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Time-reversal symmetry of the microscopic laws dictates that the equilibrium distribution of a stochastic process
must obey the condition of detailed balance. However, cyclic Markov processes that do not admit equilibrium
distributions with detailed balance are often used to model systems driven out of equilibrium by external agents.
I show that for a Markov model without detailed balance, an extended Markov model can be constructed, which
explicitly includes the degrees of freedom for the driving agent and satisfies the detailed balance condition. The
original cyclic Markov model for the driven system is then recovered as an approximation at early times by
summing over the degrees of freedom for the driving agent. I also show that the widely accepted expression for
the entropy production in a cyclic Markov model is actually a time derivative of an entropy component in the
extended model. Further, I present an analytic expression for the entropy component that is hidden in the cyclic

Markov model.
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I. INTRODUCTION

A Markov process [1,2] is a paradigmatic model for describ-
ing a stochastic process in various fields of science including
biophysics [3—12]. A Markov process can be obtained from
the microscopic dynamics of a closed system by coarse
graining [13,14]. Thus, it can be considered as a process
where information is continuously being lost. Alternatively,
Markov processes have also been obtained by maximizing the
dynamical entropy of the probability distribution of stochastic
paths under appropriate constraints [15—-17].

Considering discrete states labeled by an index i, the time
evolution of a probability distribution in a Markov jump
process, where transitions occur only at times that are integer
multiples of Az, is given by [18]

Tt + A =Y wi(Opji, (1)

J

where m;(¢) is the probability that the system is in a state i
at time t = nAt for some integer n, and p,_, ; is the transition
probability from the state i to j. The conservation of probability
implies that ) j Pi—~j = 1. Equation (1) can also be written as

Ami(1)
A—tZXj:ﬂj(t)kj—n" ()
where Am;(t) = m;(t + At) — m;(t) and
Pi—j —0i;
kinj= JA—[], 3)

with §; ; being the Kronecker delta, which is one if i = j and
zero otherwise. Here, k;_,; is called the transition rate from
the state i to j for i # j. The conservation of probability
imposes the constraint that Y ] ki—; =0, from which we
obtain k;,; = — > ot ki ;j. The transition rates completely
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determine the stochastic evolution of the system. The values of
ki, ; are considered to be time-independent constants, and the
term time-homogeneous Markov process is sometimes used to
emphasize this fact.

The equation for the continuous-time Marvkov process is
obtained from Eq. (2) by taking the limit At — 0:

dri(t)
”t =;n,-(r)k,-ﬂ-, @)

d

which is called the master equation.

It is a well-known fact that under appropriate conditions,
the probability distribution of a Markov chain converges to
a unique stationary distribution 7 regardless of the initial
distribution [18]. A stationary distribution satisfies the balance
condition:

Y o witkjni =Y [xkjsi — ks ] =0 Yi.  (5)
J J
where the second expression follows from the first by the
conservation of probability > ; ki—j = 0. A stationary distri-
bution is considered a true equilibrium, which we now denote
as nfq, only if a stronger condition called detailed balance
holds:
T[;qkj_”‘ —ﬂl-eqki_)j =0 Vl,] (6)
A given Markovian transition matrix admits an equilibrium
solution with detailed balance if and only if Kolmogorov’s
criterion is satisfied. It states that for any cycle of states
i0,i1, - .- ,in,ip, the product of forward transition rates over the
cycle is equal to that of the reverse rates [19,20]:

. kiz%[]kl’]ﬁio'
)

Therefore, we see that the existence of a cycle in the network
topology of a Markov process is a necessary condition that its
stationary distribution violates the detailed balance condition.

Kig—isKiy—iy « + - ki, i, Kiy iy = Kig—i,Kiy—i,_, - -
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From here on, we will call a Markov model that violates
Kolmogorov’s criterion simply a cyclic Markov model since
cycles that satisfy Kolmogorov’s criterion are not of interest
here.

Because a Markov process is a coarse-grained description, a
state labeled with the index 7 is usually not a true microstate of
the closed system, but rather an aggregate of such microstates.
The crucial assumption underlying the coarse graining that
leads to Eq. (4) is that of instantaneous local equilibrium: the
equilibration between the microstates within each Markov state
occurs much faster than the transition between distinct Markov
states. Therefore, we may call the index labeling the Markov
states as the slow variable, and the underlying additional hidden
index required for specifying the microstate as the fast variable.
Once instantaneous local equilibrium is assumed, the detailed
balance condition for an equilibrium distribution follows from
the symmetry of the underlying microscopic laws under time
reversal, under the condition that the index i is invariant under
time reversal, which will be assumed always true in this paper
[13,14]. This suggests that any closed system can be described
by a Markov process that satisfies Kolmogorov’s criterion if
coarse graining is performed properly. However, cyclic Markov
processes that violate Kolmogorov’s criterion are often used to
model systems continuously driven out of equilibrium by an
external agent [21-30]. The stationary state of such a model
is called the nonequilibrium steady state [25-34] because the
detailed balance condition does not hold.

It has been argued that these rather contradictory views can
be reconciled if the cyclic Markov process is embedded in a
larger Markov model that explicitly includes the degrees of
freedom for the driving agent [35]. Obviously, the total system
consisting of the driven system plus the outside environment
containing the driving agent forms a closed system, which will
eventually reach equilibrium. For example, a cyclic Markov
model can be used to describe a biochemical cycle driven by
adenosine triphosphate (ATP). However, from a more global
point of view, the cycle will stop once all ATP molecules
are used up. If we consider a situation where ATP itself is
regenerated by food intake, we know that the cycle is still a
part of a larger cycle driven by the sun. Considering a closed
system that includes all biological organisms as well as the
sun, the whole system will reach equilibrium once the sun
has burnt out and all life processes have ended. Therefore,
the dynamics for the driven system are described by a model
where the transition rate is time dependent. Since the transition
rates change with time, it is possible that the rates violate
Kolmogorov’s criterion at earlier times, but satisfy the criterion
as the system reaches equilibrium. A cyclic Markov process
is clearly only an approximate description valid only for time
periods much earlier than the equilibration of the total closed
system.

In this work, it is shown that for any time-homogeneous
Markov model without detailed balance, an extended Markov
model that explicitly includes the degrees of freedom for
the driving agent and satisfies Kolmogorov’s criterion can be
constructed. The original cyclic Markov model for the driven
system is then recovered as an approximation at early times by
summing over the degrees of freedom of the driving agent.
By constructing the extended model, the widely accepted
formula for the entropy production in a cyclic Markov model is

FIG. 1. (a) Cyclic Markov model with three states. (b), (c)
Examples of extended models where an additional degree of freedom
X is introduced.

explicitly expressed as a time derivative of an entropy com-
ponent. Furthermore, an analytic expression for the entropy
component is presented, which is hidden in the original cyclic
Markov model.

II. DERIVATION OF MARKOV MODEL THAT
VIOLATES DETAILED BALANCE

A. Three-state model

Before providing a derivation for general Markov processes
without detailed balance, a simple example of a discrete-time
Markov process is presented, consisting of the three states
shown in Fig. 1(a), where abc # affy. Now, consider an
extended model where the state of the driving agent, labeled
by an integer X (0 < X < N), is explicitly included. We
assume that the change of X is uniquely determined for each
i — j transition, denoted by AX(i — j). We also assume that
AX(i — j)=—AX(j — i). For example, this three-state
process may be a biochemical cycle driven by the hydrolysis
of ATP to adenosine diphosphate (ADP). Then, we may
take N to be the total number of ATP and ADP molecules,
which is assumed to be fixed, and let X and N — X be the
numbers of ATP and ADP molecules, respectively. In this
case, —A X (i — j)isthe number of consumed ATP molecules
in the biochemical reaction i — j. We request that the sum
of AX(i — j) along the cycle is nonzero. This leads to an
absence of any cycle in the extended model, which in turn
guarantees the detailed balance. There is no unique extended
model corresponding to the cyclic Markov model in Fig. 1(a).
For example, we may have AX = +1 for each transition
[Fig. 1(b)], or alternatively AX = =1 only for the transitions
between C and A and AX = 0 for all the other transitions
[Fig. 1(c)]. However, the model in Fig. 1(c) can be clearly
mapped into that of Fig. 1(b) by redefining the coordinate
X and changing the value of N. Hence, these models are
mathematically equivalent. From here on, X will be defined
as in Fig. 1(b), so that there are a total of N + 1 states in the
extended model. Then, X is just a serial number attached to the
states in the extended model, and does not necessarily coincide
with the number of ATP molecules.

