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Quantitative analysis of a transient dynamics of a gene regulatory network
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In a stochastic process, noise often modifies the picture offered by the mean-field dynamics. In particular, when
there is an absorbing state, the noise erases a stable fixed point of the mean field equation from the stationary
distribution and turns it into a transient peak. We make a quantitative analysis of this effect for a simple genetic
regulatory network with positive feedback where the proteins become extinct in the presence of stochastic noise,
contrary to the prediction of the deterministic rate equation that the protein number converges to a nonzero value.
We show that the transient peak appears near the stable fixed point of the rate equation, and the extinction time
diverges exponentially as the stochastic noise approaches zero. We also show how the baseline production from
the inactive gene ameliorates the effect of the stochastic noise and interpret the opposite effects of the noise and
the baseline production in terms of the position shift of the unstable fixed point. The order of magnitude estimates
using biological parameters suggest that for a real gene regulatory network, the stochastic noise is sufficiently
small so that not only is the extinction time much larger than biologically relevant timescales, but also the effect
of the baseline production dominates over that of the stochastic noise, leading to protection from the catastrophic
rare event of protein extinction.
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I. INTRODUCTION

The probability of a rare event in stochastic reaction pro-
cesses has been a subject of much interest and extensive
studies [1–27]. Such an event can drastically modify the
picture provided by the mean-field dynamics, if that event
brings the process to an absorbing state. A representative
example is the extinction of a population or a disease [1–24].
Under the assumption of an isolated population, the state
of the vanishing population or disease is an absorbing state.
In this case, even when the mean-field dynamics predicts
that the whole or infected population reaches a nonvanish-
ing stationary value, called the stable fixed point, a finite
probability flux into the absorbing state leads to an eventual
extinction of the population or disease. The stable fixed point
is converted into a transient state by the stochastic noise in
this case, implying the mean-field description is valid during
a finite time, and eventually breaks down. Obviously, the
extinction event can be prevented by removing the absorbing
state. This can be done by introducing the influx of population
or disease so that the state of the vanishing population or
disease is not an absorbing state anymore. The rate of such
an influx determines the relative dominance of the mean-field
stable fixed point versus the state of vanishing population or
disease on the stationary distribution [24].

A gene regulatory network with positive feedback [28]
shares the same qualitative features as the models of pop-
ulation dynamics or epidemics discussed above in that the
protein activates its own production by binding to the DNA;
when there is no protein production from the inactive gene,
the state of the vanishing number of proteins becomes an
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absorbing state. A small amount of the protein production
from the inactive gene, called the baseline production, plays
the role of population (disease) influx in the case of population
dynamics (epidemics) in that it removes the absorbing state.
Therefore, it is clear that a similar quantitative analysis can
be conducted on the gene regulatory network, as in the case
of population dynamics or epidemics. Although the role of
stochastic noise in gene regulation has been a focus of much
interest recently [29–71], it is difficult to find a quantitative
analysis of how the stochastic noise turns a stable fixed point
into a transient state and how the baseline production rescues
the proteins from being extinct in a gene regulatory network.

In this work, we will consider the simplest form of genetic
regulatory network with positive feedback and obtain the
time-dependent distribution as a numerical solution of the
chemical master equation. We also obtain an analytic solution
under the assumption of appropriate timescale separations.
We indeed see that the stable fixed point of the determin-
istic mean-field dynamics turns into a transient peak of the
probability distribution and gets erased from the stationary
distribution in the absence of the baseline production. We then
compute the timescale for the leakage of the probability to
the absorbing state and find that the leakage time increases
as the stochastic noise decreases, making the deterministic
equation valid for longer time duration. We then analyze how
the baseline production from the inactive gene ameliorates
the effect of the stochastic noise by removing the absorbing
state. We show that the opposite effects of the stochastic noise
and the baseline production can be explained in terms of the
position shift of the unstable fixed point.

The order of magnitude estimates using biological pa-
rameters suggest that for a real gene regulatory network,
the stochastic noise is sufficiently small so that not only
is the leakage time much larger than biologically relevant
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timescales, but also the effect of the baseline production domi-
nates over that of the stochastic noise, leading to the protection
from the catastrophic rare event of protein extinction.

II. THE MODEL

The model we consider is the simplest genetic regulatory
network with a positive feedback loop. We consider a protein
X that binds to the DNA to activate its own production:

D + X
k0−⇀↽−
k1

D∗

D∗ a−→ D∗ + X

D
aε−→ D + X (1)

X
b−→ ∅

D∗ bρ−→ D,

where D∗ and D denote the DNA with protein bound and
unbound, respectively. Although X is produced from D∗ or
D via transcription and translation, we assume that they can
be approximated as a one-step process. We assume that the
degradation rate of the bound protein is not greater than that
of the free protein, so that 0 � ρ � 1. Although most of the
results presented are for ρ = 0, the value of ρ does not affect
the qualitative feature of the results. The non-negative number
ε parametrizes the rate of transcription from the inactive gene,
called the baseline production1 [33,42,45]. Because we are
considering the case of a positive feedback, the value of ε is
restricted to be 0 � ε < 1.

III. THE DETERMINISTIC RATE EQUATION

We assume that the timescale of equilibration between D

and D∗ is much shorter than other relevant timescales so that
they can be assumed to be equilibrated instantly. We also
assume that the number of X molecules is large enough so
that its fluctuation can be neglected. Then the probability that
the DNA is bound to a protein molecule is given by

p(D∗) = k0x

k0x + k̃1
= x

x + r̃
(2)

p(D) = 1 − p(D∗) = r̃

x + r̃

at any instant of time, where r̃ ≡ k̃1/k0, with k0 and k̃1

being the binding and unbinding rates between the protein X

and the DNA, and x is the concentration of the protein X.2

The rates for the production and the degradation of X are

1This is also called the transcriptional leakage, but we will refrain
from using this terminology because we will be using the word
leakage in quite the opposite sense.

2The concentration is defined as x ≡ m/m̄, where m is the number
of proteins and m̄ is a large number chosen to be of the order of
average number of proteins [31]. The rates r̃ , k̃1, and ã of the rate
equation, and the corresponding quantities r, k, and a in the master
equation, are related by r̃ = r/m̄, k̃1 = k1/m̄, and ã = a/m̄. See
Appendix E for details.

proportional to p(D∗) + εp(D) and x, respectively, leading
to the deterministic rate equation

ẋ = ã(x + r̃ε)

x + r̃
− bx, (3)

describing the mean-field dynamics of x where its fluctuation
is neglected. The effect of the degradation of the bound protein
is negligible in this limit, as shown in Appendix E, and
therefore ρ does not appear in Eq. (3).

Although physically x � 0, we first obtain the fixed points
of Eq. (3) and examine their stability without such a restriction
for the convenience of analysis. The fixed points of Eq. (3) are
obtained by setting ẋ to zero, which is equivalent to solving
the equation

x2 + (r̃ − ã/b)x − rãε/b = 0. (4)

The roots of Eq. (4) are

x± = 1

2

⎡
⎣ ã

b
− r̃ ±

√(
ã

b
− r̃

)2

+ 4ãr̃ε

b

⎤
⎦, (5)

whose stability can be analyzed by expanding Eq. (3) up to
linear order in δx ≡ x − x±:

δ̇x = H (x±)δx ≡
[
−bx + ã(x + r̃ε)

x + r̃

]′

x±
δx

=
(

−b + ãr̃ (1 − ε)

(x± + r̃ )2

)
δx. (6)

Because x+ + r̃ � x− + r̃ and (x+ + r̃ )(x− + r̃ ) = ãr̃ (1 −
ε)/b, we get

(x+ + r̃ )2 � ãr̃ (1 − ε)/b � (x− + r̃ )2, (7)

from which we get ãr̃ (1 − ε)/(x+ + r̃ )2 � b and ãr̃ (1 −
ε)/(x− + r̃ )2 � b, where the relations are satisfied as equali-
ties only when ε = 0 and ã/b = r̃ so that x+ = x−. Therefore,
H (x+) < 0 and H (x−) > 0 if ã/b �= r̃ or ε > 0, whereas
H (x± = 0) = 0 for ε = ã/b − r̃ = 0. Consequently, we see
that x+ and x− are stable and unstable fixed points, respec-
tively, for the former case. For the latter case, the stability of
x± = 0 is analyzed by expanding Eq. (3) up to second order
in δx, where we find that

δ̇x = H ′(0)δx2 = −2ãr̃ (1 − ε)

r̃3
δx2 < 0. (8)

Therefore, x = 0 is a half-stable fixed point because δ̇x/δx <

0 for δx > 0 and δ̇x/δx > 0 for δx < 0.
Now we restrict ourselves to the physical region of x � 0.

When ε > 0, x+ > 0 and x− < 0, and therefore only x+ lies
in the physical region. Therefore x+ > 0 is not only the unique
stable fixed point, but it is also the unique fixed point. For the
case of ε = 0, we have x+ > 0 and x− = 0 if ã/b > r̃ , and
x+ = 0 and x− < 0 if ã/b < r̃ . Therefore, x+ > 0 and x− = 0
are the stable and unstable fixed points if ã/b > r̃ , whereas
x− = 0 is the unique stable fixed point that is also the unique
fixed point if ã/b < r̃ . Finally, the unique fixed point at x = 0
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for ε = 0 and ã/b = r̃ is also a stable fixed point because now
we allow only δx with positive sign.

The results are summarized as follows:
(i) ε > 0

x+ = 1
2 [ ã

b
− r̃ +

√
( ã

b
− r̃ )2 + 4ãr̃ε

b
] > 0 is the unique

fixed point that is stable.
(ii) ε = 0 and ã/b > r̃

There are two fixed points. x+ = ã/b − r̃ > 0 is the stable
fixed point and x− = 0 is the unstable fixed point.

