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Abstract

The Poisson distribution is the probability distribution of the number of independent events

in a given period. Although the Poisson distribution appears ubiquitously in various stochastic

dynamics of gene expression, both as time-dependent distributions and stationary distributions,

underlying independent events that give rise to such distributions have not been clear, especially in

the presence of the degradation of gene products, which is not a Poisson process. I show that the

variable following the Poisson distribution is the number of independent events where biomolecules

are created, destined to survive until the end of a given time duration. This new viewpoint enables

me to rederive the Poisson distribution as a time-dependent probability distribution for molecule

numbers in various monomolecular reaction models of stochastic gene dynamics. Additionally, it

allows me to derive an analytic form of the time-dependent probability distribution for multispecies

monomolecular reaction models with species whose lifetimes follow nonexponential distributions,

which is the convolution of the Poisson distribution with the multinomial distribution. This distri-

bution is then utilized for deriving a novel series expansion form of a time-dependent distribution

for a model with a stochastic production rate.
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I. INTRODUCTION

Gene regulatory network(GRN) controls the life process by producing and degrading

various kinds of proteins that perform important biological functions. It is a well-known fact

that the time evolution of mRNA and/or protein molecules in such a network is stochastic [1–

27]. Even when various external conditions such as cellular environments are identical, there

is always intrinsic noise due to remaining uncontrolled factors that influence the GRN of

interest, making its dynamics stochastic. It has been suggested that biological organisms

may have evolved to take advantage of such fluctuations [13].

In simple theoretical models of stochastic GRN dynamics, the Poisson distribution,

PPoisson(n;µ) ≡ e−µµ
n

n!
, (1)

often appears as a probability distribution for the number of mRNA or protein molecules,

both as time-dependent and stationary distributions [1, 3, 16, 17, 23, 25, 26, 28–30]. In

fact, the Poisson distribution arises from a Poisson process, where the probability of an

event occurring during a short time interval [t, t+ dt] is independent of events in other time

regions [31–33]. Now, consider a simple transcription process where a gene is always active,

and an mRNA molecule X is transcribed with a rate α,

∅ α−→ X. (2)

The creation events are indeed independent, forming a Poisson process. Therefore, if we start

from zero molecules at t = 0, then the number n of mRNA molecules at any later time t is

the same as the number of creation events during the time interval [0, t], and consequently,

it follows the Poisson distribution. However, consider a model where a degradation

X
β−→ ∅. (3)

is also included. Now, the degradation is not a Poisson process, although sometimes it is

erroneously described as such in the literature. Since a molecule that already got degraded

cannot be degraded again, the probability of a degradation event happening during the short

period [t, t + dt] depends on how many degradation events happened in times earlier than

t. However, the Poisson distributions still appear ubiquitously in this class of models as

the distributions of the number of mRNA or protein molecules [1, 3, 16, 17, 23, 25, 26, 28–

30]. Furthermore, it has been also shown that an arbitrary time-dependent probability
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distribution of molecule numbers in a monomolecular reaction network is a superposition of

convolutions of a Poisson distribution with a multinomial distribution [29]. The universality

of the Poisson distribution in stochastic gene dynamics has also been explained in terms of

queuing theory and non-linear transformation of time [30], but no explicit connection has

been made between the number of molecules and the number of some independent events.

Therefore, I address the following question in this paper: Given that the Poisson dis-

tribution appears so ubiquitously in the stochastic dynamics of GRN as the distribution of

molecule number of mRNA or protein, is this molecule number equal to the number of certain

independent events that happened during a given time interval? As I will show, the answer

to this question is affirmative. In fact, it is the number of events where mRNA molecules

are created, which are destined to survive until the end of a given interval. The answer is

very simple once stated, almost on the verge of being trivial. The most probable reason

that it has rarely been discussed in the literature is that it may have been counter-intuitive

to consider a birth of a particle with a given fate. However, it is important to note that

although the fate of a molecule is not determined at the time of its creation, the probability

of its given fate at the end of the time interval, death or survival, is already determined at

the time of its creation, and it is all that matters in defining a Poisson process.

Using this new viewpoint, I can not only rederive Poisson distributions as molecule num-

ber distributions for models of gene expression with time-dependent rates and a model

with time-delayed degradation, but also derive an analytic form of the molecule number

distribution for multispecies monomolecular reaction model that includes species with non-

exponential distributions of lifetimes, which is a convolution of the Poisson distribution with

the multinomial distribution. Furthermore, by taking the weighted average of these distri-

butions, I can also derive a novel series expansion form of the molecule number distribution

for a model with a stochastic production rate.

The remainder of the paper is organized according to the order of increasing complexity.

In section II, I will briefly review Poisson processes, where I will emphasize the importance

of inhomogeneous Poisson processes, consisting of independent events that do not necessar-

ily follow identical distributions. In section III, I will consider molecule creations without

degradation, a textbook example of a Poisson process. The shifted Poisson distribution

will also be introduced for a nonzero number of initial molecules. In section IV, I will

describe the molecule degradation, which is not a Poisson process. I show that a general
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time-dependent distribution of molecule numbers can be expressed as a superposition of

binomial distributions. In section V, I will describe molecule creations with degradations

and the underlying Poisson process. I show that any time-dependent distribution can be

expressed in terms of the shifted Poisson and the binomial distributions. In section VI, a

non-Markovian model with delayed degradation will be considered, where I will not only

rederive the Poisson distribution derived in earlier work with less effort [17] but also derive

a more general time-dependent distribution by convoluting the Poisson distribution with

the multinomial distribution. In section VII, a multispecies monomolecular reaction net-

work model that includes species with finite upper limits on their lifetimes is studied, and

derive a time-dependent distribution of molecule numbers in the form of a convolution of a

Poisson distribution with a multinomial distribution. This model is generalized in section

VIII to a multispecies monomolecular reaction network model that includes species with

non-exponential distributions of lifetimes. This model encompasses all the models in the

previous sections as special cases, and again I find a general time-dependent distribution of

molecule numbers in the form of a convolution of a Poisson distribution with a multinomial

distribution. A model with a stochastic production rate, the one-species telegraph model,

will be considered in section IX, where the probability distribution of the molecule number is

neither Poisson nor its convolution with a binomial distribution. However, by taking linear

combinations of the distributions derived in the previous sections with different parameter

values, it will be shown that for a model without degradation, a time-dependent distribution

for arbitrary initial condition can be expressed in terms of convolutions of confluent hyper-

geometric functions and binomial distributions, which leads to a novel series representation

of the distribution. Finally, the discussion is given in section IX.