We now consider a Markov process for the probability
distribution IT(; x)(¢) of the extended system, and assume that
the transition probability P x)—(j,y) from (i,X) to (j,Y)in the
extended model has the form

Pi xy»(j,v) = Pi—j0(Y — X,AX(i — j)), ®
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where §(x,y) = dy,, is the Kronecker delta function. That is,
the nonzero value of the transition probability depends only
on i and j [Figs. 1(b) and 1(c)]. Starting from the extended
model, we now sum over the degrees of freedom X to obtain
the reduced model describing the time evolution of ;(¢). The
dynamics of the reduced model is not described by a time-
homogeneous Markov process in general, but the transition
probability g(i — j;t) can still be defined, and is given by
(Appendix A)

Pr(i,t; j.t + A1)
i (1)
Zx,y Pr(i,X,t; j,Y,t + At)
- (1)

Z i x) (@) Pi xy—(j.y)

qli — jit) =

T (t)

'Zx M.x) ()

s i (1)

where Pr(i,t; j,t + At) is the joint probability that the state of
the driven system is i at time ¢ and j at time # + A¢. Similarly,
Pr(i,X,t; j,Y,t + At) is the joint probability that the state of
the extended model is (i, X) at time ¢ and (j,Y) at time ¢ +
At. In Eq. (9), the first line follows from the definition of the
transition probability (Appendix A), and the same definition
was used for the extended model to obtain the third line. Finally,
the condition (8) was used to derive the last line.

Note that X = N and X = 0 are excluded from the sum-
mation in the numerator of Eq. (9) for AX(i — j)=1 and
AX(i — j) = —1, respectively, leading to

) 9)

pisj(1— 20y AX( > j) =1,
90 = O =pi;(1- "), AXG — j)=—1,
Piss s otherwise.
(10)

As mentioned earlier, the coarse graining of microscopic
dynamics under appropriate conditions leads to a time-
homogeneous Markov model that satisfies Kolmogorov’s cri-
terion. From Eq. (10), we now see why the cyclic Markov
model for the three states violates Kolmogorov’s criterion:
we cannot assume instantaneous equilibration among the
microstates within a state labeled by the index i because the
dynamics of the variable X is not fast enough. Only in the limit
of t — oo, I x)(¢) approaches the equilibrium distribution
where the time dependence in Eq. (10) disappears, leading to a
time-homogeneous Markov model that satisfies Kolmogorov’s
criterion. Itis straightforward to obtain the analytic form for the
equilibrium solution by using the detailed-balance condition
(Appendix B).

Now, consider the early time period. It is clear that if
N > land I x)(0) are nonzero only around the intermediate
values of X, say N /2, then both I1; o)(¢) and I1(; ny(f) remain
negligible for t < toq, Where t.q = NAt/p is the time scale
of equilibration, with p denoting the typical size of p;_, ;. In
this regime, g(i — j;t) 2 p;— j, and the time-homogeneous
cyclic Markov model with broken detailed balance is recov-
ered. The driven system reaches the steady state of the cyclic

model around ty = At/p, which is actually a quasi-steady
state that persists for 4 <t < teq.

Let us refer to the three-state model with transition probabil-
ity given by Eq. (10) as model 1 (Fig. 1). The result of a numeri-
cal computation for model 1 is shown in Fig. 2, with a transition
probability given by pc_.4 = 0.5 and p;_,; = 0.25 for all
other pairs with i # j. With N = 3000, the system is initially
in the state (i,X) = (B,1500), with X defined as in Fig. 1(b).
Note that for t < 1500A¢, T1; x(¢) = I1;0(¢) = 0, so the sys-
tem is exactly described by the time-homogeneous three-state
Markov model with broken detailed balance [Fig. 1(a)]. The
steady-state distribution and the currents of the cyclic model
are (3, 7y, ) = (5/12,1/3,1/4), and J* = 1/48, respec-
tively, which are actually the quasi-steady-state distribution
and currents of the extended model. We see that the system
reaches the quasi-steady state at around ¢/ At ~ 4 [Fig. 2(a)].
As we look at a longer time scale, we see that the system makes
a transition from the nonequilibrium quasi-steady state to true
equilibrium with (nA ,nB T, q) =(2/5,2/5,1/5)and Joq =0
around ¢/Ar ~ 25000 [Fig. 2(b)]. The three-state system is
now described by a time-homogeneous Markov model with
detailed balance, where pc_4 = 0.5, pp_c = 0.125, and
pi—j = 0.25 for all other pairs with i # j.

The condition that the nonzero values of the transition
rates depend only on the states of the driven system [Eq. (8)]
may be overly strict to be realistic. We now consider a more
general situation, where the nonzero values of the transition
rate Py x)—(j,v) also depend on X, so that the constant p;_, ;
in Eq. (8) is now replaced by p;_, ;(X), which is a function of
X. Even in this more general case, the previous arguments
presented under the condition (8) remain valid, as long as
pi—j(X) is a slowly varying function of X so that

Pixy—,v) = Pi»j(X)8(Y — X,AX({ — J))
~ pi i (X0)8(Y — X,AX(i — j) (1)

forX « N.Wethengetq(i — j;t) >~ p;j(Xo)fort < t; =
N At/p(Xp). However, in contrast to the model where the
values of p;_,; are constants that are independent of X, the
system does not reach equilibrium at t ~ #; because p;_, ;(X)
deviates significantly from p;_, j(Xo) as t — #;. This means
that ¢4 is less well defined in the model with X-dependent
values of nonzero transition probability, suggesting that the
transition to equilibrium is smoother.

As asimple example, let us consider a three-state model that
is more realistic than model 1, which we call model 2, where
the transitions C — A and A — C are driven by the reactions
ATP — ADP + P and ADP +P — ATP, respectively. We
take N = 3000, as in the case of model 1, where N + 1 is
the total number of states in the extended model, labeled by
the coordinates X = 0,...,N. As in the case of model 1,
we assume that the state of the driven system at both ends
of the Markov chain is B. It is then easy to see that the
numbers of ATP and ADP molecules are Narp = [(X + 1)/3]
and Napp = N/3 — [(X + 1)/3], respectively, with their total
number fixed as Ny, = N/3 = 1000, where [X] denotes the
integer part of the number X. The result of the numerical
computation for model 2 is shown in Figs. 2(a) and 2(c), where
the initial condition and parameters are the same as in the
case of model 1, except that p(C — A) = 0.50Natp/ Nyt and
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FIG. 2. Time evolution of three-state model with discrete time.
Modell:a =b=a =8 =y =0.25/Atandc = 0.5/At. Model 2:
a=b=a=B=025/At, c =1.0(X/N)At™!, and y = 0.5(1 —
X/N)At~'. The probability distribution and currents are displayed
as functions of time. (a) Probability distribution and currents of both
models at early times. (b) Probability distribution and currents of
model 1 at late times. For better visibility, J was multiplied by 10.
(c) Probability distribution and currents of model 2 at late times. For
better visibility, J was multiplied by 10.

P(A — C) = 0.25Napp/ Nio: so that they are proportional to
the numbers of ATP and ADP, respectively. The parameters
are chosen so that they coincide with those of model 1 for

the initial value of X = X, = 1500. The behavior of model
2 is almost identical to that of model 1 at early times, as
expected [Fig. 2(a)]. As in model 1, the system reaches
the quasi-steady state at ty ~ At/p(Xo) =~ 4At. However,
in contrast to model 1, the system does not make a sharp
transition to equilibrium at a well-defined 7.4, but rather
makes a much smoother transition to equilibrium characterized
by (JTA ,JTB ,TT, q) = (1/3,1/3,1/3) and Jeq = 0, as predicted.
Further details regarding the equilibrium distribution for both
models 1 and 2 can be found in Appendix B.

B. General derivation

The discussion above can be generalized to any Markov
model that violates detailed balance. Now, there can be more
than one cycle in the Markov network, and accordingly more
than one driving agent. All the degrees of freedom for the driv-
ing agent are now grouped and expressed as a vector X, where
we regard the components of X to be dimensionless without
loss of generality. For example, in a realistic biochemical cycle,
ATP will not simply be exhausted, but rather replenished by
another biochemical cycle. This biochemical cycle may be
coupled to other chemical cycles, which are ultimately coupled
to radiation energy coming from the sun. Then, the vector X
represents the state of all the degrees of freedom involved in
driving the biochemical cycle of interest, including the amount
of hydrogen in the sun. To encompass both discrete-time
models and continuous-time models, I will describe a model in
terms of transition rate rather than transition probability, and
denote the transition rates in the extended and reduced models
by Wi x)—(,v) and k;_, j, respectively.

Again, we assume that there is no cycle in the extended
model and therefore the detailed balance is satisfied. We also
assume that

FXi.j) =Y Wix(.y) (12)
Y

is a slowly varying function of X. That is, there is a large num-
ber N >> 1 such that F(X,i, ) does not deviate significantly
from its initial value F(Xo,i,j) if |X| < N:

F(X.i,j) ~ ki j = FXo.i,j) (for [X| < N). (13)

Then, the transition rates of the driven system are obtained by
summing over the states of the driving agent (Appendix A):

w(i — jit) = At”[q(i — jit) = 8]

= At~ Z[Pr(z X.1;j, Y, + Af)

1()
—Pr(i X t'j,Y ]

Z i) OWix)—.v)

b (t)

ZX I x)(7)
(1)
fort <« t; = N/k, withk being the typical size of k;_, ;. Again,
the summation of X in the numerator of the last line excludes
the states at the boundary of the Markov network, whose effect
is negligible at early times, leading to the final approximation.
Although the definition of the transition rate for discrete-time

= kl~>/ — ki*)j (14)
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model has been used, the final result does not depend on A¢, and
Eq. (14) can be used for both discrete-time and continuous-time
models.

From here on, let us refer to the time regime ¢ < t;, where
the system can be described by a time-homogeneous cyclic
Markov model without detailed balance, as the cyclic regime.

