ

⎛
⎝L−1∑

j=1

δγj ,2,n2

⎞
⎠

=
∑

γ1,··· ,γL−1

[
L−1∏
k=1

Gγk

]
11

δ

(
L−1∑
i=1

δγi ,1,n1

)
δ

⎛
⎝L−1∑

j=1

δγj ,2,n2

⎞
⎠,

(11)

where the system size L includes one vacancy. We analyze
the generalized phase transition of the current model by
performing the microcanonical analysis on the generalized
entropy SL(n) = log �L(n). It is expressed in terms of (L/2) ×
(L/2) submatrices of Gβ , which can be computed exactly for
given values of q and L [28–32].

Analytic computations, Monte Carlo simulations, mean
field calculations [28,29], and a partition function zero
analysis [30] have been carried out to argue that this system
undergoes a nonequilibrium phase transition in the limit of
L → ∞. There is a qc > 1 such that the system remains
homogeneous for q � qc, but inhomogeneities of the particle
densities appear for a certain range of particle numbers when
q < qc. In fact, the latter can be considered as a region of the
first-order-like transition between fluid and condensed phases,
as will be elaborated below.

III. THE GENERALIZED PHASE TRANSITION FOR THE
FINITE-SIZE NONEQUILIBRIUM SYSTEM

From the viewpoint of microcanonical analysis, the cri-
terion for a first-order-like transition is the existence of a
nonconcave region in the microcanonical entropy, a set of
points where one can find a direction with a positive second
derivative [1,2]. For the current model where the conserved
quantity n is discrete, I examined the discretized second
derivatives

�a�bSL ≡ SL(n1 + a,n2 + b)

+SL(n1 − a,n2 − b) − 2SL(n1,n2) (12)
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FIG. 1. The generalized entropy function SL(n1,n2) for L = 10
is displayed with distinct symbols for points belonging to different
ranges of function values, for (a) q = 0.5, (c) q = 0.7, and (e) q =
2.0. The nonconcave regions are enclosed by dashed lines. The cross
sections along the diagonal lines n1 = n2 in (a), (c), and (e) are
displayed in (b), (d), and (f). The concave envelopes are drawn in
figures (b) and (d) with dashed lines as visual guides.

along the horizontal [(a,b) = (1,0)], vertical [(a,b) = (0,1)],
and two diagonal [(a,b) = (1, ± 1)] directions. A point in the
interior is nonconcave if any one of these four quantities has a
positive value.

The generalized entropy function SL(n1,n2) is shown in
the left panels of the Figs. 1 and 2 for L = 10 and L = 100,
respectively, for various values of q. Note that the entropy
has the symmetry with respect to the line n1 = n2 due to the
invariance under the simultaneous application of particle-type
exchange 1 ↔ 2 and the parity inversion k ↔ −k. We see that
for small enough values of q, a nonconcave region appears
in the generalized entropy, enclosed by dashed lines in Fig. 1
and denoted as gray regions in Fig. 2. As q increases, the
nonconcave region shrinks and eventually disappears for large
enough values of q. We find that the nonconcave region always
includes a part of the line n1 = n2. The second derivative at
such a point is also the largest along the (1,1) direction, which
tells us that for a sufficiently small q, when the system is
divided into subsystems with respect to a pair of vacancies, it
is most probable that there is an inhomogeneity for the total
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FIG. 2. The contours of the generalized entropy function
SL(n1,n2) for L = 100 are drawn for (a) q = 0.8, (c) q = 1.1, and
(e) q = 2.0 at intervals of 200, 50, 20, respectively. The nonconcave
regions are colored in gray. The cross sections along the diagonal
lines n1 = n2 in (a), (c), and (e) are displayed in (b), (d), and (f). The
concave envelopes are drawn in figures (b) and (d) with dashed lines
as visual guides.

particle numbers, but that there are the same numbers of both
species at both sides. Note that this is an exact statement for
a finite value of L, in contrast to the results of previous works
where the limit L → ∞ was considered [28–30,32].