II. THE POISSON DISTRIBUTION AND POISSON PROCESSES

The Poisson distribution in Eq.(1) is specified by a single parameter µ, the expected num-

ber of independent events in a given time duration. If we partition the time interval [0, t] into

N sub-intervals of small size ∆t ≡ t/N , then the probability of events happening more than

once in each sub-interval is O ((∆t)2), and the probability of a single occurrence of the event

takes the form p = λ∆t+O ((∆t)2) when such a probability is time-independent. Therefore,
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the total number of events in [0, t] approximately follows the binomial distribution1,

Pbinom(n; {N, p}) ≡ N !

n!(N − n)!
pn(1− p)N−n, (4)

the distribution of the number of successes in N independent and identical trials, with a

success probability of p at each trial. The Poisson distribution is recovered by taking the

limit of N → ∞ with µ(t) = Np = λt fixed (Appendix A):

PPoisson(n;µ(t)) ≡
e−µ(t)

n!
µ(t)n, (5)

where µ(t) is the expected number of events in the time-interval [0, t].

An important point to note here is that the condition of identical trials is not required

to obtain the Poisson distribution. We only have to require independent trials [31, 32]. In

this case, the binomial distribution in Eq.(4) is generalized to

P̃ binom(n; {p1, · · · , pN}) ≡
∑

{i1<i2···<in}

pi1pi2 · · · pin
∏

k/∈{i1,··· ,in}

(1− pk) (6)

where the probability of success at i-th trial is pi, and the summation is over all distinct

set of n indices {i1 < i2, · · · < in}. Again, the distribution in Eq.(6) becomes the Poisson

distribution in the limit of ∆t → 0, now with the time-dependent function λ(t), so that

µ(t) =
∫ t

0
λ(t′)dt′ [32](Appendix A). This is the process where the probability of an event

happening in an infinitesimal time interval [t, t + dt] is λ(t)dt, called an inhomogeneous

Poisson process, to distinguish it from the case with constant λ, called a homogeneous

Poisson process.

III. MOLECULE CREATION WITHOUT DEGRADATION

This is a simple birth process

∅ α(t)−−→ X, (7)

1 The range of n in the probability distribution P (n, t) will be considered to be all the integers without any

restriction in this work unless specified otherwise. This is acceptable as long as we set P (n, t) = 0 for

illegitimate values of n. All the explicit forms of probability distributions considered here such as binomial,

multinomial, and Poisson distributions contain factorials of negative integers in the denominators whenever

the value of the molecule number is out of legitimate range, and vanish because (j!)−1 = [Γ(j+1)]−1 = 0

whenever j is a negative integer. Taking the range of the molecule number to be the whole integer is

especially convenient for summation, where the summation index can be shifted freely, which I will do

throughout the text without further elaboration.
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where X describes an mRNA or protein molecule, and the creation rate α(t) is time-

dependent in general. Since molecule creations at distinct time points are independent

of each other, these creation events form a Poisson process. If the number of molecules is

zero at t = 0, then the molecule number n at a later time t > 0 is equal to the number of

creation events in the time interval [0, t]. Therefore, the probability distribution P (n, t|0)

of n, under the condition of vanishing initial molecule number, is given by the Poisson

distribution P (n, t|0) = PPoisson(n;µ(t)), with µ(t) =
∫ t

0
α(t′)dt′.

Even when the number of molecules takes a non-zero value n0 at t = 0, the number of

molecules n at a later time t > 0 is simply n0 +n′ where n′ is the number of creation events

in the time interval [0, t]. Therefore, n′ = n−n0 still follows the Poisson distribution, leading

to the distribution for n given by

P (n, t|n0) =
e−µ(t)

(n− n0)!
µ(t)n−n0 . (8)

Eq.(8) is what I will call a shifted Poisson distribution.

Up to now, we wrote down the specific probability distribution for the model, but one

can also consider the master equation describing the probability distribution dynamics,

∂P (n, t)

∂t
= α(t) [P (n− 1, t)− P (n, t)] . (9)

It is straightforward to check that Eq.(8) is a solution of the master equation (9) by direct

substitution. By the linearity of the master equation (9), an analytic form of the general

solution with an arbitrary initial distribution P (n, 0) = v(n) can be constructed by super-

posing the expressions in Eq.(8),

P (n, t) =
∑
n0

P (n, t|n0)v(n0) =
∑
n0

e−µ(t)

(n− n0)!
µ(t)n−n0v(n0). (10)

As we will see, arbitrary time-dependent distributions in various models of stochastic gene

dynamics can be naturally expanded in terms of shifted Poisson distribution, similar in the

form to Eq.(10).

From Eq.(10), we see that the master equation (9) admits stationary solutions

Pst(n) =
∑
n0

e−µ(∞)

(n− n0)!
µ(∞)n−n0v(n0) (11)

that depend on initial distributions, if and only if µ(∞) =
∫∞
0

α(s)ds exists. In particular,

for a constant rate α, there is no stationary solution because µ(t) = αt increases indefinitely
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with time, and P (n, t) converges to zero pointwise for all n. In this case, all the states in

the Markov chain are transient states [34].

IV. MODEL ONLY WITH DEGRADATION

This is a simple death process

X
β(t)−−→ ∅. (12)

In contrast to the creation process in the previous section, this process is not a Poisson

process, because any molecule that has been degraded cannot be degraded again. Therefore,

the degradation events are not independent, and the probability of a degradation event

depends on the number of molecules available. The master equation describing the dynamics

of this model is
∂P (n, t)

∂t
= β(t) [(n+ 1)P (n+ 1, t)− nP (n, t)] . (13)

To get a non-zero number of molecules, the initial number n0 of molecules must be non-zero.