(iii) ε = 0 and ã/b � r̃

x+ = 0 is the unique fixed point that is stable.
Note that the case for ε > 0 can be understood in terms

of position shift of a fixed point, starting from ε = 0 cases.
Starting from case (ii), turning on nonzero ε shifts the position
of the unstable fixed point x− = 0 to an unphysical value of
x− < 0, leaving only the nonzero stable fixed point x+ in the
physical region, leading to case (i). If we start from case (iii),
the position of the unique stable fixed point x+ = 0 is shifted
to x+ > 0 by turning on nonzero ε, again leading to case (i).
The position shift of the fixed point at x = 0 by the baseline
production and the stochastic noise will be discussed again
later (Sec. VII), where we will show that their effects are
opposite to each other.

The case of ε = 0 and ã/b > r̃ is of much interest, because
the features of the stationary distribution obtained from the
stochastic equation is quite the opposite to the picture offered
by the deterministic rate equation. Because x+ is the unique
stable fixed point of the deterministic rate equation, x → x+
in the limit of t → ∞, even if the initial value of x was close
to x = 0. This seems to suggest that in the context of the
stochastic dynamics, the stationary distribution should have a
peak near x+. However, as will be shown next, the stationary
distribution is concentrated at x = 0, which was predicted
to be an unstable fixed point, and has vanishing probability
at the stable fixed point. We will see that introducing a
nonzero value of ε ameliorates this effect, but as long as its
value is sufficiently small, the probability distribution is still
dominated by x = 0.

IV. CHEMICAL MASTER EQUATION

There are two sources of stochastic noise: the fluctuation
of the protein numbers, and the fluctuation between the bound
and unbound states of the DNA.3 To fully incorporate the
effects of these fluctuations, we should consider the proba-
bility P (m, n, t ) that the number of free and bound protein
molecules are m(= 0, 1, . . . ) and n(= 0, 1) at time t . The
chemical master equation describing the time evolution of
P (m, n, t ) is

Ṗ (m, 0) = −k0P (m, 0)m + k1P (m − 1, 1)

+ εaP (m − 1, 0) − εaP (m, 0)

+ bP (m + 1, 0)(m + 1)

− bP (m, 0)m + ρbP (m, 1),

3The latter can also be considered as the fluctuation in the molecule
numbers, the number of unbound(bound) DNA molecules fluctuating
between 0 and 1.

0 1 2 3 4 5 6

0 1 2 3 4 5

FIG. 1. An example of the rates and the states of the Markov
model corresponding to Eq. (9). The lengths of the arrows are the
magnitudes of the transition rates between the states. The numbers in
the circle are the numbers of free protein molecules. The horizontal
arrays of states at the top and the bottom are the bound and the
free modes, the sets of states with protein-bound and free DNA,
respectively. The short gray diagonal arrows exist for ρ > 0. The
dotted arrows indicate the baseline production, which is absent for
ε = 0.

Ṗ (m, 1) = k0P (m + 1, 0)(m + 1)

− k1P (m, 1) + aP (m − 1, 1) − aP (m, 1)

+ bP (m + 1, 1)(m + 1)

− bP (m, 1)m − ρbP (m, 1). (9)

where it is to be understood that P (m, n, t ) ≡ 0 whenever
m < 0. Let us call the states with n = 0 and n = 1 as the free
and the bound mode, the set of states with free and protein-
bound DNA, respectively. The Markov chain corresponding
to Eq. (9) is shown in Fig. 1, where we immediately see that
(m, n) = (0, 0) is an absorbing state for ε = 0, because once
the system enters this state due to stochastic fluctuation, there
is no way that it can escape to another state, because no protein
molecule can be produced from a free DNA. In other words,

P st (m, n) = δm,0δn,0 (10)

is not only a stationary solution of Eq. (9) with ε = 0, but
also P (m, n, t ) converges to P st (m, n) regardless of the initial
condition [72]. This is in stark contrast to the picture given by
the deterministic rate equation Eq. (3), where the system is
predicted to move away from m = 0 and converges to a state
with nonvanishing number of the protein molecules. The situ-
ation is different from that of a mutual repressor model where
the number of peaks of the stationary distribution differs from
that of the stable fixed point only when the stochastic noise
is sufficiently large [66]. In the current model, the results of
the deterministic and the stochastic equations contradict each
other for all parameter values, as long as ε = 0.

The vanishing probability for states other than (m, n) =
(0, 0) at t → ∞ comes from the fact that (m, n) = (0, 0) is
an absorbing state of the system and does not depend on the
details of the model (Appendix A). A similar situation has
also been encountered in models of population dynamics, epi-
demics, and low-dimensional percolation, whose stochastic
master equations share similar structures as the current model
of gene regulatory network, Eq. (11) [1–23,25–27]. There, it
has been found that the stable fixed point becomes a transient
peak of a quasisteady distribution instead of the true stationary
one. The same statement can be made for the current model
by analyzing the time-dependent behavior of the probability
distribution, as shown next.
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A. Numerical computation of time-dependent
solutions for ε = 0

Because it is difficult to obtain a general time-dependent
solution of Eq. (9) in an analytic form, the equation was
solved numerically using the finite-buffer discrete chemical
master equation method [73,74], where the state space is
truncated to a finite subspace. The state space was trun-
cated so that m � 30, which is a reasonable approximation
because P (30, n, t ) < 10−6 at all times, for the initial con-
ditions and the parameters used in the computation. The
master equation was integrated using the EXPOKIT pack-
age [75]. For ease of comparison with the results from the
next sections, the marginal probability distribution pm(t ) ≡
P (m, 0, t ) + P (m − 1, 1, t ) was obtained, which is the prob-
ability that the total number of proteins, both bound and
unbound, is m at time t . The marginal distributions pm(t )
at t = 0.5b−1, 1.0b−1, 2.0b−1, and 10.0b−1 are shown in
Figs. 2(a) and 2(b), where the parameters used are a =
10b, k0 = k1 = 100b, ρ = 0, and ε = 0. The initial condi-
tions are P (m, 0, 0) = 0.2δm,4 and P (m, 1, 0) = 0.8δm,3 for
Fig. 2(a), and P (m, 0, 0) = 0.0625δm,15 and P (m, 1, 0) =
0.9375δm,14 for Fig. 2(b). The distribution becomes indepen-
dent of the initial condition at around t = 10b−1, and the
peak of the distribution for m > 0 is indeed found at the
stable fixed point of the deterministic rate equation, m∗ =
a/b − r = 9. The peak at the stable fixed point is maintained
at later times, but its height decreases due to the leakage
of the probability to the state m = 0, as can be seen in
pm(t ) for t = 100.0b−1, t = 1000.0b−1, t = 2000.0b−1, and
t = 3000.0b−1, shown in Fig. 2(c) for the same parameters.
The stable fixed point of the deterministic rate equation has
been changed to a transient peak due to the stochastic noise,
as expected.

B. Analytic form of the stationary distribution

The stationary distribution of the master equation, Eq. (9),
can be obtained analytically, under the assumption that the
rates for the binding and unbinding of the protein molecule
to DNA are instantaneous. We first replace the parameters ki

by K ≡ k0 and r ≡ k1/k0. Then, in the limit of K → ∞, we
derive the master equation for the marginal probability pm(t )
(Appendix B):

ṗm = b(m + 1)(r + m + ρ)

m + 1 + r
pm+1 − bm(r + m − 1 + ρ)

m + r
pm

− a(m + rε)

m + r
pm + a(m − 1 + εr )

m − 1 + r
pm−1, (11)

where p−1(t ) ≡ 0. The corresponding Markov chain is shown
in Fig. 3.

First, we compute the stationary distribution. In general,
obtaining an analytic form of the stationary solution is dif-
ficult, and one often resorts to additional approximations
such as WKB formalism [1–23,27]. However, the stationary
solution of Eq. (11) can be computed exactly, by noting that a
stationary distribution of a Markov chain without a cycle must
obey a stronger condition called the detailed balance [76–78],

 0
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analytic
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bt=1.0
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analytic
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ε=3.5x 10-5 (K/b=    )8

ε=3.5x 10-5

(c)

FIG. 2. The marginal probability distribution pm(t ) plotted as
the function of m, (a, b) at early times and (c) at late times,
for a/b = 10, k1 = k0 = 100b, ρ = 0, and ε = 0. In (a) and (b),
pm(t ) at bt = 0.5, 1.0, 2.0, and 10.0 are drawn. The filled circles
are the analytic quasisteady distribution in Eq. (16), where the
normalization was determined to give the best fit. The initial distri-
butions are given as P (m, 0, 0) = 0.2δm,4 and P (m, 1, 0) = 0.8δm,3

in (a), and P (m, 0, 0) = 0.0625δm,15 and P (m, 1, 0) = 0.9375δm,14

in (b). In (c), pm(t ) at bt = 100.0, 1000.0, 2000.0, and 3000.0
are drawn. Stationary distributions for ε = 0.000 035, obtained
from the numerical computation and the analytic formula, are also
plotted as crosses and circles, respectively. The other parameters
are the same as above, except that K/b = ∞ for the analytic
solution.
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0 1 2 3 4 5 6

FIG. 3. An example of the rates and the states of the Markov
model corresponding to Eq. (11) for ε = 0. The lengths of the
arrows are the magnitudes of the transition rates between the states.
The numbers in the circles indicate the numbers of total protein
molecules, both bound and unbound. In this example, the probability
flows to the state m = 5 on average, but there is also a leakage to
m = 0, whose effect becomes important at late times.

which is

bm(m + r − 1 + ρ)

m + r
pst

m = a(m − 1) + εar

m + r − 1
pst

m−1, (12)

for the Markov chain described by Eq. (11). Equation (12) can
be solved to obtain the solution

pst
m(ε) = C

(a

b

)m−1 (m + r )�(m + rε)

m!�(m + r + ρ)
, (13)

where C is the normalization constant. When ε =
0, the �(m + rε) term in the numerator diverges for m = 0,
and therefore C = 0 and consequently pst

m(ε = 0) = 0 for
m > 0, recovering the obvious result:

pst
m(ε = 0) = δm,0. (14)

C. Analytic form of a time-dependent solution for ε = 0

Now consider a time-dependent solution of Eq. (11) for
ε = 0. Denoting the transition rate from the state with protein
number m to that with n as km→n, we see that km→m+1 =
am/(m + r ) and km→m−1 = bm(r + m − 1 + ρ)/(m + r ).
Therefore, km→m−1/km→m+1 = b(m + r + ρ − 1)/a, and al-
though there is a nonzero probability for transitions in both
directions for m > 0, the most probable direction for transi-
tion is the positive direction for 0 < m < a/b + 1 − r − ρ

and negative direction for m > a/b + 1 − r − ρ, consistent
with the picture provided by the deterministic rate equation:
The particle number converges to a nonzero stable fixed point.
While there is a nonzero probability that the system makes a
series of transitions in negative direction to m = 0 and gets
trapped there, the probability for such a rare event can be
neglected at early times. Therefore, we assume an additional
timescale separation, that p0(t ) is essentially constant during
the timescale where the states with m > 0 equilibrate among
themselves. We have already seen that this assumption is rea-
sonable by numerically solving the original master equation,
Eq. (9), but it can also be checked from the analytical solution
itself a posteriori, as will be discussed below.

