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Different quantities that go by the name of entropy are used in variational principles to infer probability

distributions from limited data. Shore and Johnson showed that maximizing the Boltzmann-Gibbs form of

the entropy ensures that probability distributions inferred satisfy the multiplication rule of probability for

independent events in the absence of data coupling such events. Other types of entropies that violate the

Shore and Johnson axioms, including nonadditive entropies such as the Tsallis entropy, violate this basic

consistency requirement. Here we use the axiomatic framework of Shore and Johnson to show how such

nonadditive entropy functions generate biases in probability distributions that are not warranted by the

underlying data.
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A problem of broad interest across the sciences is to
infer the mathematical form of a probability distribution
given limited data [1]. For instance, we may be given
limited information on an equilibrium system—say, its
average energy—from which we must predict the mathe-
matical form of the full energy probability distribution.
In this classic example, the distribution used in statistical
mechanics is the exponential Boltzmann distribution.

In many cases—including the case above—limited data
are consistent with many possible models for a probability
distribution. How should we select the ‘‘best’’ model that
fits the data? By model, we mean a set of probablities fpkg
for the outcomes k of an experiment. One way to select the
model is to eliminate candidate models by supplementing
the data with additional assumptions [2–5,5,6]. A common
additional assumption is based on choosing the model that
has the largest entropy. This is the basis for the variational
principle called maximum entropy (MaxEnt) [7].

The MaxEnt approach has its historical roots in the
work of Boltzmann in equilibrium statistical physics.
Later, Shannon and Jaynes showed that picking the model
with the largest entropy was analogous to maximizing the
uncertainty H of the model [7–10]. In particular, Jaynes
drew the connection between statistical mechanics and
Shannon’s work on information theory by showing that,
since Shannon’s H ¼ �P

pk logpk coincides with the
Boltzmann-Gibbs (BG) entropy, statistical mechanics
could be treated as an inference problem [9,10]. Shannon
and Jaynes and others justified the specific mathematical
formH ¼ �P

pk logpk on the basis of abstract properties
of H itself, such as satisfying a composition property [7].
Others justified the form for H using the Khinchin axioms
[11,12] or the Fadeev postulates [13], for example.

In contrast to these methods for deriving H on the basis
ofH’s properties, Shore and Johnson (SJ) [14] showed that

MaxEnt was the only consistent recipe for drawing self-
consistent inferences from data. SJ only asserted, by means
of four axioms, that any variational procedure must yield a
unique probability distribution that satisfies the rules of
addition and multiplication for independent probabilities if
data do not couple the probabilities for different events.
The arguments of SJ are quite general as they do not assign
explicit meaning—and, in particular, any thermodynamic
meaning—to H itself. Thus, H can be used as a variational
function to discriminate between models across a broad
range of problems.
However, in recent years other mathematical functions

of fpkg also called entropies [12,13,15–21]—and, more
broadly, regularization schemes [22] of which entropy
maximization is a special type—have been used to infer
complex models, often power laws, from data. In general,
these entropies violate one or more of SJ’s axioms and, as a
result, may be nonadditive. In contrast, the BG entropy is
additive in the sense that, for two independent systems A
and B, the value of the BG entropy H for the combined
system satisfies HðA; BÞ ¼ HðAÞ þHðBÞ.
Nonadditive entropies have been of particular interest

because they are commonly invoked whenmicroscopic com-
ponents of a system have long-range interactions. These
unconventional entropies satisfy different properties from
those of BG. As an example, according to Tsallis, Gell-
Mann, and Sato [23], the Tsallis entropy [12,16,18,23,25] of
a scale-invariant system is extensive. While nonadditive
entropies do not satisfy the additivity rule, they may instead
satisfy a ‘‘pseudoadditivity rule’’ [24], HðA; BÞ ¼ HðAÞ þ
HðBÞ þ �HðAÞHðBÞ, where � is a measure of the deviation
from additivity. Nonadditive forms of the entropy function
used within variational principles can preferentially select
models having power law distributions [18,25] which arise
from a variety of natural and social systems.
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Nonadditive entropies have been criticized on the basis,
for example, that the Tsallis parameter q [26,27] (related to
the � presented earlier) is often chosen by fitting data,
rather than by some first principle [25]. Furthermore,
unconventional averages must often be used to constrain
nonadditive entropies [28–33] to assure the convexity of
those functions if they are to be used to infer a unique
model.