The number of molecules at later times can be obtained by using the fact that the event

of a given molecule surviving at a later time t is independent of what happens to other

molecules, whose survival probability is given by

psurv(t|0) = exp

(
−
∫ t

0

β(s)ds

)
. (14)

Therefore, the number n of surviving molecules at time t for given value of n0 follows the

binomial distribution

P (n, t|n0) = Pbinom(n; {n0, psurv(t|0)}) ≡
n0!

n!(n0 − n)!
psurv(t|0)n(1− psurv(t|0))n0−n. (15)

It can be checked that the expression in Eq.(15) is the solution of the master equation (13)

by direct substitution. Again, the general solution with an arbitrary initial distribution

P (n, 0) = v(n) can be constructed by the superposition

P (n, t) =
∑
n0

P (n, t|n0)v(n0) =
∑
n0

n0!

n!(n0 − n)!
psurv(t|0)n(1− psurv(t|0))n0−nv(n0). (16)

A Poisson distribution appears in the special case where the initial distribution is Poissonian:

v(n) =
e−µ0µn

0

n!
, (17)
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in which case we obtain the Poisson distribution P (n, t) = PPoisson(n;µ(t)) with

µ(t) = µ0psurv(t|0), (18)

because the superposition of binomial distributions weighted by a Poisson distribution is

again a Poisson distribution [32](Appendix B). In the next section, I will show that this

distribution can be interpreted as a result of a Poisson process.

When the integral
∫ t

0
β(s)ds diverges as t → ∞, as in the case of a constant β, we get

limt→∞ psurv(t|0) = 0. In this case, we see from Eq.(16) that the probability distribution

approaches the stationary distribution

lim
t→∞

P (n, t) = Pst(n) = δn,0, (19)

regardless of the initial distribution.

V. MODEL WITH BOTH CREATION AND DEGRADATION

This model is described by

∅ α(t)−−→ X, X
β(t)−−→ ∅, (20)

which belongs to a class of models called the birth-death models [31–33]. Let us first consider

the case where the number of X molecules is initially zero. Molecules are created in the time

interval [0, t], but only a fraction of them survive at t, which I will call surviving molecules.

When a molecule is created in the short time interval [t′, t′ + dt′] with t′ < t, its fate at t is

undetermined, but the probability of its survival psurv(t|t′) at time t is already determined

to be

psurv(t|t′) = exp

(
−
∫ t

t′
β(s)ds

)
, (21)

and consequently, the probability that a surviving molecule is created in [t′, t′ + dt′] is given

by psurv(t|t′)α(t′)dt′, independent of events that happen in other regions of time. Therefore,

the number of molecules at a later time t is equal to the number of these independent events,

the creations of molecules destined to survive until t, during the period [0, t]. Therefore, the

molecule number follows the Poisson distribution PPoisson(n;µ(t)) with

µ(t) =

∫ t

0

psurv(t|s)α(s)ds =
∫ t

0

exp

(
−
∫ t

s

β(u)du

)
α(s)ds. (22)
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The master equation for this model is

∂P (n, t)

∂t
= α(t) [P (n− 1, t)− P (n, t)] + β(t) [(n+ 1)P (n+ 1, t)− nP (n, t)] , (23)

and it is straightforward to check by direct substitution that PPoisson(n;µ(t)) with µ(t) given

by Eq.(22) is a solution of this equation.

We noted in the previous section that the distribution of the molecule number in the

degradation-only model is Poissonian for t > 0 if the initial distribution at t = 0 is also

Poissonian. In fact, this distribution can be considered as a special case of the Poisson

distribution in the model with a time-dependent creation rate α(t), by shifting the origin

of time: We start from zero molecules at some time t0 < 0 so that we obtain a Poisson

distribution for P (n, 0). We then require that α(t) = 0 for t > 0 so that the model reduces

to the degradation-only model for t > 0.

The probability distribution converges to a stationary Poisson distribution if and only if

the expected number of surviving molecules at t → ∞, given by the integral

µ(∞) =

∫ ∞

0

α(s) exp

(
−
∫ ∞

s

β(u)du

)
ds, (24)

is finite. For example, if the rates α and β are constants, we get

µ(t) =

∫ t

0

αe−(t−s)βds =
α

β
(1− e−βt), (25)

and

µ(∞) =
α

β
. (26)

Now consider a more general situation where the initial number of molecules is n0. The

number of molecules at a later time t is the sum of the number n1 of surviving molecules

among initial n0 particles, whose distribution follows the binomial distribution in Eq.(15),

and the number n2 of surviving molecules created during the interval [0, t], which follows

the Poisson distribution. Therefore, the probability distribution P (n, t) for the molecule

number n is expressed as a convolution of the binomial distribution and the shifted Poisson

distribution:

P (n, t|n0) =
∑

n1+n2=n

Pbinom(n1; {n0, psurv(t|0)})PPoisson(n2;µ(t))

=
∑
n1

n0!

n1!(n0 − n1)!

e−µ(t)µ(t)n−n1

(n− n1)!
psurv(t|0)n1(1− psurv(t|0))n0−n1 , (27)
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where psurv(t|0) and µ(t) are given by Eq.(14) and Eq.(22), respectively. Here, µ(t) is not

the expected number of molecules at t anymore. µ(t) is the expected number of surviving

molecules created within the time interval [0, t], and one has to add the expected number of

surviving ones among the initial n0 molecules in order to get the expected total number of

molecules, which I denote as E[n|n0]:

E[n|n0] ≡
∑
n

nP (n, t|n0) =
∑
n1,n2

(n1 + n2)Pbinom(n1; {n0, psurv(t|0)})PPoisson(n2;µ(t))

=
∑
n1

n1Pbinom(n1; {n0, psurv(t|0)}) +
∑
n2

PPoisson(n2;µ(t))

= n0psurv(t|0) + µ(t)

= n0 exp

(
−
∫ t

0

β(s)ds

)
+

∫ t

0

exp

(
−
∫ t

s

β(u)du

)
α(s)ds (28)

It is straightforward to check that the distribution in (27) is a solution of the master equation

(23) by direct substitution (Appendix C). Eq.(27) is a special case of the time-dependent

distribution for a more general multispecies monomolecular reaction network [29], whose

generalized versions will be discussed later in sections VII and VIII.