During the timescale where the leakage to m = 0 state is
negligible, the dynamics of the states with m > 0 is described
by the approximate equation

ṗm(t ) = b(m + 1)(r + m + ρ)

m + 1 + r
pm+1(t )

− bm(r + m − 1 + ρ)

m + r
pm(t )(1 − δm,1)

− am

m + r
pm(t ) + a(m − 1)

m − 1 + r
pm−1(t ), (15)

which is obtained from Eq. (11) with ε = 0, by blocking the
transition from the state m = 1 to m = 0. Then the quasis-
teady distribution for m > 0 can be defined as the stationary
solution of the modified master equation (15). The detailed
balance condition for Eq. (15) is again given by Eq. (12)
with ε = 0, except that now the value of m is restricted to
be positive, leading to the quasisteady distribution

pqs
m = C̃

(a

b

)m−1 m + r

m�(m + r + ρ)
. (16)

The quasisteady distribution p
qs
m has exactly the same form

as the stationary distribution pst
m in Eq. (13) for ε = 0, but

because m is restricted to be positive values, C̃ is not zero
anymore. Once we take the leakage to the m = 0 state into
account, the overall normalization constant C̃ becomes a
slowly decreasing function of time. From the normalization
condition

∑∞
m=1 p

qs
m = 1 − p0(t ), we have

pqs
m (t ) = (1 − p0(t ))

[ ∞∑
s=1

(a

b

)s−1 s + r

s�(s + r + ρ)

]−1(a

b

)m−1

× m + r

m�(m + r + ρ)
(17)

for m > 0.
The local maximum m∗ of the quasisteady distribution is

obtained from the condition

p
qs
m

p
qs
m−1

= a(m − 1)(m + r )

bm(m + r − 1)(m + r + ρ − 1)
= 1, (18)

where it is to be understood that the actual value of m∗ should
be taken as the integer value close to the real value of m

satisfying Eq. (18). In the regime where m∗ � 1, Eq. (18)
reduces to

a

b(m∗ + r )
	 1, (19)

from which we get

m∗ 	 a

b
− r � 1. (20)

The deterministic rate equation is written in terms of the
concentration x ≡ m/m̄, where m̄ is a large number of size
O(m∗), and by defining ã ≡ a/m̄ and r̃ ≡ r/m̄, Eq. (20) is
rewritten as

x∗ 	 ã

b
− r̃ (for a/b − r � 1). (21)

Because m∗ 	 a/b − r is the most probable number of pro-
tein molecules at early times, it is of the order of the average
molecule number. In this case, the magnitude of the fluctu-
ation is expected to be of order O(

√
m∗), and consequently,

the relative error is of order O((m∗)−1/2) [79,80]. Therefore,
(m∗)−1/2 	 (a/b − r )−1/2 can be considered as the parameter
characterizing the size of the stochastic noise due to the
protein number fluctuation, and Eq. (21) tells us that the peak
of the quasisteady distribution is concentrated at the stable
fixed point of the deterministic rate equation if the stochastic
noise is small.

We note that for m∗ = a/b − r � 1, typical values
of the transition rates km→n between m > 0 and n > 0
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are much larger than k1→0. For m > 0, we have
km→m+1 = am/(m + r ) ∼ am∗/(m∗ + r ) = a − br �
b = k1→0 by the assumption a/b − r � 1. Similarly,
km→m−1 = bm(m + r + ρ)/(m + r ) ∼ bm∗ = b(a/b − r ) =
a − br � b = k1→0. Therefore, states around m ∼ 1 act as a
probabilistic barrier if a/b − r � 1, and the approximation
used in deriving Eq. (17) is justified. In fact, the analytic form
of the quasisteady distribution in Eq. (16) nicely captures
the shape of the actual probability distribution even for
a = 10b, as shown Figs. 2(a) and 2(b). In the figures, the
quasisteady solution, Eq. (16), is shown as filled circles,
where the overall normalization was adjusted to obtain the
best fit with the numerical solution t = 10.0b−1. We find
excellent agreement, regardless of the initial condition.

We can also obtain the analytic form of p0(t ) that deter-
mines the overall normalization 1 − p0(t ) of the quasisteady
distribution for m > 0. From Eq. (11), we have

ṗ0(t ) = b(r + ρ)

r + 1
p1(t ) (22)

for ε = 0. Since we are using the quasi-steady-state approxi-
mation for pm(t ) with m > 0, we may substitute p

qs
1 (t ) given

in Eq. (17) into p1(t ) of Eq. (22) to get

ṗ0(t ) = b(r + ρ)

r + 1
p

qs
1 (t )

= b

�(r + ρ)

[ ∞∑
s=1

(a

b

)s−1 (s + r )

s�(s + r + ρ)

]−1

× (1 − p0(t )), (23)

the solution of which is

p0(t ) = 1 − exp(−t/τq ) , (24)

where

τ−1
q ≡ b

�(r + ρ)

[ ∞∑
s=1

(a

b

)s−1 (s + r )

s�(s + r + ρ)

]−1

. (25)

Equations (17), (24), and (25) completely specify the analytic
form of the time-dependent distribution. The fit of the time-
dependent solution with the quasisteady state is not as good
when the normalization given by Eqs. (24) and (25) is used,
for the reason that will be explained in the next section.

V. THE TIMESCALE SEPARATION
AND THE RATE OF LEAKAGE

In general, when we construct a matrix K whose (i, j )th
element is given by the transition rate ki→j of a Markov
process, then zero is an eigenvalue of K, and all the remaining
nonzero eigenvalues are negative [72]. Let us denote the
negative eigenvalues as 0 > λ1 > λ2 > · · · and call λ1 the
lowest eigenvalue. These eigenvalues parametrize the multi-
exponential convergence of the probability distribution pm(t )
to the stationary one pst

m:

pm(t ) = pst
m +

∑
k

v(k)
m exp(−|λk|t ), (26)

where v(k)
m is the mth component of the eigenvector corre-

sponding to the eigenvalue λk , whose normalization is de-
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FIG. 4. The graphs of 1 − p0(t ) for a/b = 5, r = 1, K/b =
∞, ρ = 0, and ε = 0, where the vertical axis is in log scale. The
dashed lines are the results from the numerical computation, with
several different initial distributions. The solid line is the result from
the analytic expressions in Eqs. (24) and (25).

termined by the initial condition. In general, the multiexpo-
nential behavior in Eq. (26) can be approximated as a single
exponential:

pm(t ) 	 pst
m + v(1)

m exp(−|λ1|t ), (27)

if t � |λ1|, in which case |pst
m − pm(t )| � 1. However, if we

have a timescale separation so that |λ1| � |λk| for k � 2, then
the single-exponential equation, Eq. (26), is a good approxi-
mation even for t ∼ |λ1|−1, where the deviation pst

m − pm(t )
is sizable.

We have already argued in the previous section that the
timescales are more separated for larger values of a/b − r ,
where the short timescale is the equilibration time of m >

0 states, and the long timescale is the one for the leak-
age to the m = 0 state. To confirm this and to examine
various properties of the leakage time, we performed nu-
merical computation using the method explained previously.
The graphs of pst

0 − p0(t ) = 1 − p0(t ) for a/b = 5, r =
1, K/b = ∞, ρ = 0, and ε = 0 are shown in Fig. 4 with
dashed lines for several initial conditions, where the vertical
axis is in log scale. We indeed see that they form parallel
straight lines for bt � 10, where 1 − p0(t ) � 0.8, confirm-
ing the single exponential form in Eq. (27). The graphs of
1 − p0(t ) for a/b = 10, r = 1, ρ = 0, and ε = 0 are also
plotted in Fig. 5 for several values of K/b, where the single-
exponential form is found for 1 − p0(t ) � 0.9 when K/b �
1, again indicating the timescale separation. These results
do not depend on initial probability distribution unless it is
concentrated near m = 0, which is again due to the timescale
separation (Appendix C).