In regard to these criticisms, if the matter at hand con-
cerns situations in which a full distribution of data is
already known—and thus q could be fit to data—then it
is fair to ask whether there is a need for any variational
principle for selecting a model in the first place. This raises
the question of how to justify—and when to use—BG
versus nonadditive entropies.

The question of interest here is how nonadditive entro-
pies can be justified within SJ’s axiomatic framework. This
framework is not about specifying properties ofH based on
physical (and often thermodynamic) properties of an en-
tropy, but rather about making self-consistent inferences
from data without imposing structure on a model which is
not warranted by the data itself. Thus SJ’s axioms are
stronger conditions than additivity conditions on H.

We use SJ’s reasoning to shed light on what variant of the
basic logical consistency requirements is necessary to de-
rive an alternate formula for the entropy. We first review
SJ’s axioms and showhowBG’sH follows from the product
rule pij ¼ uivj in the absence of data coupling events i and

j. We will then show what rules of probability would be
required instead in order to justify the Tsallis entropy as
well as other entropies. In particular, we will show from
SJ that the Tsallis entropy can only be justified if events
i and j were to have the following joint probability,

pq�1
ij ¼ ðuq�1

i þ vq�1
j � 1Þ—presupposed in the absence

of data coupling events i and j—rather than pij ¼ uivj.

Shore and Johnson axioms.—SJ considered the problem of
extracting a model from data using a variational function
HðfpkgÞ. Themodel fp�

kg is the one that gives themaximumof

HðfpkgÞ � �

�X
k

pkak � �a

�
(1)

with respect to fpkg and the Lagrange multiplier �. See
Refs. [30–33] for a discussion of constraints. Here the data
are imposed as a constraint on the quantity a, where �a is the
measured average. For simplicity, we considered here only a
single equality constraint.

SJ gave four axioms that must be satisfied by the maxi-
mum of the function given by Eq. (1) on the basis of
requiring that any inference drawn from this function be
self-consistent. These four axioms determine the form ofH.

(1) Uniqueness says that the function HðfpkgÞ must be
convex, so that there will only be a single maximum, i.e., a
single set of values fp�

kg.
(2) Coordinate system invariance says that predictions

made from an inference should be independent of the

choice of coordinate system. It is relevant when the prob-
abilities are continuous functions and determining the
dependence of H on the prior over pk.
(3) Subset independence says that if probability pk of

bin k increases by �p and the probability pj of bin j

correspondingly decreases by �p, then no other bins are
affected by the change. Subset independence yields the
relationship

H ¼ X
k

fðpkÞ þ C; (2)

where C is a constant independent of pk.
(4) System independence says that bringing together two

systems having probabilities u ¼ fuig and v ¼ fvjg gives
new bins that have probability p ¼ u� v, where pij ¼
uivj. The systems are considered independent if

constraints on the data do not couple them. Consider a
combined system with two decoupled constraints, one on
ui (which is

P
i;jpijai � �a ¼ P

iuiai � �a ¼ 0) and another

on vj (which is
P

i;jpij � �b ¼ P
jvjbj � �b ¼ 0).

The maximum of

HðpÞ � �a

�X
i;j

pijai � �a

�
� �b

�X
i;j

pijbj � �b

�
(3)

with respect to pij ¼ uivj satisfies

f0ðpijÞ � �aai � �bbj ¼ 0: (4)

Taking two derivatives of the above (one with respect to ui
and another with respect to vj) yields

f00ðpijÞ þ pijf
000ðpijÞ ¼ 0: (5)

We define f00ðp�Þ � gðp�Þ, where � � ði; jÞ. Then Eq. (5)
reduces to gðp�Þ þ p�g

0ðp�Þ ¼ 0. The solution is gðp�Þ¼
�1=p�. It follows that fðp�Þ¼�p� logp�þp� and
H ¼ �P