By the linearity of the master equation, the solution for an arbitrary initial distribution

P (n, 0) = v(n) can be constructed by superposing the distributions in Eq.(27),

P (n, t) =
∑
n0

P (n, t|n0)v(n0)

=
∑
n0,n1

v(n0)n0!e
−µ(t)µ(t)n−n1

n1!(n0 − n1)!(n− n1)!
psurv(t|0)n1(1− psurv(t|0))n0−n1 . (29)

The analytic expression for P (n, t|n0) in Eq.(27) is plotted with solid lines for time points

βt = 0.1, 0.5, and 2.0 in Figure 1, for α = 5.0β and n0 = 10, where the distribution

converges to a Poisson distribution with µ(∞) = α
β
= 5.0. The results obtained by Gillespie

stochastic simulation [35] are also shown with filled circles, which agree almost perfectly

with the analytic formula.

VI. MODEL WITH TIME-DELAYED DEGRADATION

Due to the complex mechanism of protein degradation, there can be a time delay in

protein degradation. A model with time-delayed degradation attempts to capture such

behavior, and once a molecule enters the degradation process, it gets degraded after a fixed
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FIG. 1. The probability distribution P (n, t|n0) of the molecule numbers for the model with molecule

creation and degradation, obtained using the analytic formula Eq.(27) for βt = 3.0, 5.0 and 7.0

(solid lines), with the initial molecule number n0 = 10 and the parameter α = 5.0β. The dashed

lines are the results for the two species model with n0
1 = n0

2 = 10, β1 = β2 = β, α1 = α2 = 5.0β,

and c12 = c21 = β, obtained using the analytic formula Eq.(52). The symbols on top of the lines

are the results of the stochastic simulations, where 106 independent simulations were averaged.

The dependence on the initial molecule numbers is omitted in the vertical label for notational

simplicity.

time delay τ [16]. A more general model where the molecule is allowed to get degraded

before τ was also constructed [17], which I will examine in this section in detail. The model
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is

∅ α−→ XA, XA
γ−→ ∅, XA

β−→ XI , XI =⇒
τ

∅, XI
ζ−→ ∅. (30)

Here, XI is an inactive molecule that has entered the degradation process. An active

molecule is denoted by XA, which can undergo instantaneous degradation with rate γ.

It can enter the delayed degradation process with rate β, at which point it becomes inac-

tive and gets degraded after time τ with certainty, but it can also undergo instantaneous

degradation with rate ζ before the delayed degradation process is complete. Although it

is straightforward to allow for time-dependent rates, I will keep them time-independent in

order to compare the result with that of ref. [17], as well as for notational simplicity.

This model is non-Markovian, and the master equation for the probability distribution

P (nA, nI , t) takes the form

dP (nA, nI , t)

dt
= (E−

A − 1)αP (nA, nI , t) + (E+
A − 1)γnAP (nA, nI , t)

+ (E+
AE

−
I − 1)βnAP (nA, nI , t) + (E+

I − 1)ζnIP (nA, nI , t)

+
∑
n′
A

P ∗(nA, nI − 1, τ |n′
A − 1)βn′

AP (n′
A, t− τ)e−ζτ , (31)

where E±
A,If(nA,I) ≡ f(nA,I ± 1), P (nA, t) ≡

∑
nI
P (nA, nI , t) is the marginal probability

for nA, and P ∗(nA, nI , t|n′
A − 1) is the probability under the initial condition of n′

A − 1

active molecules and no inactive molecules, obtained by neglecting the time-delayed degra-

dation [17]:

dP ∗(nA, nI , t|n′
A − 1)

dt
= (E−

A − 1)αP ∗(nA, nI , t|n′
A − 1) + (E+

A − 1)γnAP
∗(nA, nI , t|n′

A − 1)

+ (E+
AE

−
I − 1)βnAP

∗(nA, nI , t|n′
A − 1)

+ (E+
I − 1)ζnIP

∗(nA, nI , t|n′
A − 1). (32)

Eq. (31) along with Eq. (32) admits the Poisson distribution as a time-dependent solution

if the particle number is initially zero or the initial distribution is Poissonian [17]. However,

it is easy to derive the Poisson distribution without going through the complicated process

of solving Eqs. (31) and (32), by considering the underlying Poisson process.

Note that one of three things happen in a given short time interval of [t′, t′ + dt′]: either

a molecule that will survive at t as an active one is created, the one that will survive as

an inactive one is created2, or none of these happens. These events are independent of

2 This should not be confused with a birth of an inactive molecule. Every molecule is born active, and only

an active molecule can turn into an inactive one. Here I am considering a birth of an active molecule that

will eventually survive as an inactive molecule at the later time t
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creation events in other regions in time. Also, although the creation of a surviving active

molecule and a surviving inactive molecule are exclusive events, they can be treated as

independent events because they are rare events: even if we assume they are independent,

the probability of more than two molecules created in [t′, t′ + dt′] is negligible. Therefore,

exclusive and independent events are indistinguishable if they are rare (Appendix D), and

the probability distribution for the numbers nA, nI of XA, XI are given by the product of

Poisson distributions,

P (nA, nI , t|0) =
e−µA(t)−µI(t)

nA!nI !
µA(t)

nAµI(t)
nI . (33)

It only remains to compute µA(t) and µI(t).