We also see that the increase of K/b slows down the
leakage to m = 0, which is also confirmed in the graph of
the dimensionless mean leakage time bτ as a function of
K/b in Fig. 6, shown for both ρ = 0 and ρ = 0.2, with other
parameters being the same as those in Fig. 5. The faster
leakage for a smaller value of K/b is due to the free mode
that flows straight down to m = 0 state without wasting time
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FIG. 5. The graphs of 1 − p0(t ) for a/b = 10, r = 1, ρ = 0,
and ε = 0, for several values of K/b. The vertical axis is in log scale.
The dashed lines are the results from the numerical integration of
Eq. (9) with finite values of K/b. The gray solid line is the result for
K/b = ∞, obtained from the numerical integration of Eq. (11). The
black solid line is the result from the analytic expressions in Eqs. (24)
and (25).

by making frequent transitions to the bound mode where the
mean direction of flow is in the positive m direction (Fig. 1).
This is even more evident from the separate snapshots of the
time-dependent probability distributions for the bound and
free modes in Fig. 7, where the behaviors for K/b = 1 and
K/b = 100 are compared. We note in Fig. 6 that increase of
ρ leads to the decrease of τ , as it should, but the fact that
it is an increasing function of K/b remains unchanged. This
feature was observed up to ρ = 1 (data not shown). Note that
the fluctuation between the bound and the unbound mode is
also a stochastic noise. From the results above, we see that the
effect of this fluctuation is qualitatively similar to that of the
free protein number fluctuation in that it enhances the leakage
to the absorbing state. The behavior of p0(t ) becomes highly

 0

 3000

 0  100

b 
τ

K/b

ρ=0 (K/b=    )8

ρ=0
ρ=0.2 (K/b=    )8

ρ=0.2

FIG. 6. The dimensionless mean leakage time bτ as a function
of K/b, for a/b = 10, r = 1, and ε = 0. The dashed line shows the
value at K/b = ∞. The black and the gray lines are for ρ = 0 and
ρ = 0.2, respectively.

0

 0.025

0

K/b=100 (bound)
K/b=1 (bound)
K/b=100 (free)

K/b=1 (free)

(a)

0

 0.06

0  10  20  30

K/b=100 (bound)
K/b=1 (bound)
K/b=100 (free)

K/b=1 (free)

(b)

FIG. 7. The probability distributions P (m, n, t ) of bound (n = 1,
dashed lines) and free (n = 0, solid lines) modes (a) at bt = 1
(b) and bt = 10. The distributions for K/b = 100 and K/b = 1
are compared, shown in gray and black lines, respectively. The
other parameters are b/a = 10, r = 1, ρ = 0, and ε = 0. For better
visibility of the distributions of the free mode, those of the bound
modes are scaled by 0.2 and 0.5 in (a) and (b), respectively.

dependent on initial conditions for K/b � 1, as in the case
of a small value of a/b − r , due to the decoupling of the free
and the bound mode: If the initial distribution is concentrated
at the free mode, it is most probable that the proteins quickly
get extinct before there is a chance for a protein to bind to
the DNA, whereas if the initial distribution is concentrated on
the bound state, it is most probable that protein number stays
nonzero for some time before becoming extinct much later.
The graphs of 1 − p0(t ) are shown in Fig. 8 for ρ = 0, ε =
0, a/b = 100, r = 0.4, and K/b = 0.005, for the initial con-
ditions P (m, n, 0) = δm,50δn,1 (gray line) and P (m, n, 0) =
δm,50δn,0 (black line), respectively.4 We see that not only does
p0(t ) depend on the initial condition, but also 1 − p0(t ) is not
even a single exponential for the second initial condition, in-
dicating that the timescale separation does not hold anymore.
These features can be most easily understood by considering
the extreme case of K/b = 0, where an analytic solution is

4The states were truncated at m = 1000. The probability at m =
1000 remained below 2 × 10−64 at all times.
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FIG. 8. The graphs of 1 − p0(t ) for ρ = 0, ε = 0, a/b =
100, r = 0.4, and K = 0.005. The gray and the black lines are
for the initial conditions P (m, n, 0) = δm,50δn,1 and P (m, n, 0) =
δm,50δn,0, respectively.

available (Appendix D). It is obvious that a nonzero value
of K/b acts only as a perturbation if it is sufficiently small,
and therefore the qualitative features of K/b = 0 case are
maintained.

Note that the form of p0(t ) obtained under the quasisteady
approximation, Eq. (24), already has a single exponential
form. This is because it is the solution of Eq. (23) that is
an approximation obtained under the assumption that the
m > 0 modes are equilibrated instantly. The assumption of
instantaneous equilibration underestimates the leakage time,
because actually it takes a finite time for a state with m > 1
to reach m = 1. However, it can be shown that |λ1| → τ−1

q

in the limit where k1→0/k(m>0)→(n>0) → 0 (Appendix C).
Therefore, the approximation is better for larger values of
a/b − r . The graph of 1 − p0(t ) obtained from the quasis-
teady approximation [Eq. (24)] is also shown in Figs. 4 and 5,
where we indeed see that the leakage is faster than that of the
exact solution at K/b = ∞ but captures the exact behavior
much better at a/b − r = 9, where the timescales are more
separated compared to a/b − r = 4.

In summary, for a/b − r = 4 and K/b = ∞, the
timescales are sufficiently well separated in order for p0(t )
to follow a single exponential form for p0(t ) � 0.2, but
not separated enough for |λ1| to be approximated by τ−1

q .
For a/b − r = 9 and K/b = ∞, the timescales are much
better separated so that not only does p0(t ) follow a single
exponential form for p0(t ) � 0.1, but also |λ1| 	 τ−1

q . For
a/b − r = 100 and K/b = 0.005, p0(t ) does not follow a
single exponential form, in general, because the timescales are
not well separated.

Note that even for sufficiently large K/b, the probability
distribution is dominated by the stable fixed point at x = x+
only for t � τ ≡ |λ1|−1. That is, the average behavior of the
system follows the deterministic rate equation only at early
times. For t � τ , the probability distribution approaches the
stationary one, and we have pm(t ) 	 δm,0. However, also note
that larger the value of m∗ = a/b − r , the smaller the stochas-
tic noise and hence better the deterministic approximation. In
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FIG. 9. The dimensionless mean leakage time bτ as the function
a/b − r , for various values of r , for K/b = ∞, ρ = 0, and ε = 0.

fact, the analytic form of τq for K/b = ∞ in Eq. (25) shows
that it is an exponentially increasing function of a/b − r , as
shown in Fig. 9 for several values of r , and τ → ∞ in the
limit of a/b − r → ∞. That is, if the stochastic noise is very
small, it takes a very long time for the probability distribution
to make transition from the transient quasisteady state to the
true stationary one, and indeed the dynamics is well described
by the deterministic rate equation for a long time duration.
Because a large value of r leads to the dominance of the
free mode, it is obvious that the increase of r speeds up the
leakage, as shown in the figure.

VI. EFFECT OF THE BASELINE PRODUCTION

When ε > 0, the numerator in Eq. (13) does not diverge
for m = 0, and this expression is well defined for m � 0 with
a nonzero value of C. Therefore, pm(t ) for m > 0 does not
vanish in the limit of t → ∞, in contrast to the case of ε = 0.
This is because m = 0 is not an absorbing state anymore.
A similar situation is encountered in population dynamics,
where the influx of immigration plays the role of baseline
production in the current model [24]. However, the discussion
for ε = 0 is still relevant when ε is sufficiently small, because
the initial behavior of the time-dependent probability distri-
bution is similar to that for ε = 0. The stable fixed point of
the deterministic equation is the dominant state only at early
times, and the occupation probability of the stable fixed point
of the deterministic rate equation will be much smaller than
p0(t ) in the limit of t → ∞, most of it concentrated at m = 0.

By comparing Eqs. (13) and (16), we find that the func-
tional form of p

qs
m (t ) for m � 1 is approximately equal to that

of pst
m(ε), up to the overall normalization constant, as long as

ε is sufficiently small. Therefore, the stationary distribution
for ε > 0 is approximately the same as the analytic form of
the time-dependent distribution in Eq. (17) for ε = 0 at some
time point t . That is, we can find a pair of t and ε satisfying
p

qs
m (t ) 	 pst

m(ε). For example, for a/b = 10 and r = 1, we
find that p(t = 2000b−1) for K/b = 100 and ε = 0 shows a
reasonably good agreement with pst (ε = 0.000 035) for both
K/b = 100 and K/b = ∞ [Fig. 2(c)]. The graph of pst

0 (ε) is
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FIG. 10. The graphs of pst

0 (ε) for a/b = 10, r = 1, and ρ = 0,
for various values of K/b.

shown in Fig. 10 for several values of K , where we see that it
is a monotonically decreasing function of ε, as to be expected.
The effect of K/b on pst

0 (ε) is similar to its effect on p0(t ):
a large value of K/b hinders the flow of the probability to
m = 0.5

In summary, the baseline production ameliorates the effect
of the stochastic noise in that pst

m > 0 for m > 0, but for
sufficiently small ε, the qualitative behavior of the probability
distribution is similar to that for ε = 0: at early times, the
probability distribution converges to a quasisteady distribution
dominated by the stable fixed point, but the stable fixed
point is almost erased in the limit of t → ∞, although not
completely destroyed. When ε is large enough so that the peak
of pst

m(ε) around the stable fixed point is comparable to pst
0 (ε),

we have a bistability driven by the stochastic noise in the limit
of t → ∞ [33]. For both of these cases, the deterministic
rate equation describes the average behavior of the system
only at early times. When ε is too large, then the effect
of the baseline production dominates that of the stochastic
noise in that pst

0 (ε) is now smaller than the peak of pst
m(ε)

at the stable fixed point. Then the deterministic rate equation
description is valid throughout all the timescales, as long as
the average behavior is concerned. Therefore, the effect of the
baseline production is to oppose that of the stochastic noise.
The stochastic noise and the baseline production have also
been shown to exhibit opposite effects on the response to the
change of the production and/or the decay rates, the former
and the latter favoring the binary and the graded responses,
respectively [42].

The threshold value εθ , defined as the value of ε where
the area under the two peaks are equal, is plotted in Fig. 11
as the function of a/b − r for several values of r , for ρ = 0,
and K/b = ∞. We see that εθ is an exponentially decreasing
function of a/b − r . The fact that εθ is a decreasing function
of a/b − r is to be expected. Because the effect of the stochas-
tic noise and the baseline production oppose each other, a

5The stationary distributions were obtained by using the successive
over-relaxation (SOR) algorithm [81], which ensures fast conver-
gence.
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FIG. 11. The baseline production threshold εθ as the function of
a/b − r , for various values of r , for K/b = ∞, and ρ = 0.

larger (smaller) amount of baseline production is required to
overcome the effect of the stochastic noise for larger (smaller)
stochastic noise, corresponding to a smaller (larger) value of
a/b − r . Also, for a larger value of r , the leakage effect is
enhanced, and therefore more baseline production is required
to resist such a leakage. As we will discuss in the next section,
we can interpret the opposite effects of the stochastic noise
and the baseline production in terms of the shift of the position
of the unstable fixed point.