III. ENTROPY PRODUCTION

A. Continuous time

The formalism presented in this work clarifies the notion
of entropy production [28,29,34—47] for the case of a Markov
process without detailed balance. The entropy production is
connected with time irreversibility via the fluctuation theo-
rem [40,41,48-59]. For a continuous-time Markov process
described by the transition rates k;_, ;, the entropy production
of the whole closed system has been defined as

_ PN (ki j
Y= ;m(t)kHj log <—n_,‘(z)k_,«ﬁ,»>’ (15)

where the Boltzmann constant has been set to unity.! This
formula for the entropy production was originally proposed by
Schnakenberg [42], and is widely used nowadays [28,29,34—
41,43-47]. It can be shown that ¥ > 0 for any Markov process
(Appendices C and D). The Schnakenberg entropy production
¥ is explicitly expressed as the time derivative of an entropy
in the case of a Markov model that satisfies Kolmogorov’s
criterion. From the detailed balance condition in Eq. (6), we
obtain

)

7T (t ¢4
Zﬂi(f)kmj log Ljeq
Y 7i(t)m;

= = [ (Okjoi — mi()ki j1log ( n( ))

iJj

_ Zn,(t)log( l(t))

——[Zm(t)l ( ’())}, (16)

where the condition ) ; 77;(t) = 0 was used to derive the last
line. Therefore, we find that ¥ = Sgjoseq, Where

Setosed = — Zm(t)log( l”) (17)

is the entropy of the whole closed system. It takes the form of
the negative of the relative entropy, also called the Kullback-
Leibler divergence [60]. The Kullback-Leibler divergence
Dx(P|| Q) measures the distance of a probability distribution
P(i) from a given distribution Q(i), which is defined as

Dg (P P(@i)lo 18
kL(P[1Q) = Z () gQ() (18)

'The base of the log function will be kept arbitrary because the
results do not depend on it.

Because of the sign flip, Sciosea measures the similarity
of the distribution 7(f) to n;%. Therefore, we may say
that Scjosed 18 @ nondecreasing function of time because
converges to nfq as time proceeds. However, Sclosed >0
even when lim,_, 7;(t) # m;? (Appendix C). The phys-
ical interpretation of Sgoseq 1S very clear. At the equi-
librium, a closed system has an equal probability to be
in each microstate that is consistent with the given con-
straints [61,62] (Appendix H). Consequently, the equilibrium
probability 7 is proportional to the number of such mi-
crostates corresponding to the state i, denoted as €2; [61]
(Appendix H):

7« Q; = B, (19)

where S; = log ©; is the Boltzmann entropy corresponding to
the state i, and B is the base of the log function. From Eq. (19),
we have

Sclosed = — Z mi(t)log m;(t) + Z 7 (£)S;(¢) + const.

(20)

The first term in Eq. (20), called the Shannon entropy [15,63],
results from the uncertainty of the slow variable i. The second
term, the average Boltzmann entropy, is due to the uncertainty
of the remaining fast degree of freedom that is in instantaneous
local equilibrium (Appendix H).

For a cyclic Markov model without detailed balance, the
entropy in Eq. (17) is still a nondecreasing function of time
(Appendix C). We now denote it as

Soe = = 3ol (”’ @ ) @)

with 7" being the stationary distribution without detailed
balance. However, Scyc does not lend itself to a clear physical
interpretation as Eq. (20). Furthermore, although the fact
that ¥ > O remains true regardless of the detailed balance,
% is no longer equal to SCyc In fact, it has been shown
that X > ScyC [64,65] in the absence of detailed balance
(Appendix D). No analytic expression for the entropy com-
ponent, whose time derivative is X, has been constructed
so far.

In this section, it will be shown that by embedding the
cyclic Markov model into a larger Markov model with detailed
balance that explicitly includes the degrees of freedom for the
drivers, the Schnakenberg entropy production X can be explic-
itly expressed as a time derivative of an entropy component
under an appropriate condition, justifying its identity as an
entropy production. The total entropy of the extended model
is simply obtained from Eq (17) by making the replacements
i (t) — I x)(¢) and 71 4 l'I(l X):

S =— Y Tx)(t)log “’“(”. (22)

i, X (l X)

By performing the decomposition
M x)(t) = (O x/i (1), (23)

where 7;(1) = ) x I x)(#) is the marginal probability and
Mx,i(t) = I x)(¢)/mi(¢) is the conditional probability, Sy
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is now decomposed as

St = Z mi() log (1) + Y Mg.x) (1) log My

i,X
— ) Mgx(0) log Tx iy (1) 24)
i, X

The first term, the Shannon entropy of the driven system

Sshan = — »_ (1) log i (1), (25)

results from the uncertainty of the state i of the driven system.
The third term, the hidden entropy

Shia = — Y Mix(t) log Mx/i(1), (26)
iX
originates from the uncertainty of the driver degrees of freedom

X for a given value of i. Finally, the second term, the average
Boltzmann entropy

SBol = Z M () log My, = Z Hax)®)Saix), 27
i,X i,X

comes from the uncertainty of the remaining fast degrees of
freedom for given (i,X). Because fast degrees of freedom are
locally equilibrated, the corresponding indices do not appear
explicitly in Eq. (27) [61] (Appendix H).
It is straightforward to show that (Appendix F)

Stot - Shid = SShan + SBOI = Xexacts (28)
where
i (DWW x)-(,Y)
T (OW( ) a.X)

(29)

Dexact = Z i, x) (O Wi, x)—(.v) log
i,7,X,Y

We now assume that in the cyclic regime where Eq. (13)
holds, the ratio W xy—(;,v)/ W(j,v)—@x) is also determined
solely by the indices i and j. That is, we assume that

W i X) Y
ZEX~0Y) rijs (30)
Wi v)—i.%

which can be rewritten as

Wix—iv) = 1ij Wi v—ax- 31
By summing Eq. (31) over X and Y, we get r;; = ki j /kj—;.
Therefore, the condition (30) can be rewritten as
kl—)]

kj—)i

Wi x)—G.v)

~ (32)
Wi v)—i.%

Under the conditions (13) and (32), Xexaee 1S approxi-
mated as

i (ki
T[j(t)kj—n'

i (ki
(ki
n,(t)kHj

J(f)k]—>z

Vexact = Z H(i,X)(t)W(i,X)%(j,Y) lOg
i XY

=Y Tex(OFX.i,j)log

i,j,X

~ Z I x) (ki j 1o

ij

=3, (33

and we get
Sior = = + Shia.- (34)

The hidden entropy Spiq is a newly identified entropy com-
ponent that cannot be expressed in terms of the parameters
of the reduced model. Hidden entropy production has been
discussed previously [58,66,67], but the analytic expression for
Shia itself has not been derived up to the present. I also derived
the condition (32), required in addition to Eq. (13), for the
Schnakenberg entropy production ¥ to be equal to Slot — S'hid.
If these conditions are not satisfied, then ¥ should be replaced
by the exact form Xxar in Eq. (29).

B. Discrete time

Even for a discrete Markov jump process, Sciosed and Scyc,
defined by Egs. (17) and (21), respectively, are nondecreas-
ing functions of time (Appendix C) [68]. The discrete-time
counterpart of Sclosed is (Appendix G)

ASclosed _ [S (t + Al‘) S (t)] 1
Ar = | Oclosed closed At

- Ti(t)Pi
= At 1 i (t i—>'1 AL i
;n( Pinei 108 (ﬂj(f‘i‘At)Pj»i

= Zﬂi(l)kiﬁj log <

ij

i (ki
7Tj(l‘ + At)kj_”'

-1 Z (1) log ( n j(L )At)) (35)

Therefore, it is reasonable to generalize Eq. (35) to a Markov
model without detailed balance and define the Schnakenberg
entropy production X as

Y =Ar"! Zﬂ.’i([)pi_”' log <

iJj

=Y mi(tki; log (
iJj

T (t)log( e ’f)m)) (36)

for the case of a discrete-time model. As in the case of
continuous-time models, ¥ > AS.,./At > Ofordiscrete-time
models in the absence of detailed balance (Appendix D).

We now define Yoy et as

(O pis >

7Tj(l‘ + At)pj_>i
i (Dki

Nj(l“r‘ A[)kj*),'

T (OW6 x)—(,Y)
it + AW v)—i.x)
i (1)

+At_l Zni(t)log m, 37

Vexact = Z H(i,X)(t)W(i,X)»(j,Y) lOg
i,j,X

which is the discrete-time counterpart of Eq. (29). It is then
straightforward to show that (Appendix F)
ASiot  AShia _ ASshan | ASgol

Pexact = - - , 38
AT AL At BN (38)

with the same definitions of Sy, Shid, Sshan, and Sgoj [Eqs. (22),
(26), (25), and (27)] as in the case of continuous time.
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In the regime where the conditions (13) and (32) are
satisfied, we have

i (ki
Y exact {(Oki— i log ———————
exact ;77() J Ogn'j(t—}-At)kjﬁ,-
_ 7 (1)
Ar~! (D) log —————
+ Xi:ﬂ()Ogm(tJrAt)
=3, (39)
and therefore
ASiot AShig
—~ 3 . 40
At + At (40)

C. Examples with X, ~ X

Equations (13) and (32) are the crucial assumptions for
Pexact = Stot — Shia to be approximated by the Schnakenberg
entropy production X. We discuss a couple of examples where
these two conditions are satisfied.