Suppose that a molecule is created at time t′. For the molecule to remain active at a

later time t, (i) it should not undergo instantaneous degradation (XA
γ−→ ∅), and (ii) should

not turn into an inactive molecule (XA
β−→ XI), during the intervening time. Therefore, the

conditional probability pA(t − t′) that this molecule will remain active at t is given by the

exponential distribution in t− t′,

pA(t− t′) = e−a(t−t′), (34)

where a ≡ β + γ, and we get

µA(t) =

∫ t

0

αpA(t− t′)dt′ =
α

a

(
1− e−at

)
. (35)

For a molecule created at time t′ to survive at a later time t as an inactive molecule,

(i) it must turn into an inactive one within a short time interval [tI , tI + dtI ] such that

max(t′, t − τ) < tI < t, (ii) it should not undergo instantaneous degradation (XA
γ−→ ∅)

in the time between t′ and tI , and (iii) it should not undergo instantaneous degradation

(XI
ζ−→ ∅) in the time between tI and t. For a given value of tI , such a conditional probability

ρI(t, tI |t′)dtI is given as

ρI(t, tI |t′)dtI = e−a(tI−t′)e−ζ(t−tI)βdtI (36)

Integrating over tI , we get the conditional probability pI(t − t′) that a molecule created at

time t′ will survive as an inactive one at t:

pI(t− t′) =

∫ t

max(t′,t−τ)

ρI(t, tI |t′)dtI =
βeat

′−ζt

ζ − a

(
e(ζ−a)t − e(ζ−a)max(t′,t−τ)

)
=

 β(ζ − a)−1
(
ea(t

′−t) − eζ(t
′−t)
)

(0 ≤ t− t′ ≤ τ),

β(ζ − a)−1ea(t
′−t)
(
1− e(a−ζ)τ

)
(τ ≤ t− t′ < t).

(37)

13



The expected number of surviving inactive molecules, µI(t), is then obtained by multiplying

pI(t− t′) by the creation rate α and integrating over t′:

µI(t) =

∫ t

0

αpI(t− t′)dt′ =


αβ
ζ−a

[
1
a
(1− e−at)− 1

ζ
(1− e−ζt)

]
(0 ≤ t < τ),

αβ
a

[
1−e−ζτ

ζ
+ 1−e(a−ζ)τ

a−ζ
e−at

]
(t ≥ τ).

(38)

Eq.(33) along with Eq.(35) and Eq.(38) completely specify the time-dependent Poisson dis-

tribution when we start from zero molecules at t = 0, which agrees with the result in ref. [17].

The total number of molecules, n = nA + nI , also follows a Poisson distribution with the

expectation value µ(t) = µA(t)+µI(t), because the sum of two variables that follow Poisson

distributions also follows a Poisson distribution [33]. The Poisson process underlying the

Poisson distribution for n = nA + nI is the creation of particles destined to survive until

time t, regardless of being active or inactive.

Finally, as in the case of the Markovian model in the previous section, we can derive

general time-dependent distributions by combining the Poisson distribution with the multi-

nomial distribution. However, note that it is almost impossible to allow arbitrary initial

distribution at t = 0. If a non-zero initial value of nI is allowed, there is an ambiguity in

the evolution of the system for t > 0 because the final degradation of the initial inactive

molecules depends on the exact time points at t < 0 that they got inactivated. Therefore,

I will only consider the case where only active particles are present at t = 0, whose number

is n0. Given an active molecule at t = 0, the probability that it will survive as an active

molecule and the probability that it will survive as an inactive molecule, at a later time t,

are given by Eqs. (34) and (37), respectively, with t′ = 0:

pA(t) = e−at,

pI(t) =

 β(ζ − a)−1
(
e−at − e−ζt

)
(t < τ),

β(ζ − a)−1e−at
(
1− e(a−ζ)τ

)
(t ≥ τ).

(39)

Therefore, the probability that there are n′
A surviving active molecules and n′

I surviving

active molecules among initial n0 active molecules, at time t, is given by the multinomial

distribution,

Pmult(n
′
A, n

′
I ; {n0, pA(t), pI(t)}) ≡

n0!

n′
A!n

′
I !(n0 − n′

A − n′
I)!

pA(t)
n′
ApI(t)

n′
I

×(1− pA(t)− pI(t))
n0−n′

A−n′
I . (40)
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The numbers of active and inactive molecules at t are decomposed as nA = n′
A + n′′

A,

nI = n′
I+n′′

I , where n
′′
Aand n′′

I are the numbers of the surviving active and inactive molecules

created in the time interval [0, t]. Therefore, the probability distribution for nA and nI at t

is given by the convolution of the multinomial and the Poisson distribution:

P (nA, nI , t|n0) =
∑

n′
A+n′′

A=nA

∑
n′
I+n′′

I=nI

Pmult(n
′
A, n

′
I ; {n0, pA(t), pI(t)})

× PPoisson(n
′′
A;µA(t))PPoisson(n

′′
I ;µI(t))

=
∑
n′
A

∑
n′
I

n0!

n′
A!n

′
I !(n0 − n′

A − n′
I)!

pA(t)
n′
ApI(t)

n′
I

×(1− pA(t)− pI(t))
n0−n′

A−n′
I

×e−µA(t)−µI(t)µA(t)
nA−n′

AµI(t)
nI−n′

I

(nA − n′
A)!(nI − n′

I)!
. (41)

We can check that the distribution in Eq.(41) is indeed a solution of the master equation

Eq.(31) by direct substitution (Appendix E). Again, by the linearity of the master equation,

the time-dependent probability distribution for an arbitrary initial distribution of active

molecules,

P (n0
A, n

0
I , 0) = v(n0

A)δn0
I ,0
, (42)

is obtained by the superposition of Eq.(41) weighted by v(n0),

P (nA, nI , t) =
∑
n0

P (nA, nI , t|n0)v(n0) =
∑
n0

∑
n′
A

∑
n′
I

v(n0)
n0!

n′
A!n

′
I !(n0 − n′

A − n′
I)!

pA(t)
n′
ApI(t)

n′
I

×(1− pA(t)− pI(t))
n0−n′

A−n′
I

×e−µA(t)−µI(t)µA(t)
nA−n′

AµI(t)
nI−n′

I

(nA − n′
A)!(nI − n′

I)!
. (43)

VII. MULTISPECIES MONOMOLECULAR REACTION THAT INCLUDES SPECIES

WITH FINITE UPPER BOUNDS ON LIFETIMES

Is there a common feature of the models considered in the previous sections, which

leads to the Poissonian distribution? In fact, there is, which is that these are examples of

monomolecular reaction networks [29, 36, 37]. A monomolecular reaction network is a set

of reactions where neither the number of reactants nor that of the products exceeds one for

each reaction. It has been shown that for a multispecies monomolecular reaction network of

the form

Xi
cij(t)−−−→ Xj (i ̸= j), ∅ αi(t)−−→ Xi, Xi

βi(t)−−→ ∅, (44)
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for species X1, · · · , Xℓ, the most general time-dependent probability distribution of the

molecule numbers is obtained by superposing the convolutions of the multinomial distri-

butions with the Poisson distributions [29], which is the multi-species generalization of the

expression Eq.(27). In this section, I derive a generalized version of this solution using

the viewpoint of “counting of independent events”, for a monomolecular reaction network

that includes species with finite upper bounds on their lifetimes, so that the model with

time-delayed degradation can be included.