VII. SHIFT OF THE FIXED POINTS
BY STOCHASTIC NOISE

We have seen in the context of the deterministic setting
that the position of a fixed point gets shifted by the baseline
production, and such a shift can remove the fixed point from
the physical region. In the stochastic formalism, a fixed point
turns into an extremum of the stationary distribution, and its
position gets shifted not only by the baseline production, but
also by the stochastic noise [82,83]. To study this effect, and to
see when the picture offered by the fixed points breaks down,
we first go to the continuum limit where the chemical master
equation for the stationary distribution turns into the Fokker-
Planck equation of the form [31] (Appendix E):

−∂x[A(x)π st (x)] + 1
2∂2

x [B(x)π st (x)] = 0, (28)

where

A(x) = ã(x + r̃ε)

x + r̃
− bx + bx(1 − ρ)

m̄(x + r̃ )

B(x) = 1

m̄

(
ã(x + r̃ε)

x + r̃
+ bx

)
, (29)

with r̃ = r/m̄ and ã = a/m̄. We note that a fixed point x∗ of
the deterministic rate equation satisfies the equation A(x∗) =
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0 with m̄−1 = 0. The general solution of Eq. (28) is6

π st (x) = C

B(x)
exp

(∫ x

dz
2A(z)

B(z)

)
. (30)

Now let us consider the extremum of π st (x) when B(x) is
very small. Taking the derivative of π st (x) with respect to x

and setting it to zero, we get

dπ st (x)

dx
= C

B(x)
exp

(∫ x

dz
2A(z)

B(z)

)[
2A(x)

B(x)
− B ′(x)

B(x)

]
= 0, (31)

from which we get the equation for the extremum xm:

A(xm) − B ′(xm)/2 = 0. (32)

That is, we see that to the zeroth order of m̄−1, xm coincides
with a fixed point x∗ of the deterministic rate equation, and
the small stochastic noise acts as a perturbation that shifts
the position of the xm with respect to x∗. To see whether xm

is a local maximum or minimum of π st (x), we compute the
second derivative of π st (x) at xm:

d2π st (x)

dx2
x=xm

= C

B(x)
exp

(∫ x

dz
2A(z)

B(z)

)[
2A(x)

B(x)
− B ′(x)

B(x)

]2

x=xm

+ C

B(x)
exp

(∫ x

dz
2A(z)

B(z)

)[
2A′(x)

B(x)
− 2A(x)B ′(x)

B(x)2

− B ′′(x)

B(x)
+ B ′(x)2

B(x)2

]
x=xm

= C

B(x)
exp

(∫ x

dz
2A(z)

B(z)

)[
2A′(x)

B(x)
− B ′′(x)

B(x)

]
x=xm

,

(33)

where Eq. (32) was used to derive the last line. From Eq. (33),
we see that the sign of π st ′′(xm) is determined by A′(xm) −
B ′′(xm)/2, which is A′(x∗)|m̄−1=0 to the zeroth order in m̄−1.
The result tells us that a stable (unstable) fixed point of
the deterministic rate equation becomes a local maximum
(minimum) of the steady-state probability distribution. There
are two factors that modify the picture offered by the fixed
point analysis. First, as shown earlier, the position shift of a
fixed point may remove it from the physical region. Second,
the probability distribution may possess an additional local
maximum at the boundary of the physical region, x = 0. This
kind of local maximum is not related to a fixed point of the rate
equation, because it is not obtained by taking the derivative to
zero, and this new maximum may even dominate the behavior
of the system. For the extreme case of ε = 0, we find that
B(x)−1 ∼ 1/x × constant as x → 0, and therefore the overall
multiplicative constant in Eq. (30) should vanish, leading to
π st (x) = δ(x) as expected.

6There is another independent solution of the form
CB(x )−1 exp (

∫ x
dz 2A(z)

B(z) )
∫ x

dy exp (− ∫ y
du 2A(u)

B(u) ), which is
discarded by requiring that π st (x ) is normalizable.

Now we analyze how perturbations of order m̄−1 and ε shift
the positions of the extrema when A(x) and B(x) are given as
in Eq. (29). We have

A(xm) − B ′(xm)

2

= ã(xm + r̃ε)

xm + r̃
− bxm + bxm(1 − ρ)

m̄(xm + r̃ )

− 1

2m̄

[
ã(x + r̃ε)

x + r̃
+ bx

]′

xm

= ã(xm + r̃ε)

xm + r̃
− bxm + bxm(1 − ρ)

m̄(xm + r̃ )

− 1

2m̄

(
ã

xm + r̃
− ã(xm + r̃ε)

(xm + r̃ )2
+ b

)
= 0. (34)

By multiplying Eq. (34) by xm + r̃ , we obtain

−bxm(xm + r̃ ) + ã(xm + r̃ε)

− 1

2m̄

(
ãr̃ (1 − ε)

xm + r̃
+ b[r̃ + (2ρ − 1)xm]

)
= 0. (35)

Now, to find out the shift of xm to the leading order in m̄−1

and ε, we make the expansion xm = x∗ + δx, where x∗ is a
fixed point of the deterministic rate equation with ε = 0:

A(x∗)|m̄−1=ε=0 = −bx∗ + ãx∗

x∗ + r̃
= 0. (36)

Equation (35) is now expanded to the first order in m̄−1 and ε,
to obtain

(−2bx∗ − br̃ + ã)δx

= −ar̃ε + 1

2m̄

(
ãr̃

x∗ + r̃
+ b[r̃ + (2ρ − 1)x∗]

)

+O(m̄−2, ε2, m̄−1ε), (37)

from which we obtain that

δx = (−2bx∗ − br̃ + ã)−1

×
[
−ãr̃ε + 1

2m̄

(
ãr̃

x∗ + r̃
+ b[r̃ + (2ρ − 1)x∗]

)]
.

(38)

When x∗ = 0, we get

δx = (ã − br̃ )−1

[
−ãr̃ε + 1

2m̄
(ã + br̃ )

]
. (39)

If ã > br̃ so that x∗ = 0 is a local minimum (unstable fixed
point), then δx > 0 if m̄−1(ã + br̃ ) > 2ãr̃ε and δx < 0 oth-
erwise. The stable fixed point also tends to get shifted in
opposite directions by the stochastic noise and the baseline
production (Appendix F).

In summary, the opposite effects of the stochastic noise and
the baseline production on the stationary distribution can be
interpreted in terms of the position shift of the unstable fixed
point. The former and the latter tends to shift the position
of the unstable fixed point into the positive and the negative
directions, respectively. The erasure of the stable fixed point
by stochastic noise, as well as the noise-driven bistability, can
be understood in terms of the position shift of the unstable
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(a) (b) (c)

FIG. 12. The shift of the minimum of the stationary distribution.
In each figure, the tail of the arrow is located at the unstable fixed
point x− = 0 of the deterministic rate equation with no baseline
production. (a, b) The local minimum is shifted rightward, when
the effect of the stochastic noise dominates over that of the baseline
production. (a) For large noise and the corresponding large shift of
the unstable fixed point, a divergence occurs at x = 0, leading to
the effective erasure of the nonzero stable fixed point for t → ∞.
(b) For small magnitude of noise, probability at x = 0 becomes
comparable to the peak near the nonzero stable fixed point, leading
to the noise-induced bistability for t → ∞. (c) When the effect of
the baseline production dominates that of the stochastic noise, the
local minimum is shifted leftward. The local minimum disappears
into the unphysical region of x < 0, and the probability distribution
is dominated by the global maximum near the nonzero stable fixed
point, even for t → ∞.

fixed point at x = 0 (Fig. 12). When the effect of the stochas-
tic noise is larger than that of the baseline production, the
position of the unstable fixed point x = 0 shifts to the region
of positive x, and x = 0 becomes the local maximum of the
probability distribution without a vanishing derivative, which
may even dominate the behavior of the stationary state if the
shift is sufficiently large.

VIII. NUMERICAL ESTIMATES USING
BIOLOGICAL PARAMETERS

Most of the parameters used below are for the Lac system
of the bacteria Escherichia coli. The maximal production rate
of the E. coli is a ∼ 100 min−1 (BNID 100738),7 using the
data for the protein LacY and LacZ [85,86]. Even for most
unstable protein in E. coli, the degradation rate is b ∼ 1 min−1

[87–91] (BNID 109921), giving the estimate of

a/b � 100. (40)

To estimate r , we use the values of binding constant
k0V = 0.0027(s nM)−1 ∼ 0.003(s nM)−1 = 0.003 s−1 ×
(10−9 mol)−1 × 10−3 m3 [92] and unbinding constant
k1 = 0.0023(s)−1 ∼ 0.002(s)−1 [93] of E. coli lac repressor
(LacL) [94] (BNID 106521), as well as the volume of E. coli,
V ∼ 1 μm3 = 10−18 m3 [95,96] (BNID 114924, 114925),
to get

k0/b ∼ 0.003(s mol)−1 × 106 m3

6 × 1023 molecules mol−1 × 10−18m3

× 60 s = 0.3 molecule−1,

7The ID number of BioNumbers Database [84].
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FIG. 13. The probability distribution at bt = 50 for the initial
condition P (m, n, 0) = δm,0δn,0 and the parameters ρ = 0, a/b =
100, r = 0.4, K = 0.3, and ε = 0.001. The distributions for the free
[P (m, 0, t )] and the bound mode [P (m, 1, t )] are shown as the black
and gray lines, respectively. The stationary distribution is also shown
as a dashed red line. The free mode makes negligible contribu-
tion to the stationary distribution and therefore pst

m 	 P st (m − 1, 1).
The probability distribution at bt = 106 for ρ = 0, a/b = 100, r =
0.4, K = 0.3, and ε = 0 is indistinguishable from pst

m, as long as the
initial state is away from m = 0.

k1/b ∼ 0.002 s−1 × 60 s = 0.12,

r = k1/k0 ∼ 0.4. (41)

For simplicity, we assume ρ = 0 throughout the estimates.
The numerical computation for the parameters given above
cannot be conducted long enough to compute τ due to the
accumulation of numerical errors. However, the probability
distribution remains peaked at around m ∼ 100 and shows no
sign of leakage to m = 0, up to 106 min (Fig. 13, dashed red
line), regardless of the initial condition. This indicates that
τ � 106 min. Considering the fact that the cell generation
time of E. coli is Tcycle ∼ 100 min [97] (BNID 105065), we
see that

τ � Tcyc. (42)

These results suggest that the leakage to zero-protein state will
be unobservable in a real biological system, even if there is no
baseline production.