First, let us assume that the change of X, AX is uniquely
determined by the states of the driven system before and after
the transition. We write this as AX(i — j), where i and j
denote the states before and after the transition, respectively.
Then, the transition rate takes the form

Wix)—gy = 80 — j;X)8(Y — X, AX(@ — j)). (41
We also assume that
AX(i — j) = —AX(j — i). (42)

The transition rates in the example considered earlier, namely,
the ATP-driven biochemical cycle with a fixed total number
of ATP and ADP, takes the form of Eq. (41) with Eq. (42). If
g(i — j;X)is a slowly varying function, then

Wi x)—(j,Y) = ki j6(Y = X,AX(@{ — j)) (43)

at early times. It is easy to see that Eqs. (43) and (42) imply
that both Egs. (13) and (32) hold.

The change of X for a given transition i — j does not
have to be unique in order for the conditions in Eqs. (13)
and (32) to hold. For example, let us say that the num-
bers of driver molecules consumed for the transitions C —
A and A — C in the three-state model considered ear-
lier are not unique. Then, the transition rates take the
form Wi x)»u,x-1n =kiX, Wa x-n-cxy =ki(N — X +
D, Wexsm,x-2 = kXX — 1), We x—2-u,x) = k(N —
X+2)N—-X+1),..., where X is the number of ATP
molecules, and N is the total combined number of ATP and
ADP molecules. Equation (13) holds at early times because
X does not deviate significantly from its initial value. Equa-
tion (32) is also satisfied if k1 /k; = ko(Xo — 1)/ka(N — Xo +
1)..., where Xy is the initial value of X.

D. Housekeeping entropy

In a cyclic Markov model without detailed balance, the
entropy defined in terms of the nonequilibrium steady state,

i (t)
ﬂiSt ’

Seye = — »_ mi(t)log (44)

is often considered, which increases with time as explained
earlier. This motivates us to perform an alternative decompo-
sition

7i(1) Mx
Sww = = ) mit)log — + ) M) log —
i i iX i
— Y Mex(®) log Mexyiy(1)
iX
= Scye + Stk + Shids (45)
where we now define the housekeeping entropy Sy as
My
S = Y Tgx) (1) log 7;’;[ ). (46)

i,X i
It is easy to see the equivalence of Eq. (45) to Eq. (24) because

7t in the first and the second terms of Eq. (45) cancel with
each other, leading to Eq. (24). We then see that

Vexact — Scyc = Shk 47

for a continuous-time model. In the regime where Eqgs. (13)
and (32) are valid, we get

Y- Scyc ~ Shk- (48)

It has been argued that even after the steady state has been
reached in a cyclic Markov model, where Sc,. 2~ 0, heat
should be constantly generated in order to maintain the steady
state, called the housekeeping heat [64,65,69—71]. Clearly, the
generation of such heat is proportional to the production of
an entropy component. Equation (46) is the analytic formula
for this entropy component, and was accordingly termed the
housekeeping entropy. Details on the relations between Sy and
the housekeeping heat are given in Appendices I and J.

Both S¢yc and Spx are expressed in terms of the relative
entropy, and we see that S¢yc in Eq. (44) measures the similarity
of the distribution 7 (¢) to the quasi-steady state 7. Also, we
see that Sy in Eq. (46) measures the tendency of Il; x) to
move away from the quasi-steady state and approach the true
equilibrium l'[?fx).

Note that from the viewpoint of the extended model, 7" is
just a quasi-steady state. Therefore, in contrast to equilibrium
distribution l'[ffx) o< €2, x), which is expressed in terms of the
number of microstates ; x) for a given (i,X), the quasi-steady
state 777" is just an artifact of the dynamics, and does not
seem to have a microscopic interpretation as in the case of
H?EX). Because the alternative decomposition in Eq. (45) is
defined in terms of nf‘, Scye and Sy do not lend themselves
to clear interpretations as uncertainties of some degrees of
freedom, in contrast to Sspa, and Sgoj. Although we considered
a continuous-time model in this section, all of the results
given here are valid for a discrete-time model if we make
the replacements Scyc — AScye/At and Spx — A Sy /At. The
explicit connections of Spx and Sy;q to the quantities considered
in previous literature are provided in Appendices I, J, and K.

E. Behavior of various entropy components

Let us summarize the general behavior of various entropy
components. We will use the notation for the continuous-time
Markov process. The result for the discrete-time Markov
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FIG. 3. Time evolution of three-state model with discrete time.
Modell:a =b=a =8 =y =0.25/Atandc = 0.5/At. Model 2:
a=b=a=p8=025/At, c=1.0(X/N)At~!, and y = 0.5(1 —
X/N)At~!. The entropy components are displayed as functions of
time. (a) Entropy components of both models at early times. Separate
constants were added to Sy, of the two models, so that their graphs
are superposed. (b) Entropy components of model 1 at late times.
(c) Entropy components of model 2 at late times. For each model,
a constant was added to Sy for easier comparison, and S.,. was
multiplied by 100 for better visibility.

process is obtained by simply replacing S with AS/At. We
assume that the condition (32) holds in the cyclic regime so

that Zexaee = X. From the results in the literature for cyclic
models [35,64,65,68], we already know that Scyc = 0 and
¥ — Seye 2 0 in the cyclic regime, and therefore Sy > 0
(Appendices C and D). Once the system reaches the quasi-
steady state, Seye =~ 0. By embedding the cyclic Markov model
into a larger model, it can be shown that Sp;g > 0 in the cyclic
regime (Appendix E). During the transition from the quasi-
steady state to true equilibrium, we have Scyc < 0 because the
distribution diverges from the quasi-steady state. However, we
have Spx + Shig = O because Sy, = 0. All entropy components
will reach constant values after the system reaches equilibrium.
Various entropy components for the previous cyclic three-state
discrete-time Markov jump process are shown in Fig. 3, where
this general behavior is confirmed.

IV. CONCLUSION

It has been shown that for any time-homogeneous Markov
process that violates Kolmogorov’s criterion, one can always
find a larger Markov process that satisfies the criterion, where
the degrees of freedom X for the driving agent are explicitly
included. The original Markov model is then recovered as
an approximation at early times after eliminating X. The
nonequilibrium steady state of the original model is then found
to be a quasi-steady state.

An important contribution of this work is that by extending
the cyclic model to a model with detailed balance, we indeed
find analytic expressions for Sy and Syig that satisfy Spx =
¥ — Seye and Spig = Sior — X in the cyclic regime. Here, Sy
itself cannot be expressed with parameters in the cyclic Markov
model, but its derivative X — Scyc can. Furthermore, neither
Shia nor its derivative can be expressed with parameters of the
cyclic Markov model. That is, they are completely hidden in
the cyclic Markov model description.

The current formalism is very general and can be applied to
any closed system. Such a closed system includes, but is not
limited to, an open system and an infinitely large heat bath in
contact with each other (Appendix I). Although we assumed
that the state index i is discrete in this work, the extension of the
current formalism to a Markov process with a continuous index
such as Langevin dynamics [40,41,70-72], is straightforward
(Appendix J). Note that the construction of the extended system
is by no means unique. The situation is analogous to that of
the canonical ensemble of an equilibrium system, where the
properties of the system depend only on the temperature of the
heat bath and microscopic details of the bath are arbitrary.
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APPENDIX A: DEFINITION OF TRANSITION RATE
FOR A GENERAL DYNAMIC SYSTEM

In any stochastic process with discrete time, the transition
probability g(i — j;t)isdefined as the conditional probability
that the state of the system is j at time ¢ + At, given that the
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state is i at time 7:

. . Pr(i,t; j,t + At)
qi — j;t) = ————,

w(i,t) S

where 7;(¢) is the probability that the state of the system is i at
time ¢, and Pr(i,t; j,t’) is the joint probability that the state of
the system is i at time ¢ and j at time ¢'. By multiplying both
sides of Eq. (A1) by m;(¢) and summing over i, we obtain

D witgli — jity =Y Pr(i.t; j.t + At) =m;(t + Ab).

(A2)

Note that for a general non-Markov process, the transition
probability g(i — j;t) is not a time-independent constant,
and its value may depend on the previous history of the
system. Only for the special case when g(i — j;t) is a time-
independent constant p;_, ; do we recover the dynamical equa-
tion for a time-homogeneous Markov jump process [Eq. (1)].

Analogous to the procedure in the Markov model, the
transition rate w(i — j;t) is also defined as

wi — j;0)=(AN"'[gi — j;0) =8,  (A3)
and Eq. (A2) can be rewritten as
Am;(t .
%() =3 wOw( — iso). (Ad)

J
Note that by substituting Eq. (A1) into (A3), the transition rate
w(i — j,t) can be written as

. . [ Pr(i,t; j,t + Ar)
w(i — jit) = (At) 1(— - ij)

w(i,t)
_ (At)_lPr(i,t;j,t + A.t) =8 (i,t)
w(i,t)
— (At)_l r(lyta J’t + t) r(l’t’ ‘]’t), (AS)
i (1)

where we used the fact that Pr(i,z; j,t) = §; jm; ().