The cross sections of SL(n1,n2) along the line n1 = n2 = n,
SL(n,n), are also displayed in the right panels of Figs. 1 and 2.
When there is a convex intruder, the region of the first-order-
like transition is defined in terms of the concave envelope
constructed by drawing a straight line that is tangent to the
curve at two points. The segment of the line bounded by the two
contact points are shown with dashed lines in the right panels
whenever they exist. The two contact points then define upper
and lower boundaries ρ± of the transition region for n1 = n2

in the space of particle density ρ ≡ n/L (0 � ρ < 0.5). From
here on, we will restrict ourselves to the subspace of n1 = n2

that was extensively studied in the literature [29,30,32].
The boundaries ρ± are drawn as functions of q to produce

a phase diagram in Fig. 3 for L = 10 and L = 100. The mean
field result q̃(ρ) = (1 + 6ρ)/(1 + 2ρ) in the limit of L → ∞
is shown in Fig. 3 with a dashed line for comparison [29],
where q̃(ρ) is the inverse function of ρ±(q).
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FIG. 3. The phase boundary ρ±(q) for n1 = n2, for L = 10 and
L = 100. The mean field result in the limit of L → ∞ is shown with
a dashed line for comparison.

The high-density side of the phase boundary, ρ � ρ+,
corresponds to the condensed phase. Note that there is a
q1(L) such that ρ− = 0 for q � q1(L), in which case the
low-density phase ρ = ρ− = 0 is just the vacuum without
any particles present. For q > q1(L), the low-density phase
ρ � ρ− is the fluid phase. As q increases, ρ± approach each
other and eventually merge at the critical point q = qc(L), after
which the system is in a homogeneous phase. The values of
q1 and qc for L = 10 and L = 100 are indicated with arrows
in Fig. 3. The mean field prediction for these parameters are
q1(∞) = 1 and qc(∞) = 2, as can be easily read from the
analytic expression for q̃(ρ).

The regions q � q1, q1 < q < qc, and q � qc have been
called pure, mixed, and disordered phases [29]. However, the
microcanonical analysis shows that in ρ space, each of the
regions q � qc and q1 < q < qc is divided into the vacuum
(or fluid) phase (ρ � ρ−), condensed phase (ρ � ρ+), and
the phase coexistence region (ρ− < ρ < ρ+). The situation
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FIG. 4. The critical values qc (solid line) and q1 (dashed line) for
n1 = n2 as functions of the system size L. A first-order-like transition
exists for q < qc. The low-density phase is a vacuum phase for q � q1

and a fluid phase for q1 < q < qc.

is analogous to the two-dimensional Ising model with the
conserved magnetization M and the temperature T . When
one simply considers the T dependence, then there is a critical
temperature Tc such that the system is in a disordered phase
for T � Tc and an ordered phase for T < Tc. However, by
examining the M-dependent behavior of the system, one
realizes that the ordered phase is divided into an up-spin phase,
down-spin phase, and the region of the first-order transition
between the up and down phases.

I also plot qc(L) and q1(L) as functions of L in Fig. 4. Both
qc(L) and q1(L) approach their mean field values qc(∞) = 2
and q1(∞) = 1.

IV. DISCUSSION

In this work, I applied microcanonical analysis to nonequi-
librium steady states of an asymmetric diffusion model on a
periodic lattice to study a generalized phase transition. This
was possible by generalizing the concept of microcanonical
entropy to a nonequilibrium steady state via Eqs. (3) and (4),
and by defining the generalized phase transition in terms of
inhomogeneous distribution of particles among the subsystems
defined with respect to a pair of vacancies.

The generalized entropy can be used analyze properties of
a nonequilibrium steady state even when there is no convex
intruder. In equilibrium statistical physic, derivatives of the
microcanonical entropy are taken with respect to energy,
volume, or particle number to define temperature, pressure,
and chemical potential. Analogously, in the current model we
can define the generalized chemical potentials in terms of the
discretized first derivatives

μ̃i ≡ −SL(n + ei) + SL(n − ei), (13)

where e1 ≡ (1,0) and e2 ≡ (0,1).1 Now suppose a lattice is
divided into two regions A and B by a pair of vacancies
and μ̃i(A) > μ̃i(B) at some instant. If the system can still be
divided into the subsystems A and B with respect to the same
pair of vacancies after the steady state is reached, then most
probably the particle of species i has flowed from A to B in the
process. This is the analog of the statement that energy flows
from a high-temperature region to a low-temperature region,
or particles flow from a high-chemical-potential region to a
low-chemical-potential region, when an infinite-sized system
reaches the equilibrium.