It is clear from the discussions in the previous sections why monomolecularity is so impor-

tant for the appearance of the Poisson distribution. To derive the Poisson distribution, the

number of molecules at a given time should be interpretable as the number of independent

creation events that occurred during some time interval in the past. For a monomolecular

reaction network, the creations of each molecule are independent of each other. Subsequent

degradations or conversions of these molecules are independent of each other as well. A

molecule can disintegrate, but it does not get split into more than one molecule, and con-

sequently, we can talk about a creation event of a molecule that will eventually survive at

a later time as a particular species Xi. This would be difficult if the number of reactants

or products of some reaction is greater than two, where the fates of different molecules get

entangled with each other.

The model in Eq.(44) is generalized to include species with finite upper bounds on their

lifetimes, so that it encompasses the model with time-delayed degradation discussed in the

previous section, by including additional reactions Xi =⇒
τi

∅ with τi ∈ [0,∞], so that we

have

Xi
cij(t)−−−→ Xj (i ̸= j), ∅ αi(t)−−→ Xi, Xi

βi(t)−−→ ∅, Xi =⇒
τi

∅. (45)

That is, there is an upper limit τi that species Xi can persist without transforming to other

species, after which it must disintegrate. For a species Xi without a finite bound on its

lifetime, we can simply set τi = ∞. Then the delayed degradation model in the previous

section corresponds to the case with ℓ = 2, α2 = c21 = 0, and τ1 = ∞, whereas the model

in Eq.(44) corresponds to the case of τi = ∞ for all i. Just as in the previous sections, we

note that if the number of molecules has been zero for t ≤ 0, the number of Xi molecules at

a later time t is again equal to the number of creation events of molecules during the time

interval [0, t], which are destined to survive as Xi at the end. Since these are independent

events, we deduce that the joint probability distribution for the molecule numbers at time
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t is the product of the Poisson distributions

P (n1, · · · , nℓ; t|0) =
ℓ∏

i=1

e−µi

ni!
µni
i (46)

where µi is the expected number of molecule creations during [0, t] that are destined to

survive as Xi at t. The probability that such a molecule is created as Xj during the time

interval [t′, t′+dt′] is the product of the probability αj(t
′)dt′ that a molecule of Xj is created

in the interval and the probability p
(surv)
ij (t|t′, τ ) that it will survive until time t as Xi. The

expected number µi of these creation events are then obtained after the summation over j

and the integration over t′,

µi =
∑
j

∫ t

0

p
(surv)
ij (t|t′, τ )αj(t

′)dt′ (47)

Note that in general, the probability that a given molecule at time t′ will survive at a later

time depends on the history of that molecule. Therefore p
(surv)
ij (t|t′, τ ) is specifically defined

as the survival probability conditioned on the creation of Xj molecule at time t′. Also, the

dependence of p
(surv)
ij (t|t′, τ ) on τ ≡ (τ1, · · · , τℓ) is explicitly shown to emphasize that the

probability is conditioned on τ as well as t′.

p
(surv)
ij (t|t′, τ ) can be obtained by considering its change with time. As elaborated in

Appendix F, the equation describing the time evolution of p
(surv)
ij (t|t′, τ ) is given by

ṗ
(surv)
ij (t|t′, τ ) =

∑
k

Bik(t)p
(surv)
kj (t|t′, τ )

− Texp

(∫ t

t−τi

Bii(u)du

)∑
k ̸=i

Bik(t− τi)p
(surv)
kj (t− τi|t′, τ )

− Texp

(∫ t

t−τi

Bii(u)du

)
δijδ(t− τi − t′) (48)

where

Bji(t) = cij(t) (i ̸= j)

Bii(t) = −
ℓ∑

j=0

cij(t) ≡ −βi(t)−
ℓ∑

j=1

cij(t), (49)

and p
(surv)
kj (t′′|t′, τ ) ≡ 0 for t′′ < t′. The term on the right-hand side of the first line of

Eq.(48) is the contribution from the interspecies conversion at time t. The second and

the third line come from the disintegration of Xi molecules that have been surviving from
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t − τi without transforming to another species, where the second line is the contribution

from those converted from another species at t − τi, and the third line is the one from Xi

molecules that was created at t′ when t′ = t − τi. Eqs.(48) along with the initial condition

p
(surv)
ij (t′|t′, τ ) = δij fully specifies p

(surv)
ij (t|t′, τ ) for t ≥ t′. The equation for µi is then

obtained by taking the time derivative of Eq.(47) and using Eq. (48),

µ̇i(t|τ ) = αi(t) +
∑
k

Bik(t)µk(t|t′, τ )

− Texp

(∫ t

t−τi

Bii(u)du

)∑
k ̸=i

Bik(t− τi)µk(t− τi|t′, τ )

− Texp

(∫ t

t−τi

Bii(u)du

)
αi(t− τi) (50)

where αi(t
′′) = µi(t

′′) ≡ 0 for t′′ < 0. The detailed steps for the derivation of Eq.(50) are also

presented in Appendix F. Eq.(50) along with the initial condition µi(0|τ ) = 0 fully specifies

µi(t|τ ) for t ≥ 0, which in turn fully defines the time-dependent probability distribution

Eq. (46) of molecules numbers for the system in Eq.(45), when the numbers of the molecules

are zero for t ≤ 0.

Without loss of generality, let us assume that τi = ∞ for 1 ≤ i ≤ m, with 0 ≤ m ≤ ℓ.