A stochastic process with continuous time is obtained from
a discrete-time model by taking the limit of Az — 0. Then,
Eq. (A4) reduces to

wi(t) =Y wOw(j — ish), (A6)
J
where Eq. (AS5) now becomes
) . 1 d
w(i — jit) = ———Pr(i.,t; j,t)|r= (AT)

(1) dt’

Again, the transition rate w(j — i;f) may in general
depend on the previous history of the system. In the special
case that w(j — i;¢) is a time-independent constant k;_, ;, we
recover the time-homogeneous master equation (4).

APPENDIX B: ANALYTIC FORM OF THE EQUILIBRIUM
SOLUTION OF THE EXTENDED THREE-STATE MODEL

Here, the analytic form of the equilibrium distribution of the
extended three-state model [Figs. 1(b) and 1(c)] is presented.
By defining X as a serial coordinate labeling the states of

the extended model [Fig. 1(b)], we obtain a simple relation
between the label i of the driven system and X:

i=X mod 3, (B1)

wherei = 1,0,2 correspond to the states A, B,C, if we assume
that the driven system is at state B for X = 0. Because i
is uniquely determined by X, we will write the equilibrium
distribution IT;" simply as IT§'. The equilibrium distribution
of model 1 can be obtained analytically using the following
detailed balance conditions:

eq _ e
5, a0 = Iy,a,

eq eq
I3, 00 = I3, v, (B2)
’im+3b - 3m+213’

where m is an integer. Because the network topology is linear,
one can use Eq. (B2) as a recursion relation in order to express
I in terms of the state ITg™:

s, = (42

abc
e = (P72 e (B3)
3m+1 abe a 0>
e apy \" yo .
me o =(==) ==
m+2 <abc) ca °
The constant l'[(e) is obtained from the normalization condition
Zx oIy =1las
aBy \N/3 o o n37!
. [1—([,173) J0+5+5)  (abr)"
0 1—(‘;’5;’; abc ’
(B4)

where the formula for the summation of the geometric series
was used.

For model 2, the detailed balance condition is the same as in
Eq. (B2) except that the second line of Eq. (B2) is modified to

M5 ocm + 1) = 15, ¥ (N/3 —m). (B5)
The solution of the recurrence relation is now
e " N/3)! e
e — (4B7)" WD g
abc m!(N/3 —m)!
N/3)!
H;?n+1 _ Ol,BV g ( / ) ng’ (B6)
abc am!(N/3 —m)!

eq _
1_I3m-"-2 -

(aﬂ)’"“é (N/3)! e
abc Bm+DIN/B—m—1 °°

Again, the constant Hg is obtained from the normalization
condition Y ¥_, TI5 = 1 as

€q
1_[0

_ afy N7 o b afy N3a b -
—[(”%) (+5+5)-(r) 55
(B7)

where the formula for the binomial expansion was used.
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g e T el T —— which states that
- “'--..__.‘ model 2 -=-----
e T ag(x1) + (I — a)p(x2) = ¢lax; + (1 — a)x;] (C2)
L “ i
/ ., for any combination of xj, x;, and a with 0 < a < 1. As an
/ ., immediate consequence, for any non-negative numbers a; with
r \\ 4
\\ Y ap=1, (C3)
| 3 | i
\"‘.\ we have
kY
. '\‘ -
‘\\ Za,q&(xj Za]xj . (C4)
. ‘\A
3 . .. i .
The non-negative quantities defined by a; = /n;‘ satisfy
o 500 000 500 5000 5500 3000 the normalization condition in Eq. (C3) due to the balance

FIG. 4. Equilibrium distribution of models 1 and 2 as a function
of X, shown in log scale. Parameters are set to the values used for
generating Figs. 2 and 3.

The equilibrium distribution is shown in log scale as a
function of X in Fig. 4, where the parameters were set to the
values used in the numerical computation. As expected, T}
for model 1 is a decreasing function of X because the rate
for X — X + 1 is always less than that for X +1 — X. In
contrast, this is not the case for model 2, where 1'[?? has a
peak around X = 1000. This is because for small X, the small
number of ATP discourages the forward reaction X + 1 — X,
and the large number of ADP encourages the reverse reaction
X — X + 1, pushing the system away from X = 0.

The equilibrium probability distribution 7;9 for model 1
can be obtained by summing the expressions in (B3) over
m. The summation range is 0 < m < N for I15 and 0 <
m < N — 1 for the others. However, for the parameter values
used in the numerical computation, we have (afy /abc)V/? =
(1/2)'%% " which is negligible for all practical purposes.
Therefore ZZ 30(a,3y/abc)’” ~ ZMS "By Jabe)y", and
we get 7, nf’q =1:a/a:yajca=1:1:0.5,lead-
ing to (myl,mylm q) = (2/5,2/5,1/5). Similarly, 7;? for
model 2 is obtained by summing the expressions in (B6) over
m, and we get noq it =1:a/a:b/f=1:1:1,
leading to (nA ,JTB T q) =(1/3,1/3,1/3). One can checkthat
7;(t) indeed converges to 7; 4 at late times of the simulation,
both for models 1 and 2 [Figs. 2(b) and 2(¢)].

APPENDIX C: PROOF OF S./At > 0 OR Scyc >0

We prove that the relative entropy

cycs—melog( ()) (C1)

is a nondecreasing function of time, where 7" is the stationary
distribution. Regarding the special case of a Markov model
with detailed balance, 7" is the equilibrium distribution neq
and Sy is denoted as Sclosed The proof for the discrete-time
case has been provided by Morimoto [68], which is reproduced
below. First, note the definition of a convex function ¢(x),

condition in Eq. (5). Therefore, by setting x; = 7;(¢)/ n;‘, we
obtain

mipj—i () THOP)i
jPj—i Jj J\)Pj—i
IR o(22) 20 ¥ e

=¢(m(z ttAt)) ©5)

T

Multiplying both sides of Eq. (C5) by 7" and summing over
i, we obtain

¢<n,(r)>
i,j P J

s f 7T
= Zj:nit¢( ;T;t )

Introducing the convex function ¢(x) = x log x into Eq. (C6),
we now have

Zn](t)log< zil )) > ) mit + Anlog <@>

(C7)

Z qu(n',(t-i-At)) C6)

i 1

from which we obtain
ASeye
At

The proof of Scyc > 0 for a continuous-time model follows
straightforwardly from Eq. (C8) by taking the limit Az — 0.
Nevertheless, a direct derivation is also presented for the sake
of completeness. Note that

Seye = = D (1) log (”f)

()
> (ki j — mi()kji1log

i,j T

= 0. (C8)

ni(t)n;‘
— Z mj(t)k;;log —ont )’ (C9)
ij J i

Now, we use the fact that

—Inx>1-—x (C10)
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to obtain

>§:mm@%P
iJj

i ()t

— —]q[ X const
7 i(t)m;

> wikii - Zm(t)z kji | x const
iJ

= Zf[i(l‘) x const = 0.

Scyc

(C11)

Since S¢yc has the form of a negative relative entropy, which
measures the similarity of the distribution 7;(¢) to ]TSt the
result here tells us that 7;(r) becomes more similar to 7" as
time proceeds. Note that only the balance condition for 7
was used in the derivation. Therefore, the result holds even
for the case where ;(f) does not converge to nft. The result
here can be considered a consequence of a detailed fluctuation
theorem [55].

APPENDIX D: PROOF OF X > S./AtORX > S‘cyc

Here, we show that the Schnakenberg entropy production
%, defined by Egs. (15) and (36) for continuous-time and
discrete-time Markov models, respectively, is not less than the
increase of Scy. with time. Regarding discrete time, by using
the definition of ¥ in Eq. (36) and the expression for AScy. /At
in Eq. (G3), we have

AS,
- ﬁ = Zﬂi(l)kmj 10g<

ij

71,4(1)7'('1?t
— Zni(t)ki%j log m

ij

i (ki
JTJ'(Z‘ + Al‘)k_,'_>,'

stk")i
:—Zn,(t)k,_nlog< stkj ) (D1)
i—j

LJ

Note that Ar disappears in Eq. (D1). Therefore, the expression
for ¥ — Scy in the continuum model is also given by Eq. (D1).
Using Eq. (C10), we obtain

ASeye |: (O k i
Y- > Z (ks — ——4 | x const
At y ;

(D2)
|

9 ¢(Xz))

)
H(x,y) = azq;x,y)
dyox

3%¢(x,y) 1 _1
axdy _ X y

Ppy) | T\ 21 x )
3y2 y »?

This also shows that X — Scyc > 01in a continuous-time model
[64]. Therefore, combining the result with that in Appendix C,
we have proved that

S
T>-=>0 (D3)
At
for a discrete-time model, and
28520 (D4)

for a continuous-time model. These results can be consid-
ered a consequence of a detailed fluctuation theorem [55].
The explicit connections between the production of entropy
components defined in this work, and those in Ref. [55], are
given in Appendix K.