�p� logp� þ C, where all additional constants
have been absorbed into C.
The derivation above shows how the BG formula fol-

lows from the axioms of SJ. Intuitively, SJ’s axioms 3 and 4
take as definitions the fact that events are independent
unless the data couple them and the probabilities for inde-
pendent events satisfy the usual rules of addition and
multiplication for such probabilities. This explains why
the BG entropy is additive.
However, not all physical systems are additive; often

cited as counterexamples are systems having long-ranged
interactions [18]. The question is, how should nonadditiv-
ity be built into a model? One route has been to redefine
entropy and replace it with a form which violates axiom 4,
system independence—the law of multiplication of proba-
bility for independent events, pk ¼ uivj. Here we demon-

strate the logical consequences that follow from redefining
the entropy.
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The Tsallis entropy is defined as

H ¼ K

1� q

�X
k

pq
k � 1

�
: (6)

This expression satisfies subset independence, axiom 3, but
does not satisfy system independence, axiom 4. What
functional form for pij ¼ pðui; vjÞ yields the Tsallis en-

tropy? To answer this question, we repeat steps analogous
to those in Eqs. (3)–(5), except now we treat pij as a

general function of ui and vj and fðpijÞ is given by the

form Eq. (6). This gives

ð2� qÞ�1pij

@2pij

@ui@vj

¼ @pij

@ui

@pij

@vj

: (7)

Equation (7) is a differential equation satisfied by the joint
probability in the Tsallis entropy. As a check, we can see
that for q ¼ 1—when the Tsallis entropy reduces to the
BG entropy—the expression is exactly satisfied for pij ¼
uivj, as expected. The constant ð2� qÞ�1 in Eq. (7)

describes the deviation from independence [often one
speaks of deviation from independence in terms of the q
additivity of the Tsallis entropy (as opposed to normal
additivity of entropy in statistical mechanics)] [19,21,24].

We now solve Eq. (7).
Step 1.—Substitute pij ¼ hxij, where x is a number, into

Eq. (7). After some algebraic rearrangement, this yields

� ð2� qÞ�1xhij
@2hij
@ui@vj

¼ ½xðx� 1Þð2� qÞ�1 � x2�@hij
@ui

@hij
@vj

: (8)

We select x such that ½xðx� 1Þð2� qÞ�1 � x2� ¼ 0.
The nontrivial solution to this quadratic equation is
x ¼ 1=ðq� 1Þ (the trivial solution is x ¼ 0). Plugging
x ¼ 1=ðq� 1Þ into Eq. (8), we have

@2hij
@ui@vj

¼ 0: (9)

Equation (9) is solved by hij ¼ �1ðuiÞ þ�2ðvjÞ with �1

and�2 yet to be determined. Since both pij and hij must be

symmetric functions of ui and vj, then �1 ¼ �2 � �. We

therefore have

pq�1
ij ¼ hij ¼ �ðuiÞ þ�ðvjÞ: (10)

Step 2.—In order to determine the function �ðxÞ, we
rewrite it as

�ðxÞ ¼ gðxÞq�1 � 1=2 (11)

without loss of generality, so that Eq. (10) takes the form

pij ¼ ½gðuiÞq�1 þ gðvjÞq�1 � 1�1=ðq�1Þ: (12)

The leading order expansion of (12) in q� 1 is

pij ¼ gðuiÞgðvjÞ � ðq� 1ÞgðuiÞgðvjÞ loggðuiÞ loggðvjÞ
þO½ðq� 1Þ2�; (13)

and from the condition that the composition rule reduces to
the product rule in the limit of q ! 1, we get gðxÞ ¼ x.
Substititing it back into Eq. (12), we get

pij ¼ ðuq�1
i þ vq�1

j � 1Þ1=ðq�1Þ: (14)

Eq. (14) can also be written in terms of the q product
defined by Tsallis [18]. Furthermore, Eq. (7) gives us the
choice to select a multiplicative constant that can be deter-
mined by normalization of the joint probability, pij.

Fundamentally, the spurious correlations between
events, which consist of all terms beyond the first term in
Eq. (13), emerge because the Tsallis entropy violates SJ’s
axiom 4. This axiom specifically requires that in the
absence of couplings between events i and j, the model
inferred using the BG entropy should satisfy the normal
rules of multiplication of probability (pij ¼ uivj).