Then we can consider a more general initial condition with nonzero initial numbers of Xi

molecules for i = 1, · · ·m, as was done in the previous section for the model with a time-

delayed degradation. First, for a given species Xi (1 ≤ i ≤ m) with the initial number

of molecules n0
i , let us denote the number of molecules that survive until time t as species

Xj (1 ≤ j ≤ ℓ) as nij. Then, the number of those that decomposed among the initial n0
i

molecules is n0
i −

∑ℓ
j=1 nij, and the probability for ni ≡ (ni1, ni2, · · ·niℓ) is given by the

multinomial distribution,

Pmulti(ni;n
0
i ,p

(surv)
i (t|0, τ )) ≡ n0

i !∏ℓ
j=1 nij!(n0

i −
∑ℓ

p=1 nip)!

ℓ∏
k=1

p
(surv)
ik (t|0, τ )nik

×

(
1−

ℓ∑
q=1

p
(surv)
iq (t|0, τ )

)n0
i−

∑ℓ
r=1 nir

, (51)

where p
(surv)
i (t|0, τ ) ≡ (p

(surv)
i1 (t|0, τ ), p(surv)i2 (t|0, τ ), · · · , p(surv)iℓ (t|0, τ )). Denoting the number

of Xj (1 ≤ j ≤ ℓ) molecules at time t as nj, we see that nj =
∑m

i=0 nij where n0j is the

number of newly created Xj molecules during the time interval [0, t], whose probability

distribution was already written down as Eq.(46). Therefore, the time distribution of the
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molecule numbers is expressed as a convolution of m multinomial distributions and ℓ Poisson

distributions,

P (n1, · · · , nℓ; t|n0
1, · · · , n0

m, τ ) =
∑

∑m
j=0 nj=n

(
m∏
i=1

Pmulti(ni;n
0
i ,p

(surv)
i (t|0, τ ))

)

×

(
ℓ∏

k=1

PPoisson(n0k;µk(t))

)
. (52)

The distribution in Eq.(52) encompasses Eq.(46) as a special case when n0
i = 0 for all i.

As in the case of the model with delayed degradation considered in the previous section, I

do not consider more general initial conditions with nonzero numbers of species with finite

upped bounds of their lifetimes: For those species, the degradation probability of a molecule

depends on the history and therefore the evolution of the probability distribution is not

determined solely by the distribution at t = 0. As in the previous sections, for an arbitrary

distribution v(n0
1, · · · v0m) of molecules of species X1, · · · , Xm, the probability distribution of

the molecules numbers at a later time is given by

P (n1, · · · , nℓ; t|τ ) =
∑

n0
1,···n0

m

P (n1, · · · , nℓ; t|n0
1, · · · , n0

m, τ )v(n
0
1, · · · , n0

m), (53)

which is a generalization of Eq.(43). Whenm = ℓ, the expression for P (n1, · · · , nℓ; t|n0
1, · · · , n0

m, τ )

in Eq.(52) reduces to that for the model in Eq.(44) without finite upper bounds on molecule

lifetimes, as detailed in Appendix G. In this case, I will drop the τ dependence altogether

and simply write P (n1, · · · , nℓ; t|n0
1, · · · , n0

ℓ ,∞, · · ·∞) as P (n1, · · · , nℓ; t|n0
1, · · · , n0

ℓ). The

probability distribution P (n1, n2; t|10, 10) is shown in Fig. 1 as dashed lines for the model

with ℓ = m = 2 and c12 = c21 = β ≡ β1 = β2, for the timepoints at βt = 0.1 and βt = 0.5.

Since the distribution converges to a Poisson distribution with µ(∞|10, 10) = 5.0, the graph

for the βt = 2.0 almost overlaps with the solid line and therefore was not plotted. Although

the initial number of molecules for each of the species X1 and X2, as well as the stationary

distribution, are chosen to be the same as those for the one-species model plotted by the

solid lines, we find that the transient behavior of the distribution is different because of

the interspecies conversion. The results of the Gillespie simulation [35] are also shown with

filled squares, which show nearly perfect agreement with the analytic formula.
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VIII. MULTISPECIES MONOMOLECULAR REACTION THAT INCLUDES SPECIES

WITH NON-EXPONENTIAL DISTRIBUTIONS OF LIFETIMES

Now I generalize the model in Eq.(45) one step further, and consider a case where the

lifetime τi of a Xi molecule created at time t is a stochastic variable that follows a general

time-dependent distribution fi(τi|t). This model can be written as

Xi
cij(t)−−−→ Xj (i ̸= j), ∅ αi(t)−−→ Xi, Xi ====⇒

f(τi|t)
∅. (54)

The model in Eq.(54) includes the model with a time-delayed degradation with stochastic

delay time [16] as a special case. The independence of the creation events remains unchanged,

so the probability distribution of the molecule numbers is still of the form Eq.(46) when the

molecule numbers vanish for t ≤ 0, only with the change of the expressions for µi. First,

the survival probabilities are now obtained as

p(surv)(t|t′) =
∫

· · ·
∫

p(surv)(t|t′, τ )
ℓ∏

k=1

fk(τk|t′)dτk, (55)

and therefore

µ(t) =

∫ t

0

[
ℓ∏

k=1

∫
fk(τk|t′)dτkp(surv)(t|t′, τ )

]
α(t′)dt′. (56)

When the distributions fk(τk) are time-independent, Eq.(56) is further simplified as

µ(t) =
ℓ∏

k=1

∫
fk(τk)dτkµ(t|τ ). (57)

Note that we do not have to treat the process Xi
βi(t)−−→ ∅ separately in Eq.(54), since it

can be incorporated in Xi ====⇒
f(τi|t)

∅ by using fi(τi|t) = βi(t+ τi) exp
(
−
∫ t+τi
t

βi(u)du
)
. The

crucial generalization in the model in Eq.(54) is that non-exponential function is allowed as

f(τ |t), of which the exponential distribution along with finite upper bound considered in

Eq.(45) is a special case.