The nonequilibrium phase transition of the current model
has also been analyzed using the partition function ze-
ros (PFZs) [30]. There, a partition function of the form∑

n1,n2
�L(n1,n2)xn1+n2 was constructed where x was called

the fugacity. Then the PFZs in the complex plane of x were
analyzed to claim that there is a first-order transition as L →
∞, for sufficiently small values of q. It is obvious that �L(n)
was implicitly used as the generalized density of states, but it
was not explained why �L(n) should have such a special status.
Also, the physical meaning of the fugacity was unclear, be-
cause �L(n) was regarded as describing particles on a periodic

1μ̃ in fact corresponds to μ/T in equilibrium statistical physics,
where μ is the chemical potential. Since T is undefined in the current
model, we use the dimensionless quantity μ̃ instead.
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lattice of size L, which is an isolated system. The current work
not only justifies the use of �L(n) as a generalized density,
via the factorization Eq. (3), but also shows that �L(n) in the
PFZs approach describes a subsystem of size L − 1 bounded
by a pair of vacancies, rather than the entire system. Then
x = eμ̃bath , where μ̃bath is the generalized chemical potential of
the rest of the system, whose size is much larger than L, which
acts as an infinite-size particle reservoir.2 The microcanonical
analysis presented in the current work is more general because
a closed system with a finite size can be analyzed.

It has been claimed that the current model does not exhibit
a phase transition in the infinite-size limit in the sense that no
singularities appear in the physical quantities [32]. This result

2This is a special case where μ̃1 = μ̃2 = μ̃bath for the particle
reservoir. It is straightforward to consider a case with μ̃1 �= μ̃2.

is in disagreement with those of other works that claim a phase
transition for the same system [28–30], but even if this scenario
is true, the conclusion of the current work does not change, be-
cause we are considering a generalized phase transition defined
in terms of the convex intruder in the generalized entropy.

In fact, the generalized phase transition for a finite-size
nonequilibrium system is introduced for the first time in
the current work through the microcanonical analysis, which
would be a subject of much interest for future studies.
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Rev. Lett. 74, 208 (1995); J. Stat. Phys. 80, 69 (1995); P. F.
Arndt, T. Heinzel, and V. Rittenberg, ibid. 90, 783 (1998);

[24] M. R. Evans, Y. Kafri, H. M. Koduvely, and D. Mukamel, Phys.
Rev. Lett. 80, 425 (1998); Phys. Rev. E 58, 2764 (1998).

[25] R. A. Blythe and M. R. Evans, Phys. Rev. Lett. 89, 080601
(2002).

[26] M. R. Evans and R. A. Blythe, Phys. A (Amsterdam, Neth.) 313,
110 (2002).

[27] S.-C. Park and H. Park, Eur. Phys. J. B 64, 415 (2008).
[28] P. F. Arndt, T. Heinzel, and V. Rittenberg, J. Phys. A 31, L45

(1998); P. F. Arndt and V. Rittenberg, J. Stat. Phys. 107, 989
(2002).

[29] P. F. Arndt, T. Heinzel, and V. Rittenberg, J. Stat. Phys. 97, 1
(1999).

[30] P. F. Arndt, Phys. Rev. Lett. 84, 814 (2000).
[31] P. F. Arndt, T. Heinzel, and V. Rittenberg, J. Phys. A: Math. Gen.

31, 833 (1998).
[32] N. Rajewsky, T. Sasamoto, and E. R. Speer, Phys. A (Amster-

dam, Neth.) 279, 123 (2000).