Many entropies—beyond the Tsallis entropy—also vio-
late axiom 4. These entropies therefore generate spurious
correlations not warranted by the data even if they are
additive in the sense HðfpijgÞ ¼ HðfuigÞ þHðfvjgÞ. In

other words, axiom 4 is a stronger statement than is the
statement that H’s add.
For instance, consider the Burg entropy [34]K

P
k logpk,

which is additive in the sense described above. The Burg
entropy satisfies SJ’s axiom 3 but violates axiom 4. For this
entropy, the system dependence relationship still deviates
from the rule of multiplication of probability for indepen-
dent events:

p�1
ij ¼ u�1

i þ v�1
j � 1: (15)

Equations (14) and (15) underscore the profound con-
sequences that result from altering the form of the entropy
used in model inference. SJ’s axioms assure us that the BG
form of the entropy enforces a model distribution which is
as featureless as possible. According to SJ’s framework,
couplings between events—or more broadly, structure in a
model—arise in one of two ways. Either the couplings in
the data explicitly give rise to correlations between events i
and j or the prior over the fpkg, the set fqkg which can be
thought of as a hyperprior, gives rise to structure beyond
what is present in the data. Thus, application of the BG
entropy ensures that inferences do not go beyond what is in
the data or fqkg.
However, nontraditional entropies, which violate SJ’s

axiom 4, are inconsistent with the probability relationship
pij ¼ uivj even in the absence of any evidence of coupling

between events i and j. While entropy priors, such as the
Tsallis entropy, can readily infer power law distributions
for fpkg, they impose structure in a model that goes beyond
what is known from the data. Here Eqs. (14) and (15)
derive this additional structure imposed by these entropies
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on a model explicitly. We conclude by adding that it is
possible to infer power laws within a principle of max-
imizing the BG entropy by constraining just one average:
Mandelbrot [35] showed this by invoking logarithmic con-
straints, hlogki.

In summary, the maximization of entropy is a variational
prescription for selecting one of many possible models of
probability distributions consistent with limited data. In a
seminal result that we review here, SJ showed that only
the BG entropy or functions with identical maxima ensure
that models derived from them satisfy basic logical self-
consistency requirements. We apply SJ’s approach to de-
rive what joint probability for states of two systems would
be required to justify the form of the Tsallis entropy as well
as other entropies in selecting model probability distribu-
tions consistent with data. We observe that all forms of
nonadditive entropy functions require probability rules
other than the multiplication rule even when events are
independent according to data. We conclude that for mod-
eling nonexponential distributions, such as power laws,
nonextensivity should be expressed through the constraints
or the fqkg, not the entropy. In other words, no structure
should be assumed in a distribution function unless it is
observed as coupling in the data or originates from the
prior distribution on fpkg.

We thank the referees for their insightful feedback.
S. P. acknowledges support from the Purdue Research
Foundation as well as support from his IUPUI Startup.
K. A.D. acknowledges support of NIH Grant
No. 5R01GM090205-02 and the Laufer Center. K. G.
acknowledges support from the Research Corporation for
Science Advancement (as a Cottrell Scholar), National
Science Foundation (Grant No. 1149992) and PROF grant
from the University of Denver.

*Corresponding author.
stevenpresse@gmail.com

[1] S. Pressé, K. Ghosh, J. Lee, and K.A. Dill, Rev. Mod.
Phys. 85, 1115 (2013).

[2] A. K. Livesey and J. Skilling, Acta Crystallogr. Sect. A 41,
113 (1985).

[3] J. Skilling, Nature (London) 309, 748 (1984).
[4] J. Skilling and S. F. Gull, in Bayesian Maximum Entropy

Reconstruction, Lecture Notes-Monograph Series Vol. 20

(Institute of Mathematical Statistics, Hayward, CA, 1991),
pp. 341–367.

[5] S. X. Xie, J. Chem. Phys. 117, 11 024 (2002).
[6] J. Skilling, inMaximum-Entropy and Bayesian Methods in

Science and Engineering, edited by G. J. Erickson and
C. R. Smith (Kluwer, Dordrecht, 1988), Vol. 1, p. 173.

[7] C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
[8] E. T. Jaynes, Probability Theory; the Logic of Science

(Cambridge University Press, Cambridge, England, 2003).
[9] E. T. Jaynes, Phys. Rev. 106, 620 (1957).
[10] E. T. Jaynes, Phys. Rev. 108, 171 (1957).
[11] A. I. Khinchin, Mathematical Foundations of Information

Theory (Dover, New York, 1957).
[12] C. Hanel and S. Thurner, Eur. Phys. Lett. 93, 20 006 (2011).
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