APPENDIX E: PROOF OF ASq/At > 0 OR S$piq > 0
IN THE CYCLIC REGIME

We prove that the hidden entropy production is non-negative
in the cyclic regime [35,58,66,67]. An important contribution
of this work is that the hidden entropy production is explicitly
expressed as Spg with Shig having an analytic expression
constructed from the probability distributions of the extended
model. Regarding the extended model with discrete time, we
construct the quantity

Y mngli — jin

i

S = At

<l ( mi(t)g(i — jit) ) El)
E\T G+ Ang( = i+ An )

where q( — j;t)=6;; +w(@ — j;t)Ar is the time-
dependent transition probability of the reduced model, with
w(i — j;t)being the time-dependent transition rate. Note that
¥ is reduced to ¥ in the cyclic regime where w(i — j;t) >~

k,'*)j .

Now, we define a two-variable function ¢(x,y)=
x In(x/y). This function is convex in the range 0 < x,y < 1,
implying that

Y oapxs Yy ayy, | <Y apppyp)  (E2)
B 14 B
for any values of 0 < xg,ypg <1 and 0 <ag <1 with

3 p ap = 1. The convexity of ¢(x, y) can be shown by utilizing
the fact that a multivariate function is convex if and only if its
Hessian matrix is positive semidefinite. In fact, we find that the
Hessian matrix H(x,y) is

(E3)

whose eigenvalues are A; = 0 and A, = x/y? 4 1/x, both of which are non-negative for 0 < x,y < 1.

For a given pair of indices i and j of the reduced Markov model, we now use § =

vt + AP y—ix) with Pix_.jy) =

(X,Y), xg = I x)() Pix—j,Y) g =

Wi x—jvAt +6; jéx,y, and ag = 1/(n;n;), with n; denoting the total number of X
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values corresponding to i. The left-hand side of Eq. (E2) then becomes

¢ Zaﬁxﬂv ZayYV
B Y

X, Y

nin;

and the right-hand side of Eq. (E2) becomes

Zaﬁ¢(xﬁ»yﬁ)
B

1
Z W¢(H(i,X)(I)P(i,x—>_j,Y)7H(j,Y)(I—FAI)P(j,Y—n,X))
xy

1
Z i x)() Pix—j,y)In
iy Xy

i x) () Pix—j.v)
(v (t+ADP y-ix)

(E5)

Therefore, using the inequality (E2) and summing over i and
j, we get

< A .

< E6
Ar (E6)
The continuous counterpart of Eq. (E6),
- S mi(Owl — j;1) '
5= iOw(i — jinlog | —————— ) < S,
;n()w(z j30)log <n_,-(t)w(j i) < S
(E7)

is obtained straightforwardly by taking the limit At — 0 of
Eq. (E6), which has also been derived directly [35]. The
discrete generalization (E6) is a contribution of this work.

In the cyclic regime, we have

A% _ 550

(E8)

A Shia A Siot N A Siot
= - 2:exact —
At At At

_ ~

for the discrete-time model and
Shid == Slot - z:exact s Stot - ¥~ Stol - i: > 0 (E9)

for the continuous-time model, where the first approximation
in each of these equations is valid if Eq. (32) is satisfied.
Note that Eq. (E6) or (E7) is an exact result that holds
without the conditions (13) and (32), which is a consequence of
an integral fluctuation theorem [58]. This leads to an alternative
definition of the hidden entropy Shia(t) = Swx — [y £(t)dt’
(continuous time) or Shiq = Sior — Af Yo $(jAt) (discrete

tirge). We then have S’hid~= S’mt — 3 (continuous time) or
AShia/ At = ASiot/ At — 2 (discrete time). However, it does
not seem straightforward to find an analytic expression for
Shia (?).

w;(t)g(i — j;t)In

=¢ Z I x) (1) P x— j.vy/ninj, Z ;9@ + ADP; 5, %)/ nin;

Xy

o(mi(t)g(i — jit)/ninj,mj(t + At)g(j — i5t + At)/nin;)

() — jit)
wi(t+ADg(j — iyt + At)’

(E4)

APPENDIX F: DERIVATION OF
AStul/At - AShid/At = Zexact [EQ' (38)]
OR St — Shia = Zexact [EQ. (28)]

By applying Eq. (35) to the extended model, we have

AS
% = Z i x)(OWi x)—.v)

A i,j,X,Y
i xO Wi x)—6.v
v + AW v)—aix)
IT; x (1)

AtV T x () log ——=—"— (Fl
+ ij (’X)()Ogl'[i,x(t—i-At) (F1)

x log

for the discrete-time Markov model. By performing the decom-
position 1 x)(t) = 7; (1)1 x/:(t), Eq. (F1) is rewritten as

AS

tot
A_to = Z i x) O Wi x)—j.v) lo
ijX

o T (OWi x)—(,Y)
it + ADW( v)—i.x)

Mx/i(t)
H(Y/j)(t + At)

+ Z M x) (O Wi x)- .y log

ij.X.Y
i ()
At~ i(t)log ———
+ lzn()Ogni(t+At)
B Ix,i (1)
+ A Y T x(6) log =0
; (’X)() gl'lx/,-(t—l—Af)
Ix/i)(®)
= Texact+ M x) O Wi x)— (v log —————
exact ,gY (,X)( ) (i,X)—(j,Y) 108 H(Y/j)(l‘-l-At)
L, ], A,
B Ix,i (1)
+ A Y () log =0
; (’X)() gl'lx/,-(t—l—Af)
= 2:exact_ Z H(i,X)(t)W(i,X)ﬁ(j,Y) 10g H(Y/j)(t+At)
i,j.X.Y
_ Mx,:(2)
4+ A I; x(t) log —————, F2
; ax(Olog ot 2)

where we used ) v Wix)—~(,y) = 0 to derive the last line,
and Xy, for the discrete-time model is defined as

T (OWi x)—(,Y)
it + AW v)—i.x)

i (1)
Ti(t + At)’

Vexact = Z l-[(i,X)(l‘)‘/V(i,X)»(j,Y) lOg
i,j,X

+ A" Y i) log (F3)
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Now, using the definition of the hidden entropy,

Z AH(,‘,X)(I) lOg H(X/,’)(l + At)

i.X
Ix/i) (@)
Shia = — Y I x@)log ix (1), F4 + [ x) (1) log ——————
hid XX: @x) (1) 1og x/ (1) (F4) ; %1108 Mot + A1)
= — At Z I v)(OW( v)—a.x) log Tl i(t + At)
. i,,X,Y
we obtain
Mx/i)(1)
I; x(t) log ——————. F5
+§ axt)loe Mx/i(t + A1) )
AShida = — IM; x(t + At)log Ix/i(t + At
hid ; @3+ At)log Hoxyn(t + Al) From Egs. (F2) and (F5), we see that
ASior AShig
+ Z [ x)(#) log T x/ () N exact At (F6)
X for the discrete-time model.
- _ Z Mx)(t 4+ A log Tix it + At) The result for the c.ontmuous-tlrne.model
LX Stot = 2:exact + Shid (F7)
+ ) Tx)(t) log Moyt + At) is obtained by taking the limit Az — 0 in Eq. (F6), where we
iX now have
T (OWi x)- (.Y
— Z H(,‘,X)(l‘) IOg H(x/,‘)(f + Ar) Yexact = Z H(i,X)([)W(i,X)a(j,Y) 10g X0
— Sy i (OW(,0)—.%)
i, i,j, X,
(F8)
+ Z i x)(t) log TIx /(1) for the continuous-time model.
i X |
APPENDIX G: DERIVATION OF EXPRESSIONS FOR AS,,./At AND ASeosea/ At [EQ. (35)]
We have
Actoed _ o 1t 4 AD — Suomea(D)]—
At = | Vclosed closed At
ﬂ[(l-f-Al) ﬂ[(l—f-Al) ﬂi(l) JT[(I)
= e (M) e e (G
;i (t + At) ;i (t + At) 7 (t + At) 7 (1)
= — Xl: Al log ( 2 + 2,: AL log =
it + At) ;i (1) (1) i (t)
-E R (1) + T e (T
_ i (1) Ami(t) ;i (1)
= Ar~! (t+ A log [ ———— ) —
Z”< - )Og(n’(t—l—At)) Z A B\ g
7 (1) - 7 (1)
= —;ﬂj(l)kj*),‘ 10g< j'[l.eq )+At Xi:ﬂ[(l+A[)10g (m
_ i (1) _ i (t)
= —At 1 lzj:[]'[j(t)pj*)i — ni(t)piaj] log (F) + At 1 lzj:n’j(l)pj*)i IOg (m)
AT i 0p ] TOTTY 3 i Opi] milt + A1)
= — T isilogl ——= | — T isilog| ———
oy j\)Dp; g nj(t)ﬂ,-q -~ j\)p; g Ti(t)
7t + At
=A™ mi)pjLilog | ———= ). Gl
Z, j(O)pjilog ( —E (G1)
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By using detailed balance condition, we can rewrite Eq. (G1)
as

AS
=AY 0D 1og<

()P
At —
ij

it + Al)pi*)j

n'(t)k'—n'
= (O] Al b R
le:m() j—i log (n,-(t—i—At)k,'%j)

- Z m;(t)log ( (t l—+(-t)At)) (G2)

Note that Eq. (G1) is valid even for the model without

detailed balance, with the change of notation Sciosed —> Scyc and
eq st.
; :

ASeye . mi(t + Anm
— = — At (t '—>i1 _
At Z 7-”’J( )pJ og ; (I)]T;t

iJj

it + At)njs.‘
— > wj(t)kjilog o
J i

i,j
-1 Zn,(t)l (”’ @ J(rt)m)). (G3)

APPENDIX H: COARSE GRAINING
OF SHANNON ENTROPY

We assume that ¢ labels a macrostate, which is an aggregate
of microstates, and that an additional index o = 1, ..., is
required to completely specify a microstate. Then, the Shannon
entropy of the closed system is

Q.
Sshan = — _ ¥ ple,a)(®) log p(c,a)(t).  (HI)

¢ a=l1

where p(c,x)(t) is the probability that the system is at the
microstate (c,«) at time .