In reality, ε > 0 except for artificially engineered sys-
tems [98–100]. For a Lac promotor, we have ε = 10−3 [101]
(BNID 102075). With other parameters given as above, this
amount of baseline production is sufficient to dominate over
the effect of the stochastic noise, as shown in the stationary
distribution that is peaked at around m ∼ 100, with no trace
of a peak near m = 0 (Fig. 13). The effect of the baseline
production is more important than that of the large value of
τ , because it helps the system to start the positive feedback
loop even if there is no protein in the beginning. Even if we
use the initial condition P (m, n, 0) = δm,0δn,0, the amount of
the baseline production above is sufficient to let the system
quickly escape from the state (m, n) = (0, 0). Only 30% of
the probability remains at m = 0 at t = 50 min, as shown in
Fig. 13. Therefore, from these results, we expect that for wild-
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type genetic regulatory networks, the baseline production will
restore the nonzero stable fixed point as the dominant peak of
the stationary distribution.

IX. DISCUSSION

It is a well-known fact that stochastic noise modifies the
picture provided by the deterministic rate equation. A repre-
sentative example is the conversion of the stable fixed point
into a transient peak of the probability distribution and its
complete removal from the stationary distribution. Although
this phenomenon has been extensively studied in the context
of population dynamics and epidemics, it has been seldom
discussed for the models of gene regulatory networks.

In this work, we performed quantitative analysis of tran-
sient dynamics of the simplest autoregulatory genetic circuit
with positive feedback, both numerically and analytically. We
found that as long as the magnitude of the baseline production
is sufficiently small compared to that of the stochastic noise,
the unique stable fixed point turns into a dominant peak
of the transient, quasisteady distribution instead of the true
stationary state. In the extreme case of vanishing baseline
production, the trace of the stable fixed point is completely
erased from the stationary distribution due to an absorbing
state. However, for very small stochastic noise, the probability
distribution is dominated by the stable fixed point for a very
long time duration. In fact, we find that the leakage time is
an exponentially increasing function of the inverse square of
the relative fluctuation, a/b − r (Fig. 9). This clarifies the true
meaning of the statement that the chemical master equation is
well approximated by the deterministic rate equation when the
stochastic noise is small. For a given time, the deterministic
rate equation becomes a better approximation of the system
as the noise is reduced. Also, the time duration for which
the deterministic description is valid becomes longer as the
noise is reduced. The contradiction between the stochastic and
the deterministic equation appeared only because we took the
t → ∞ limit first. Considering that the biological processes
occur within a finite time duration, the transient behavior
may more be biologically relevant than the true stationary
distribution of the chemical master equation. The importance
of the transient behavior has also been emphasized for the
stochastic decision process in λ-phage systems [102].8

In reality, there is always a small amount of baseline
production from an inactive gene, except for artificially en-
gineered systems [98–100]. Because the baseline production
removes the absorbing state, its effect is opposite to that of
the stochastic noise. The magnitude of the baseline production
relative to that of the stochastic noise determines the relative
dominance of the nonzero stable fixed point relative to the
peak at the zero-protein state in the stationary distribution.
In fact, we find that the baseline production rate required for

8The main difference from the current result is that for the λ-
phage decision circuit, the transient and the stationary behaviors of
the deterministic and stochastic equations coincide, whereas for the
simple autoregulatory model considered here, the stationary behavior
of the deterministic equation corresponds to the transient behavior of
the stochastic equation.

overcoming the stochastic effect is an exponentially decreas-
ing function of the inverse square of the relative fluctuation,
a/b − r (Fig. 11). We also showed that the opposite effects of
the stochastic noise and that of the baseline production can be
interpreted in terms of the position shift of the unstable fixed
point.

The order-of-magnitude estimates using biological pa-
rameters suggest that for a real gene regulatory network,
the stochastic noise is sufficiently small so that not only
is the leakage time much larger than biologically relevant
timescales, but also the effect of the baseline production com-
pletely dominates over that of the stochastic noise. Therefore,
the wild-type gene regulatory networks seem to be protected
from the catastrophic rare event of protein extinction by both
of these effects.
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APPENDIX A: DEMONSTRATION OF VANISHING
STATIONARY PROBABILITY OF NONZERO PROTEIN

NUMBERS IN OTHER MODELS OF
A SELF-REGULATING GENE

The δ-function form of the stationary distribution
[Eq. (10)] is due to the fact that the zero-protein state is
an absorbing state of the system. Therefore, the stationary
state is either a Kronecker δ function or Dirac δ function
concentrated at the zero-protein state, as long as there is no
baseline production from the inactive gene, and the result does
not depend on a specific form of the noise. We will consider
several models in the literature below.

Let us consider the model defined by the continuous master
equation [33,42]

∂p(x)

∂t
= ∂

∂x
[γ xp(x)] + k

β

∫ x

0
dx ′ exp[−(x − x ′)/β]

×
(

1 + εcx ′H

1 + cx ′H

)
p(x ′) − k

(
1 + εcxH

1 + cxH

)
p(x),

(A1)

where x is the concentration of the protein. Here, because the
decay and the production terms are given by the first-order
derivative and the integral terms, respectively, this model has
less degradation noise and more production noise compared
to the Fokker-Planck description, where both the decay and
the production are described by the second-order derivatives.
The stationary solution is given by

pst (x) = Axα−1e−x/β (1 + cxH )α(ε−1)/H , (A2)

where α ≡ k/γ . The positive regulation corresponds to H <

0, and in this case 1 + cxH → cxH as x → 0. Therefore,
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p(x) → Axαε−1 as x → 0, and
∫ ∞

0 dxp(x) diverges if ε = 0
and A > 0. In fact, the normalization

∫
dxp(x) = 1 requires

that A 	 αε → 0 as ε → 0. Therefore, p(x) = 0 for x > 0,
and consequently, p(x) = δ+(x) for ε = 0, where the dis-
tribution δ+(x) is defined by the property that δ+(x) = 0
for x > 0 and

∫ ∞
0 dxδ+(x) = 1. Next we consider a discrete

model where the proteins form dimer in the bulk and then bind
to either DNA or RNA for positive regulation [38]. For the
transcriptional regulation with fast mRNA dynamics, we have
the stationary solution of the form

pst
n = rpst

0

n

n−1∏
i=1

(
r
f (i)

i
+ μp − 1

μp

)
(A3)

for n > 0, where

f (n) ≡
∑
j�0

1 + ρkj

1 + kj

(λn2(n))j

j !
exp(−λn2(n)), (A4)

with

n2(n) = n

2
+ a2 − a

√
n + a2. (A5)

The zero baseline production corresponds to the limit of r →
0 and ρ → ∞ with finite value of rρ which is proportional
to the transcription rate from the active DNA. Because r

f (i)
i

in the parenthesis of Eq. (A3) remains finite in this limit, pst
n

for n > 0 all vanish due to the extra r in the front of the
right-hand side of Eq. (A3), leading to pst

n = δn,0 due to the
normalization.

In the continuum limit, Eq. (A3) is approximated as

pst (x) = Acx
−1e−x/μ̃p exp(r

∫ x

c

duf̃ (u)/u), (A6)

where

f̃ (x) ≡
∑
j�0

1 + ρkj

1 + kj

(λx2(x))j

j !
exp(−λx2(x)), (A7)

with

x2(x) = x

2
+ λa2 −

√
λa

√
x + λa2. (A8)

Because the zero baseline production corresponds to r → 0
with rρ finite, we have

rf̃ (x) =
∑
j�0

rρkj

1 + kj

(λx2(x))j

j !
exp(−λx2(x)), (A9)

and since x2(x) → x/2 as x → 0, we have rf̃ (x) ∝ x for
small x in the case of zero baseline production, and conse-
quently, r

∫ x

c
duf̃ (u)/u is nonzero and finite. Therefore, from

Eq. (A6) we see that pst (x) ∝ x−1 as x → 0, and again we
see that the integral of pst (x) diverges unless Ac = 0, so we
again see that p(x) = δ+(x). When there is a nonzero base-
line production, rf̃ (x) → r as x → 0, and r

∫ x

c
duf̃ (u)/u =

r ln(x/c). Therefore pst (x) ∝ xr−1 as x → 0, so the integral
of pst (x) remains finite.

The discrete and continuous solutions for the transcrip-
tional regulation under the fast protein dynamics, as well those
under translational regulations, have similar forms as the ones
presented above, so they can be shown to reduce to Dirac
and Kronecker δ functions, respectively, in the absence of the
baseline production, following the same logic as above.