052148-5

http://dx.doi.org/10.1063/1.1901658
http://dx.doi.org/10.1063/1.1901658
http://dx.doi.org/10.1063/1.1901658
http://dx.doi.org/10.1063/1.1901658
http://dx.doi.org/10.1016/S0378-4371(01)00159-5
http://dx.doi.org/10.1016/S0378-4371(01)00159-5
http://dx.doi.org/10.1016/S0378-4371(01)00159-5
http://dx.doi.org/10.1016/S0378-4371(01)00159-5
http://dx.doi.org/10.1016/S0920-5632(97)00854-2
http://dx.doi.org/10.1016/S0920-5632(97)00854-2
http://dx.doi.org/10.1016/S0920-5632(97)00854-2
http://dx.doi.org/10.1016/S0920-5632(97)00854-2
http://dx.doi.org/10.1023/A:1018636705716
http://dx.doi.org/10.1023/A:1018636705716
http://dx.doi.org/10.1023/A:1018636705716
http://dx.doi.org/10.1023/A:1018636705716
http://dx.doi.org/10.1103/PhysRevE.74.011108
http://dx.doi.org/10.1103/PhysRevE.74.011108
http://dx.doi.org/10.1103/PhysRevE.74.011108
http://dx.doi.org/10.1103/PhysRevE.74.011108
http://dx.doi.org/10.3390/entropy-e10030224
http://dx.doi.org/10.3390/entropy-e10030224
http://dx.doi.org/10.3390/entropy-e10030224
http://dx.doi.org/10.3390/entropy-e10030224
http://dx.doi.org/10.1063/1.2173260
http://dx.doi.org/10.1063/1.2173260
http://dx.doi.org/10.1063/1.2173260
http://dx.doi.org/10.1063/1.2173260
http://dx.doi.org/10.1209/0295-5075/87/40002
http://dx.doi.org/10.1209/0295-5075/87/40002
http://dx.doi.org/10.1209/0295-5075/87/40002
http://dx.doi.org/10.1209/0295-5075/87/40002
http://dx.doi.org/10.1103/PhysRevE.79.050801
http://dx.doi.org/10.1103/PhysRevE.79.050801
http://dx.doi.org/10.1103/PhysRevE.79.050801
http://dx.doi.org/10.1103/PhysRevE.79.050801
http://dx.doi.org/10.1063/1.3227751
http://dx.doi.org/10.1063/1.3227751
http://dx.doi.org/10.1063/1.3227751
http://dx.doi.org/10.1063/1.3227751
http://dx.doi.org/10.1063/1.3273418
http://dx.doi.org/10.1063/1.3273418
http://dx.doi.org/10.1063/1.3273418
http://dx.doi.org/10.1063/1.3273418
http://dx.doi.org/10.1039/c002862b
http://dx.doi.org/10.1039/c002862b
http://dx.doi.org/10.1039/c002862b
http://dx.doi.org/10.1039/c002862b
http://dx.doi.org/10.1103/PhysRevE.84.011127
http://dx.doi.org/10.1103/PhysRevE.84.011127
http://dx.doi.org/10.1103/PhysRevE.84.011127
http://dx.doi.org/10.1103/PhysRevE.84.011127
http://dx.doi.org/10.1063/1.4790615
http://dx.doi.org/10.1063/1.4790615
http://dx.doi.org/10.1063/1.4790615
http://dx.doi.org/10.1063/1.4790615
http://dx.doi.org/10.1103/PhysRevE.90.022601
http://dx.doi.org/10.1103/PhysRevE.90.022601
http://dx.doi.org/10.1103/PhysRevE.90.022601
http://dx.doi.org/10.1103/PhysRevE.90.022601
http://dx.doi.org/10.1209/0295-5075/109/28002
http://dx.doi.org/10.1209/0295-5075/109/28002
http://dx.doi.org/10.1209/0295-5075/109/28002
http://dx.doi.org/10.1209/0295-5075/109/28002
http://dx.doi.org/10.1103/PhysRevE.78.056101
http://dx.doi.org/10.1103/PhysRevE.78.056101
http://dx.doi.org/10.1103/PhysRevE.78.056101
http://dx.doi.org/10.1103/PhysRevE.78.056101
http://dx.doi.org/10.1103/PhysRevLett.97.218103
http://dx.doi.org/10.1103/PhysRevLett.97.218103
http://dx.doi.org/10.1103/PhysRevLett.97.218103
http://dx.doi.org/10.1103/PhysRevLett.97.218103
http://dx.doi.org/10.1063/1.2830233
http://dx.doi.org/10.1063/1.2830233
http://dx.doi.org/10.1063/1.2830233
http://dx.doi.org/10.1063/1.2830233
http://dx.doi.org/10.1103/PhysRevE.76.046110
http://dx.doi.org/10.1103/PhysRevE.76.046110