Now, we assume that the microstates for given ¢ are at
local equilibrium, meaning that Z <, p(c,a)log p(c,a) is
maximized for each c¢. Thus, ¢ is a slow variable and «
is a fast variable. We first make decomposition p(c,o) =
P.pyjc where P. = Za p(c,a) and py . = p(c,a)/ P, are the
marginal and the conditional probabilities, respectively. Then,
SShan 18 rewritten as [61]

Q.
SShan = - Z Pc log Pc - Z Pc Z Pajc log Pajc- (H2)
c c a=1

To obtain local equilibrium, Eq. (H2) is maximized with
respect to p/q, under the normalization constraint

Q.
> paje =1, (H3)

treating P, as a constant.

Introducing the Lagrange multiplier A, for the constraint
(H3), we take the derivative of the target function’

F(pase) = Z P.log P, — Z P, Z Pa/e 108 pae

a=1

Q.
+ Z )\-c Z Pajcs (H4)
c a=1

with respect to p,/. and set it to zero [61]:

oF
8pot/c

=—P.(1+Inpe)InB)™' +1,=0,  (HS)

leading to
Daje = €xp(A.In B/ P, — 1), (H6)

where B is the base of the log function. The second derivative
of F(paye) is

PF
8]’0{/681’/3/6 Pa/c

“(InB)'8,5 <0, (H7)

implying that the solution (H6) is the maximum rather than the
minimum or extremum. The Lagrange multiplier A, is obtained
by the normalization constraint (H3), so that

Paje = Q" (H8)

That is, all the microstates for given macrostate ¢ are occupied
with equal probability. Substituting Eq. (H8) into (H2), we get
[61]

Sclosed = — Z P.log P, + Z P.S. + const, (H9)

where Sgoseq 1S the entropy of the closed system at local
equilibrium. Note that now the fast variable o does not
explicitly appear in Scjoseq- The equilibrium distribution over
the slow variable ¢ is now obtained by maximizing Scjoseq With
respect to P., under the normalization constraint ) . P, = 1,
which is

PH o Q.. (H10)
The equilibrium distribution P reduces to the Boltzmann
distribution in the special case when number of fast degrees
of freedom per energy is effectively infinite (See Appendix I).
From Eqgs. (H8) and (H10), we also get

p(c,a) o 2.Q." = const, (H11)

the well-known result that at the equilibrium, all the microstates
of the closed system consistent with given constraints are
occupied with equal probabilities [61,62].

2We assume that the summation range of (c,r) in Eq. (H1) goes only
over the states that satisfy appropriate constraints, such as those on the
values of conserved quantities, so that the Lagrange multipliers for
these additional constraints do not have to be introduced explicitly.
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APPENDIX I: OPEN SYSTEM

The Markov model of an open system, often discussed in
the literature [40,41,64,65,70,71], constitutes a special case of
the Markov model presented in this work, whose details are
given below. First, it is assumed that the total energy Ejoseq Of
the closed system is additive:

E;lgsed — Ei]ow + E(iast, (Il)

where, following the notation of Appendix H, ¢ and « denote
the slow and fast variables, respectively. Second, it is assumed
that for given values of E;l"w = E, and Eg““ = E,, the total
number of microstates g(E1, E,) is multiplicative:

g(ElaE2) = gslow(El) X gfast(EZ)a (IZ)

where gqow(E1) [grast(E2)] is the number of states with energy
E| (E,) that the slow (fast) variable can take. Finally, it is as-
sumed that the number of fast degrees of freedom is effectively
infinite for a given energy value so that its temperature

dE,

can be regarded as a constant. In this case, we call the fast
variables as a heat bath of temperature 7', and we call the
slow variables an open system in contact with the heat bath.
The equilibrium distribution in Eq. (H10) now reduces to the
Boltzmann distribution:

Pceq o Q¢ = g(Ecose —

d -1
T= <_ IOg gfast(EZ)) (13)

E.)~ B E/T x const, I14)

where B is the base of the log function. Using Eq. (I4), the total
entropy of the closed system in Eq. (20) is now rewritten as

Sclosed = —F /T + const, as)
where

F=Y mE.~T) mt)logm(t) 16)

is a free energy that is well defined even out of equilibrium
[65,73]. Therefore, the entropy production can also be called
the free energy reduction.

After decomposing the slow degrees of freedom into those
of the driver and the driven system, ¢ = (i,X), Eq. (I6) is
rewritten as

F = —TSgol — T Sshan — T Shid; an

where the definitions of Sshay and Spig are unchanged from
those in the general case [Egs. (25) and (26)], but Sg,; is now
rewritten as

Spol = Z I x)log 2,x) =~ — Z M x) Eix)/T + const.
(i.X) i.X)
(I8)

As in the general case, the free energy excluding the contri-
bution from the driver degrees of freedom, F = F + T Shg,
is often considered. From the general result, we already

know that
TY ~ —F = T Sshan + T Sgol 19)

in the cyclic regime where the conditions (13) and (32) hold.
Because fast and slow variables are considered to represent the

system and the bath, respectively, S, gives the production of
entropy in the bath. Therefore,

Giot = TSpot = T(Z — Sspan) (110)

is considered as the heat the bath
[40,41,64,65,70,71].

From the alternative decomposition Sspan + SBol = Seye +
Shk, we see that when the system reaches the steady state
7;(t) >~ 7", we have Sspan =~ Seye 2 0, so that gt = T Spol =
T Sik. Therefore, we see that the housekeeping heat production,

defined as

production in

gnk = T Shi, (1)

is the rate of heat being dissipated while the quasi-steady state
is maintained. The excess heat production gex is the rate of
extra heat dissipation during the approach to the quasi-steady
state:

Gex = Gror — qnk = T(Spol — Shi)
= T(Scyc - SShan)

d X
= TE Xl: 7 (1) log 7wt

=T Z 7j(kjilogm?.

iJj

112)

APPENDIX J: LANGEVIN AND FOKKER-PLANCK
EQUATIONS

Overdamped Langevin dynamics on a circle, described by
the equation

LG ) an

vx= 0x

where A is a control parameter, f is a nonconservative force,
and ¢ (¢) is a Gaussian white noise satisfying the relation

Cc@)) =2yT, J2)

has often been considered in the literature [40,41,70-72]. The
time evolution of the probability density p(x) of this system is
described by the Fokker-Planck equation

p = —0(F(x)p) + Bd;p, (J3)

where F(x) = —0,U/y + f/y and B =T/y [14].

The Fokker-Planck equation (J3) is nothing but a Markov
process with a continuous state index x, and can be easily
obtained from the Markov model with discrete state indices by
taking an appropriate continuum limit, where the fast degree
of freedom is considered to form a heat bath of constant
temperature 7 (Appendix I). More concretely, we identify the
statei = 0,1, ..., N — 1 with a position on a circle, with equal
spacing ¢ between the neighboring sites, which will shrink to
zero in the continuum limit. We also initially consider discrete
time with a time step Af, so that we can take a simultaneous
limit of £ — 0 and Ar — 0, with £ o< At*. The dynamics of
the system is described by Eq. (2), with the condition that
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ki.j =0Ounless j =[({£1) mod N]:

Ami(t)

o Z wiOkjsi = w1 (Dki—1)—i

lj—il<1

+ i1 Okr)—i — T kis -1 + ki)
J4)

Now, we define the symmetric and antisymmetric components
of ki j as

si = (kisi+ny +Fkisi-1)/2,

AJs)
a; = (kim+1) — kimi-1))/2,

sothatk;_,; = s; & a; for j =i £ 1. The antisymmetric com-
ponent a; describes the drift of the particle in one direction,
which will be shown to be proportional to the f — d,U term
in the Langevin dynamics, and the symmetric component s;
describes the diffusion due to random fluctuations ¢. Con-
sidering the fact that the strength of ¢ is independent of the
position, we drop the position dependence of s; and write it
as s. Equation (J4) is then rewritten as

Ami(t)
At

= —aj11 i1 () + a1 (2)
+slmio1(t) + w1 () — 2m ()] Jo)

In the continuum limit £ — 0, 77;(¢) also shrinks to zero, and it
is no longer a meaningful quantity. Instead, we have to consider
the probability density p(x,t), which is related to m;(¢) by

o) =2 x=1i a7)

By making identification
F(x) = 2la;, B = st (8)

we recover the Fokker-Planck equation (J3). Note that ¢; and s
depend on At. Equation (J8) shows that in order to obtain the
correct limit, £ and At should approach zero such that a; and
s diverge as

ai~ 0", s~ J9)