APPENDIX B: DERIVATION OF THE REDUCED MASTER
EQUATION (11) IN THE LIMIT OF FAST EQUILIBRATION

OF DNA

We redefine the parameters and the variables in Eq. (9):

K ≡ k0, r ≡ k1/k0

pm ≡ P (m, 0) + P (m − 1, 1)

ξm ≡ mP (m, 0) − rP (m − 1, 1)

m + r
, (B1)

where the time index is suppressed for notational simplicity.
P (m, n) are then expressed in terms of pm and ξm as

P (m, 0) = r

m + r
pm + ξm

P (m − 1, 1) = m

m + r
pm − ξm . (B2)

By substituting Eq. (B2) into Eq. (9), we obtain

ṗm = Ṗ (m, 0) + Ṗ (m − 1, 1) = εaP (m − 1, 0) − εaP (m, 0) + aP (m − 2, 1) − aP (m − 1, 1)

+ bP (m + 1, 0)(m + 1) − bP (m, 0)m + bP (m, 1)m − bP (m − 1, 1)(m − 1) + ρbP (m, 1) − ρbP (m − 1, 1),

= a

(
m − 1

m + r − 1
pm−1 − ξm−1 − m

m + r
pm + ξm

)
+ εa

(
r

m + r − 1
pm−1 + ξm−1 − r

m + r
pm − ξm

)

+ b(m + 1)

(
r

m + r + 1
pm+1 + ξm+1

)
− bm

(
r

m + r
pm + ξm

)

+ b(m + ρ)

(
m + 1

m + r + 1
pm+1 − ξm+1

)
− b(m − 1 + ρ)

(
m

m + r
pm − ξm

)

= (m − 1 + εr )a

m − 1 + r
pm−1 − (m + εr )a

m + r
pm + b(m + 1)(r + m + ρ)

m + 1 + r
pm+1 − mb(r + m − 1 + ρ)

m + r
pm

−a(1 − ε)ξm−1 + [a(1 − ε) − b(1 − ρ)]ξm + b(1 − ρ)ξm+1 (B3)
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and

ξ̇m = mṖ (m, 0) − rṖ (m − 1, 1)

m + r

= m

m + r
(−k0P (m, 0)m + k1P (m − 1, 1) + εaP (m − 1, 0) − εaP (m, 0) + bP (m + 1, 0)(m + 1)

−bP (m, 0)m + ρbP (m, 1)) − r

m + r
(k0P (m, 0)m − k1P (m − 1, 1) + aP (m − 2, 1)

−aP (m − 1, 1) + bP (m, 1)m − bP (m − 1, 1)(m − 1 + ρ))

=
(

−k0m − εam

m + r
− bm2

m + r

)
P (m, 0) +

(
k1 + ar

m + r
+ b(m − 1 + ρ)r

m + r

)
P (m − 1, 1)

+ εam

m + r
P (m − 1, 0) + bm(m + 1)

m + r
P (m + 1, 0) − ar

m + r
P (m − 2, 1) + bm(ρ − r )

m + r
P (m, 1)

=
(

−k0m − εam

m + r
− bm2

m + r

)(
r

m + r
pm + ξm

)
+

(
k1 + ar

m + r
+ b(m − 1 + ρ)r

m + r

)(
m

m + r
pm − ξm

)

+ εam

m + r

(
r

m + r − 1
pm−1 + ξm−1

)
+ bm(m + 1)

m + r

(
r

m + r + 1
pm+1 + ξm+1

)

− ar

m + r

(
m − 1

m + r − 1
pm−1 − ξm−1

)
+ bm(ρ − r )

m + r

(
m + 1

m + r + 1
pm+1 − ξm+1

)

= −K (m + r )ξm −
(

a(r + εm)

m + r
+ b[m2 + (m − 1 + ρ)r]

m + r

)
ξm +

(
ar + εam

m + r

)
ξm−1

+ bm(m + r + 1 − ρ)

m + r
ξm+1 + m[ar (1 − ε) + (ρ − 1)br]

(m + r )2
pm − ar (m − 1 − εm)

(m + r )(m + r − 1)
pm−1

+ bmρ(m + 1)

(m + r )(m + r + 1)
pm+1. (B4)

From Eq. (B4), we get

ξm = − ξ̇m

K (m + r )
− a(r + εm) + b[m2 + (m − 1 + ρ)r]

K (m + r )2
ξm +

(
ar + εam

K (m + r )2

)
ξm−1

+ bm(m + r + 1 − ρ)

K (m + r )2
ξm+1 + m[ar (1 − ε) + (ρ − 1)br]

K (m + r )3
pm − ar (m − 1 − εm)

K (m + r )2(m + r − 1)
pm−1

+ bmρ(m + 1)

K (m + r )2(m + r + 1)
pm+1, (B5)

and we see that ξ is of order O(1/K ). Therefore, Eq. (B3) becomes

ṗm = b(m + 1)(r + m + ρ)

m + 1 + r
pm+1 − bm(r + m − 1 + ρ)

m + r
pm − a(m + rε)

m + r
pm + a(m − 1 + εr )

m − 1 + r
pm−1 + O(1/K ), (B6)

which is Eq. (11) in the limit of K → ∞. More rigorously,
the coupled equations Eqs. (B3) and (B4) reduce to one
equation in the limit of K → ∞, due to Tikhonov’s theorem
on dynamical systems [103,104], where ξ is obtained from
Eq. (B5) after setting K−1 to zero, and then substituted into
Eq. (B3) to obtain Eq. (11).

APPENDIX C: THE LEADING ORDER CONTRIBUTIONS
TO |λ1| AND v

(k�2)
0 WHEN λ1/λk�2 � 1

Let us consider the transition rate matrix K for Eq. (9) or
Eq. (11) with ε = 0, whose (i, j )th element is ki→j , so that the
probability distribution is represented as a row vector and the
time derivative is obtained by multiplication of the transition
matrix from the right. For the current model, the transition

matrix takes the form

K =

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0
α

0
A...

0

⎞
⎟⎟⎟⎟⎠, (C1)

where the first state is taken to be the absorbing state, whose
index is taken to be zero, and A is the submatrix formed by
the transition rates between the other states, whose indices are
m = 1, 2, . . . . For Eq. (11), α ≡ k1→0 = b(r + ρ)/(1 + r ).

We see that 〈v(0)| = (1, 0, 0 . . . ) is the left eigenvector
of K with the eigenvalue 0, the stationary state. Because∑

j ki→j = 0, we have K|I〉 = 0 where |I〉 ≡ (1, 1, . . . 1)T .
This also tells us that for any left eigenvector 〈v| =
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(v0, v1, . . . ) for a nonzero eigenvalue λ, we have

λ〈v|I〉 = 〈v|K|I〉 = 0, (C2)

leading to ∑
i

vi = 0. (C3)

Also, because of the special form of K given in Eq. (C1),
expressing the left eigenvector as 〈v| = v0 ⊕ 〈ṽ| where 〈ṽ| =
(v1, v2 . . . ), we have

〈v|K = αv1 ⊕ 〈ṽ|A = λv0 ⊕ λ〈ṽ|, (C4)

which shows that λ is also an eigenvalue of A with the
corresponding left eigenvector 〈ṽ|, and

λ = α
v1

v0
= − αv1∑

m�1 vm

. (C5)

When we set α to zero, the corresponding modified transfer
matrix K0 describes the Markov model in Eq. (15), where A
is replaced by A0, defined as

A0 = A + αP , (C6)

where P is a projection matrix with the definition Pij ≡ δi1δj1.
The submatrix A0 possesses the left eigenvector 〈pqs| with the
zero eigenvalue, satisfying

〈pqs|A0 = 0, (C7)

which we called the quasisteady distribution in the main text.
The eigenvalues and eigenvectors of K can be obtained from
those of K0 by the perturbations of size O(α/A), where A is
the typical size of A0ij that determines the sizes of the non-
negative eigenvalues of A0. In particular, the left eigenvector
〈ṽ(1)| of A for the eigenvalue λ1 is obtained from 〈pqs| as

〈ṽ(1)| = 〈pqs| + O(αA−1). (C8)

From Eqs.(C5) and (C8), we have

−λ1 = αv
(1)
1∑

m�1 v
(1)
m

= αp
qs
1∑

m p
qs
m

+ O(αA−1), (C9)

where we see that the first term in the final expression is noth-
ing but τ−1

q given in Eq. (25). The corresponding eigenvector
in the full state space is

〈v(1)| =
(

−
∑
m�1

pqs
m

)
⊕ 〈pqs| + O(αA−1), (C10)

where Eq. (C3) was invoked.
The eigenvectors for λk�2 are obtained from those for the

negative eigenvalues of A0. Because A0 is a transition rate
matrix in the subspace of m � 1 states, a left eigenvector
〈ṽ| = (v1, . . . ) of A0 for an eigenvalue λ < 0 satisfies
the equation

∑
i�1 vi = 0. Therefore, we see that for an

eigenvector 〈v(k)| = (v(k)
0 , v

(k)
1 , . . . )T for the eigenvalue λk

with k � 2, we have∑
m�1

v(k)
m ∼ O(αA−1). (C11)

Consequently,

λk = − αv
(k)
1∑

m�1 v
(k)
m

∼ O(A) (C12)

and

v
(k)
0 = −

∑
i�1

v(k)
m ∼ O(αA−1) (C13)

for k � 2. From Eq. (C13), we see that v
(k)
0 for k � 2 can

be neglected if α/A is small enough. In this case, if we
start from the initial condition with p0(0) = 0, we have
p0(0) = 1 + ∑

k�1 v
(k)
0 	 1 + v

(1)
0 = 0, leading to v

(1)
0 	 −1,

and consequently the leading order contribution to the
stationary state is of the form p0(t ) 	 1 − exp(−t/τq ) with
no further dependence on the initial condition.

APPENDIX D: THE ASYMPTOTIC FORM OF p0(t )
FOR K/b = 0 AND ε = 0

The bound and free modes are completely decoupled for
K/b = 0, and their probabilities are conserved separately.
Restricting to the free mode, the eigenvalues for the approach
to the stationary distribution can be obtained in an analytic
form when ε = 0. The transition rate matrix for the free mode
is of the form

K =

⎡
⎢⎢⎣

0 0 0 0 · · ·
b −b 0 0 · · ·
0 2b −2b 0 · · ·
0 0

. . .
. . .

. . .

⎤
⎥⎥⎦.