http://dx.doi.org/10.1103/PhysRevE.76.046110
http://dx.doi.org/10.1103/PhysRevE.76.046110
http://dx.doi.org/10.1103/PhysRevLett.100.258104
http://dx.doi.org/10.1103/PhysRevLett.100.258104
http://dx.doi.org/10.1103/PhysRevLett.100.258104
http://dx.doi.org/10.1103/PhysRevLett.100.258104
http://dx.doi.org/10.1016/j.phpro.2010.01.198
http://dx.doi.org/10.1016/j.phpro.2010.01.198
http://dx.doi.org/10.1016/j.phpro.2010.01.198
http://dx.doi.org/10.1016/j.phpro.2010.01.198
http://dx.doi.org/10.1021/ja105206w
http://dx.doi.org/10.1021/ja105206w
http://dx.doi.org/10.1021/ja105206w
http://dx.doi.org/10.1021/ja105206w
http://dx.doi.org/10.1016/j.bpj.2011.03.056
http://dx.doi.org/10.1016/j.bpj.2011.03.056
http://dx.doi.org/10.1016/j.bpj.2011.03.056
http://dx.doi.org/10.1016/j.bpj.2011.03.056
http://dx.doi.org/10.1103/PhysRevLett.74.208
http://dx.doi.org/10.1103/PhysRevLett.74.208
http://dx.doi.org/10.1103/PhysRevLett.74.208
http://dx.doi.org/10.1103/PhysRevLett.74.208
http://dx.doi.org/10.1007/BF02178354
http://dx.doi.org/10.1007/BF02178354
http://dx.doi.org/10.1007/BF02178354
http://dx.doi.org/10.1007/BF02178354
http://dx.doi.org/10.1023/A:1023229004414
http://dx.doi.org/10.1023/A:1023229004414
http://dx.doi.org/10.1023/A:1023229004414
http://dx.doi.org/10.1023/A:1023229004414
http://dx.doi.org/10.1103/PhysRevLett.80.425
http://dx.doi.org/10.1103/PhysRevLett.80.425
http://dx.doi.org/10.1103/PhysRevLett.80.425
http://dx.doi.org/10.1103/PhysRevLett.80.425
http://dx.doi.org/10.1103/PhysRevE.58.2764
http://dx.doi.org/10.1103/PhysRevE.58.2764
http://dx.doi.org/10.1103/PhysRevE.58.2764
http://dx.doi.org/10.1103/PhysRevE.58.2764
http://dx.doi.org/10.1103/PhysRevLett.89.080601
http://dx.doi.org/10.1103/PhysRevLett.89.080601
http://dx.doi.org/10.1103/PhysRevLett.89.080601
http://dx.doi.org/10.1103/PhysRevLett.89.080601
http://dx.doi.org/10.1016/S0378-4371(02)01035-X
http://dx.doi.org/10.1016/S0378-4371(02)01035-X
http://dx.doi.org/10.1016/S0378-4371(02)01035-X
http://dx.doi.org/10.1016/S0378-4371(02)01035-X
http://dx.doi.org/10.1140/epjb/e2008-00022-4
http://dx.doi.org/10.1140/epjb/e2008-00022-4
http://dx.doi.org/10.1140/epjb/e2008-00022-4
http://dx.doi.org/10.1140/epjb/e2008-00022-4
http://dx.doi.org/10.1088/0305-4470/31/2/001
http://dx.doi.org/10.1088/0305-4470/31/2/001
http://dx.doi.org/10.1088/0305-4470/31/2/001
http://dx.doi.org/10.1088/0305-4470/31/2/001
http://dx.doi.org/10.1023/A:1015101506637
http://dx.doi.org/10.1023/A:1015101506637
http://dx.doi.org/10.1023/A:1015101506637
http://dx.doi.org/10.1023/A:1015101506637
http://dx.doi.org/10.1023/A:1004670916674
http://dx.doi.org/10.1023/A:1004670916674
http://dx.doi.org/10.1023/A:1004670916674
http://dx.doi.org/10.1023/A:1004670916674
http://dx.doi.org/10.1103/PhysRevLett.84.814
http://dx.doi.org/10.1103/PhysRevLett.84.814
http://dx.doi.org/10.1103/PhysRevLett.84.814
http://dx.doi.org/10.1103/PhysRevLett.84.814
http://dx.doi.org/10.1088/0305-4470/31/3/003
http://dx.doi.org/10.1088/0305-4470/31/3/003
http://dx.doi.org/10.1088/0305-4470/31/3/003
http://dx.doi.org/10.1088/0305-4470/31/3/003
http://dx.doi.org/10.1016/S0378-4371(99)00537-3
http://dx.doi.org/10.1016/S0378-4371(99)00537-3
http://dx.doi.org/10.1016/S0378-4371(99)00537-3
http://dx.doi.org/10.1016/S0378-4371(99)00537-3