The Schnakenberg entropy production formula now be-
comes

i k1~>
RSP ST (0
] ]—)l

i j=ixl

= Z Z ﬂi(l)k,'*)j log (::I—((tt;>
J

i j=itl

kit kisi-1

+ ;i (t)a; |:10g ( —log| ———
Z Ki1)—i Ki—1)—i
kit kisi—n

+s T (t)[log < +log | ——
Z kii+1)—i ki—1)—i

=> ) mki; log< ((l))>

i j=ixl

s +a; i
+ Xi:ﬂi(t)ai [log (s - aH]) ~log (s +a,-1>]
+s Zﬂi(l)[10g< ’

+a; s —a;
)—Hog( )}
S — it S+ ai-

(J10)

From Eq. (J9), we see that a;/s vanishes in the continuum
limit as a; /s ~ £, and consequently we can expand Eq. (J10)
in powers of a; /s. Since a; ~ £~' and s ~ £72, the log term in
the second and third lines of Eq. (J10) should be expanded up
to the order of O(£) and O(£?), respectively. Thus, we obtain

= > Y mkis llogm(t) — logm;(1)]

i j=itl

aj+1 ai—1
+ Zn, (t)a; [2 R O(EZ)]

ai2 ai2+1 01271 3
+ Ei i (1) ai+1_ai71_?+g+7+0(£)
—>—d1 1)) + F(x)2+aF() J11)
E(“P(x, ) +vy T (0. F(x)), (

where for simplicity we now consider the log function to be the
natural log function. As in the case of the discrete state space,
the heat production in the medium is (Appendix I)

Giot = T(E — Sspan) = Y (F(x)?) + T (3, F(x)),

where the Shannon entropy now takes the form?

J12)

SShan = —(In p(x,1)) = — / dx p(x,t)In p(x,t). (J13)

As in the case of the discrete state space, the total heat
production is decomposed into the housekeeping and excess
heat production:

ot = Gnk + Gex> (J14)

where the excess heat production is obtained as in the case of
the discrete state space (Appendix I):

d .
gex = T (Scyc — Sshan) = TE</ dx In :OSt(x)>v J15)

with p*'(x) being the continuum limit of 7. Consequently,
we get

gnk = Y (F(x)?) + T (3, F (x)) — T%</ dxIn ,o“(x)>.
J16)

3—1n p(x,t) for a given position x has been called the system entropy
[40,41]. Similarly, yx F(x)/T for a given path has been called the
medium entropy production [40,41]. Therefore, we see that Ssp,,
is the average of the system entropy over the ensemble of states,
and g /T = X — Sshan 18 the path ensemble average of the medium
entropy production, by using Eq. (J19).
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Here, gnx and gex, as given in Egs. (J16) and (J15),
respectively, are time derivatives of the path ensemble averages
of the housekeeping and excess heats defined by Hatano and
Sasa [70] for a given path. The details are as follows. The
housekeeping and excess heat generated during a time interval
[0, 7] are defined in Ref. [70] as

One = / di[f — 8.U — Td,In p™(x; 1, f)lx,
0
Qex = TAln pSt(X;)Wf)

T
+T/ dt A0, In p*t(x; A, f)
0

~|—T/ dt fay1Inp™(x; 4, f), J17)
0

where p%(x; A, f) is the steady-state distribution of the Fokker-
Planck equation obtained for fixed values of A and f. Because
the focus of this work is on the entropy production of a time-
homogeneous Markov process, we assume A and f to be time
independent. In this case, Eq. (J17) is simplified to

Onk = y/ dt xF(x) — T Aln p*(x),
0

J18)
O = TAIn p*(x),

where the dependence of o™ on A and f is not explicitly
shown, for the simplicity of notation. The path average of the
X F(x) term in Qg is computed by the path integral using
Stratonovitch discretization, leading to [40,41]

(F(x)x) = (F(x)* = BF(x)p(x,t)" " 9, p(x,1)), J19)
and we get
(Onk) = y</ th(x)2> + T</tdt8xF(x)>
0 0
—T(Alnp*(x)),
(Qex) = T(Aln p*(x)), (J20)
where we have used the fact that
(p(x.))" "0 p(x,0) F (x))
= /dx 0y p(x,t)F(x)
- f dx p(x,1)a, F(x) = —(3: F(x))  (J21)

to derive the second term of the first line. By comparing
Eq. (J20) with (J15) and (J16), we find that

d{ Q) d(0.)
dt AT T n

T=t =t

gnk = J22)

APPENDIX K: RELATION OF THE ENTROPY
COMPONENTS TO NONADIABATIC AND
ADIABATIC ENTROPY PRODUCTIONS [55]

A time-dependent Markov process defined by the transition
rate W', j(A,),Witht € [0,T1], has been considered by Esposito
and Van den Broeck [55]. Here, A, is a time-dependent
parameter that controls the dynamics of the system, which

changes with time according to a fixed schedule. Multiple
sources affecting the transition are considered, and the index v
denotes the mechanism responsible for the transition. A given
path with N jumps occurring attimes z; (j =1, ...,N) dueto
mechanisms v; was considered, with the states of the system
being m; for 7,_; <t < 1;, with 1o = 0 and 7y, = T. For
such a trajectory, the total entropy production was defined by

Tng0)
e (1) Z

which was then decomposed into the nonadiabatic entropy
production A S, and the adiabatic entropy production AS,:

m, lamj( rj)

AS = 1 ’
“ m,—)m, 1()”'/)

(K1)

ASior = ASpa + AS,, (Kz)

with

Ty (0) "m; \A;
ASpa = In 20— In ——7—,
S =D Z )
N Vj t
ijflem/(k )nrsn 1()\"’:/ l)
AS; =) 1 ; .
a Z n W;7];j7-~>m,-,|()L )7[131[, ()Lf/)

j=1

Since the focus of this article is on the cyclic time-
homogeneous Markov model, we consider a special case where
A is time independent, and derive the relation between the
entropy production components given by Eq. (K3) and those
given in this work. Because X is a fixed constant and plays
no important role, the A dependence can be dropped from
the notation. Furthermore, because we make no distinctions
between various mechanisms causing the transition, but rather
combine all of these effects into one transition rate, the v
dependence can be removed, and the transition rate can simply
be written as k;_, ;. Under these assumptions, the expression in
Eq. (K3) is simplified to

st
T (0) 1 T

AS,, = In
e Ty (T) o,
=1In —an(O)njl‘N ,
nmN(T)n;jl‘U
N km,-_1~>m,- ;1[0
AS, = Zln— + In m
mj—mj_| my

st N
7Tm0 j=1 kmj—l_>mj

=In , (K4)

st N
T[;«,N j=1 kmj~>mj,1

where JT with 1 < j < N — 1 from the denominator and
numerator canceled each other to obtain these expressions.
Note that the quantities in Eq. (K4) are defined for a given
trajectory. Because entropy production for an ensemble of such
trajectories is considered in this work, we average AS,, and
A S, over path probabilities in order to make comparisons. We
also shift the time interval from [0, 7] to [#,¢ + T ] without loss
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of generality and take the limit 7 — 0. We then obtain

T P(m — n;T)
T

(Sha)

Iim (AS,.)/T = li
TIER)< Sna)/ 70 an:
T ()T
Tt 4+ TSt

(Sa) = lim (AS.)/T

EEDIDIDS

N=0 m m#m my#m,

Z Z / dn/ dt- - / dty

my_1F#my_p nFmy_,

I
=3
[ =

X Tu(O)P(m — my;11)... Plmy_1 — n;ty)

st

5k .ok
mm—m my—n

X In purers k . (K5)
n n—>my_1 ¢+ mp—-m

Here, P(m — n;T) = (exp KT),,, is the conditional proba-
bility that the system is at the state n at time 7 4+ T, given that
it is at the state m at time ¢, where K is the matrix whose (m,n)
component is k,,_,,. For small 7', we have the expansion

(exp K T)un = 8un + Thun + O(T?). (K6)

Therefore we get

= Tk In

m,n

T (t)n
()t

+lim = Olin (1) — Iy 04 7))

T (t)n
(t)ﬂst

= > (ki In Z (1)

= 7u(t)kypIn

T ()T
Ta ()’

(S)—llm AS, /T_hmz

2

my#my_1 nFmy

YL X

m. my#Em my#m

3%k .ok
X ”m(t)kmaml e kmN_1~>n In :tn damill ik
n kn—>mN,1 .. -km1—>m
= Z T (k- In %_m
mn n—m
=D Tk In % (K7)
m,n n—m

Comparing these expressions with

Seye = —Zn,(t)[ln( uily )) - 1}
z()
= —Z[T(}(l‘)kj_” nl(t)kl—)]] s +1

i,j l

m(z‘)nst
= Zm(t)k,ﬂ P p (K8)
and
Shk =X - Scyc
(ki j)
=Y m(tkijlog (=L
;nm 108 (ﬂj(f)kj—n'
JT,(t)JTSt
- Zm(f)k,ﬁ, (n (I)ﬂq)
J
stk__”_
=Y mi(t)ki-; log %, (K9)
ij j—i

in the cyclic regime, we immediately see that (S;la) = Scyc
and (S )y = Shk Note that because the driver degrees of
freedom are not explicitly incorporated in the model, S in
Eq. (K1) does not include the contribution from the hidden
entropy.
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