From the form of the matrix, it is easy see that the eigenvalues
are 0, −b, −2b, −3b, . . . . Therefore, we see that sizes of
the eigenvalues are not well separated. In other words, the
timescale separation does not hold, and 1 − p0(t ) exhibits
initial-condition-dependent multiexponential behavior,

1 − p0(t ) =
∑

k

Ake
−kbt +

∑
k

Bke
−|λk |t , (D1)

where the constants Aks and Bks are determined by the initial
condition, and λks are the eigenvalues of the bound mode.
Even if we assume p0(0) = 0, these constants are not fully
determined.

APPENDIX E: DERIVATION OF FOKKER-PLANCK
EQUATION FROM THE MASTER EQUATION

The chemical master equation for single species can be
written as [68,79,80]

∂tP (n, t ) = m̄

R∑
j=1

(Fj (n − Sj )P (n − Sj ) − Fj (n)P (n)),

(E1)

where j = 1, . . . R labels reactions in the system. In Eq. (E1),
Fj (n) and Sj are the transition rate and the increase of the
particle number, respectively, for the j th reaction, and m̄ is
the size parameter, a large number whose size is comparable to
the average protein number. For the reduced master equation
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Eq. (11), we have two reactions, the creation and the degrada-
tion, with S1 = 1 and S2 = −1, and

F1(m) = a(m + rε)

m̄(m + r )

F2(m) = bm(m + r + ρ − 1)

m̄(m + r )
. (E2)

When the average number of protein molecules is large,
one can approximate the discrete variable x ≡ m/m̄ as a con-
tinuous variable. Considering Fj as functions of x, fj (x) ≡
Fj (n), with π (x, t ) ≡ m̄pm(t ), we get the Kramers-Moyal
expansion [79],

∂tπ (x, t )

= m̄

R∑
j=1

[
fj

(
x − Sj

m̄

)
π

(
x − Sj

m̄
, t

)
− fj (x)π (x, t )

]

=
R∑

j=1

∞∑
k=1

m̄1−k (−Sj )k∂k
x (fj (x)π (x, t ))/k!

=
∞∑

k=1

(−1)km̄1−k∂k
x (ak (x)π (x, t ))/k!, (E3)

where ak (x) ≡ ∑
j Sk

j fj (x). Assuming that m̄ is large enough
so that the expansion can be kept only up to the second order,
we obtain the Fokker-Planck equation [31,79]

π̇ (x, t ) = −∂x (A(x)π (x, t )) + 1
2∂2

x (B(x)π (x, t )), (E4)

where A(x) ≡ a1(x) and B(x) ≡ m̄−1a2(x). For Eq. (E2), we
get

f1(x) = ã(x + r̃ε)

x + r̃

f2(x) = bx[x + r̃ + m̄−1(ρ − 1)]

x + r̃

= bx + bx(ρ − 1)

m̄(x + r̃ )
, (E5)

with the rescaled rates r̃ = r/m̄ and ã = a/m̄. Therefore, we
have

A(x) = ã(x + r̃ε)

x + r̃
− bx + bx(1 − ρ)

m̄(x + r̃ )

B(x) = 1

m̄

(
ã(x + r̃ε)

x + r̃
+ bx

)
+ O(m̄−2). (E6)

Note that, in the limit of m̄ → ∞, Eq. (E4) reduces to

∂tπ (x, t ) = −∂x

[(
−bx + ã(x + εr̃ )

x + r̃

)
π (x, t )

]
. (E7)

Because there is no diffusion term in Eq. (E7), uncertainty
originates purely from the initial condition. Therefore, the
dynamics described by Eq. (E7) is deterministic and is equiv-
alent to the rate equation

ẋ = ã(x + εr̃ )

x + r̃
− bx. (E8)

Note that m̄ is chosen to be of size comparable to the aver-
age number of proteins, implying that it is reasonable to take
m̄ to be O(m∗) where m∗ is the position of the nonzero peak
of the quasisteady distribution. Because m∗ 	 a/b − r when
a/b − r � 1, we may simply define m̄ ≡ a/b − r . With this
definition of m̄, we have ã = ab/(a − rb), r̃ = rb/(a − rb),
and the stable fixed point of the rate equation is x1 = 1.

The parameter ρ does not appear in Eq. (E8) because
the average number of the protein molecules is much larger
than unity and therefore most of the protein molecules are
in the free form. Consequently, the degradation of the bound
protein molecule gives negligible contribution to the overall
degradation of proteins in the limit where the deterministic
rate equation is valid. Similarly, by fixing r̃ = k1/(k0m̄) to
a finite value, the unbinding rate k1 in the chemical master
equation is taken to be much larger than the binding rate k0

when m̄ � 1. Therefore, the inactivation of the DNA due to
the degradation of the bound protein is negligible compared
to that due to the unbinding.

APPENDIX F: THE SHIFT OF THE STABLE FIXED POINT
IN THE STATIONARY DISTRIBUTION
AND THE STOCHASTIC SLOW DOWN

It has been noted that when the production rate is a function
of protein numbers, which is concave downward, than the
production rate slows down due to stochastic noise, which in
turn decreases the average value of the protein number of the
steady state relative to the value obtained by the deterministic
rate equation [80]. We sketch the derivation for the shift of the
steady-state average number of the proteins below. Although
the multispecies master equation was considered in Ref. [80],
we restrict ourselves to the single-species case for notional
simplicity. The shift of the average value was obtained by
expanding Eq. (E1) around the solution x̄ that satisfies the
deterministic rate equation,

dx̄

dt
=

∑
j

Sjfj (x̄), (F1)

and considering the probability density �(ε, t ) = m̄1/2P (n, t )
[79,80].9 After substituting

x = x̄ + m̄−1/2ε (F2)

into Eq. (E1), the expansion to order m̄−1/2 results in the
equation [80]

∂t�(ε, t )

= −
∑

j

Sjf
′
j (x̄)∂ε (ε�(ε, t )) + 1

2

∑
j

S2
j fj (x̄)∂2

ε �(ε, t )

9The factor of m̄1/2 is absent in Eq. (9) of Ref. [80], but it is required
for relating the probability mass function of a discrete variable to
the probability density of a continuous variable. This factor cancels
out in the left and right sides of the master equation, so the master
equation remains unchanged.
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+ m̄−1/2

⎡
⎣−

∑
j

Sjf
′′
j (x̄)∂ε (ε2�(ε, t ))

+
∑

j

S2
j f

′
j (x̄)∂2

ε (ε�(ε, t ))

⎤
⎦. (F3)

By multiplying both sides of Eq. (F3) by ε and integrating
over ε, one obtains [80]

〈ε̇〉 =
∑

j

Sjf
′
j (x̄)〈ε〉 + m̄−1/2 1

2

∑
j

Sjf
′′
j (x̄)〈ε2〉 + O(m̄−1),

(F4)
where the brackets denote the average value and the term of
O(m̄1/2) was removed by using Eq. (F1). Therefore, for a
stationary state where 〈ε̇〉 = 0, we get the leading order shift

〈x〉 = x̄ − m̄−1

∑
j Sjf

′′
j (x̄)〈ε2〉

2
∑

j Sjf
′
j (x̄)

. (F5)

When x̄ is the stable fixed point, then
∑

j Sjf
′
j (x̄) < 0, and

the shift is negative if
∑

j Sjf
′′
j (x̄) < 0, as in the case of

Michelis-Menten–type production rate and linear degradation
rate [80], which is also the case for our model. That is,
the average value of the particle number of the stationary
distribution is less than the stable fixed point to the leading
order in stochastic noise.

We note one subtle point. In Ref. [80], m̄ dependence
of fj (n) was not considered. In our model, f2(n) in fact
contains a term of O(m̄−1) unless ρ = 1. Therefore, Eq. (F1)
is not exactly the same as the deterministic rate equation we
considered previously, where the m̄−1-dependent term was
dropped. Therefore, we now have to consider the stable fixed
point x̄ of Eq. (F1), which can be written as

ẋ = ã(x + εr̃ )

x + r̃
− bx + bx(1 − ρ)

m̄(x + r̃ )
(F6)

for our model, and examine the additional position shift due to
the stochastic noise. Let us also consider ε = 0 and examine
the effect of the shift both due to the stochastic noise and the

baseline production. For ε = 0, Eq. (F6) is then written as

ẋ = āx

x + r̃
− bx (F7)

with ā ≡ ã + b(1 − ρ)m̄−1, so it takes the same form as
the deterministic rate equation considered previously, with
redefinitions of the parameters. Therefore, the nonzero fixed
point of Eq. (F7) is x̄ = ā/b − r̃ .

We already considered the shift of the unstable fixed point
in the main text, in the context of the Fokker-Planck equation.
Equation (35) was expanded around a fixed point of Eq. (3) to
obtain Eq. (37), which describes the shift of an extremum. If
we instead expand Eq. (35) around the fixed point of Eq. (F7),
we obtain

(−2bx̄ − br̃ + ā)δx = −ar̃ε + 1

2m̄

(
ãr̃

x̄ + r̃
+ b(x̄ + r̃ )

)

+O(m̄−2, ε2, m̄−1ε) (F8)
and therefore

δx = (−2bx̄ − br̃ + ā)−1

×
[
−ar̃ε + 1

2m̄

(
ãr̃

x̄ + r̃
+ b(x̄ + r̃ )

)]

= (br̃ − ā)−1

[
−ar̃ε + 1

2m̄

(
ãbr̃

ā
+ ā

)]
. (F9)

Therefore, again, we see that the effect of the stochastic noise
and the baseline production is opposite. The former tends to
shift the maximum to negative direction, whereas the baseline
production tends to shift it in positive direction. When the
stochastic noise is small and the nonzero peak is dominant,
its position is approximately the average particle number.
When the peak at the zero gives a sizable contribution to
the probability distribution, then the average particle number
is less than the position of the nonzero peak. Therefore, the
negative shift of the peak relative to the stable fixed point of
Eq. (F6) is consistent with the result of Ref. [80], which states
that the average number of particles is less than the stable fixed
point of Eq. (F6).
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