When fi(τi|t) = β(t + τi) exp
(
−
∫ t+τi
t

β(u)du
)

for i = 1, · · ·m (m ≤ ℓ), then we can

consider a more general initial condition with nonzero molecule numbers n0
1, · · · , n0

m for

X1, · · ·Xm. Using the same logic as in the previous section, we find that the corresponding
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probability distribution P (n1, · · · , nℓ; t|n0
1, · · · , n0

m) at a later time t is again given by

P (n1, · · · , nℓ; t|n0
1, · · · , n0

m) =
∑

∑m
j=0 nj=n

(
m∏
i=1

Pmulti(ni;n
0
i ,p

(surv)
i (t|0))

)

×

(
ℓ∏

k=1

PPoisson(n0k;µk(t))

)
. (58)

with p
(surv)
i (t|0) and µ(t) given by Eqs.(55) and (56). This is the probability distribution

expressed as a convolution of the multinomial distribution with the Poisson distribution in

the most general settings discussed in the current work, that encompasses all the results in

the previous sections as well as those in the literature [16, 17, 28, 29, 36] as special cases.

The average and the variance of the molecule number are found from the well-known

results for multinomial and Poisson variables:

E[ni|n0
1, · · · , n0

m](t) ≡
∑

n1,···nk

niP (n1, · · · , nℓ; t|n0
1, · · · , n0

m) = µi(t) +
m∑
k=1

n0
kp

(surv)
ik (t|0)

Var[ni|n0
1, · · · , n0

m](t) ≡ E

[(
ni − E[ni|n0

1, · · · , n0
m](t)

)2∣∣∣∣∣n0
1, · · · , n0

m

]
(t)

= µi(t) +
m∑
k=1

n0
kp

(surv)
ik (t|0)(1− p

(surv)
ik (t|0)). (59)

E[ni|n0
1, · · · , n0

m](t) and Var[ni|n0
1, · · · , n0

m](t) for the model with ℓ = 3, m = 2, f1(τ1) =

f2(τ2) = βe−βτ , f3(τ3) = 0.5δ(τ3 − β−1) + 0.5δ(τ3 − 2β−1), α1 = α2 = c12 = c21 = c23 = β,

α3 = c3i = 0, are plotted as the function of βt in Fig. 2, for the initial condition of n0
1 = n0

2 =

2. This is the model where the species X1 and X2 are created with the same rate and freely

convert to each other, but X1 goes through usual exponential degradation whereas the X2

goes through delayed degradation by first transforming to X3, which will decompose after

either 1.0β−1 or 2.0β−1 with equal probabilities. The parameters and the initial conditions

are chosen so that X1 and X2 exhibit the same behaviors. We see discontinuity in the

derivative of E[n3|2, 2](t) at the two delay times βt = 1.0 and βt = 2.0, because of the

nonzero initial numbers of X2. Half of the X3 molecules that began to be converted from

X2 molecules at t = 0 begin to disintegrate at t = 1.0β due to the exhaustion of their

lives, and the remaining half begin to die at t = 2.0β. Such discontinuities in the derivative

would be absent if we had n2
0 = 0. Initially, E[ni|2, 2](t) and Var[ni|2, 2](t) differ, but they

converge at later times as the effect of the initial molecules dies out and the distributions

approach Poisson distributions. The simulation result using Cai’s extended version [38] of
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FIG. 2. E[ni|2, 2](t) and Var[ni|2, 2](t) as the function of βt, for the model with f1(τ1) = f2(τ2) =

βe−βτ , f3(τ3) = 0.5δ(τ3 − β−1) + 0.5δ(τ3 − 2β−1), α1 = α2 = c12 = c21 = c23 = β, α1 = c3i = 0.

The filled circles are the results of stochastic simulations, where the results of 106 independent

simulations were averaged. The dependence on the initial molecule numbers is omitted in the

figure legend and the vertical label for notational simplicity.

the Gillespie algorithm, where delayed reactions are allowed, is plotted with filled circles,

again exhibiting nearly perfect agreement with the analytic formula.

IX. MODEL WITH STOCHASTIC RATES

Various external noise sources can be modeled by treating rates themselves as stochastic

variables [23, 25, 26, 39]. These models can be used to emulate the regulation of the expres-
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sion by the transcription factor binding [25, 39], or the extrinsic noise due to heterogeneous

cellular environments [25]. When the creation rate is a stochastic variable, the creations

of the molecules form a Poisson process only if the creation rate has no temporal correla-

tions, which is not valid for most of the non-trivial models. However, for a given realization

of the history of such a stochastic creation rate, we get a creation rate α(t) with a fixed

time-dependence, and we obtain a Poisson process as the probability distribution of the

molecule numbers, for a monomolecular reaction network. Therefore, a monomolecular re-

action model with stochastic rates can still be obtained by from the probability distribution

considered in the previous section, by taking a weighted average with respect to the values

of µ. As a concrete example, I consider a one-species model with transcriptional pulsing,

also called the telegraph process [25, 39, 40].

D
kf−⇀↽−
kb

D∗, D∗ α−→ D∗ +X, X
β−→ ∅, (60)

In this model, the gene is transcribed only when it is in the active state, denoted by D∗.

Since the transition between the active and the inactive states of the gene follows stochastic

dynamics, the model can be considered as a model where the production rate itself is a

stochastic variable. For a given path of D
kf−⇀↽−
kb

D∗ transition, the model reduces to the one

with a predetermined time-dependent production rate α(t). Therefore, if the initial number

of molecules is zero, the distribution P (n, t) is given by the Poisson distribution with µ(t)

given by Eq.(22). The stochastic dynamics of the gene is incorporated by taking the average

with respect to the path probabilities of the gene, and since each path leads to a Poisson

distribution with its own parameter, the final expression is a weighted average of the Poisson

distributions with distinct parameter values

P (n, t) =

∫ ∞

0

ρ(µ, t)
e−µ

n!
µndµ, (61)

where ρ(µ, t) is the probability distribution for the Poisson parameter µ at time t, obtained

from the stochastic dynamics of gene [40]. According to the formalism presented in the

previous sections, the distribution for arbitrary initial distribution is obtained by convoluting

the shifted Poisson distribution with the binomial distribution and then taking the weighted

average with respect to the initial distribution, for a given value of µ. Therefore, after taking

the weighted average over µ values, the general time-dependent distribution is

P (n, t) =
∑

n0,n1,j

vj(n0)n0!psurv(t|0)n1(1− psurv(t|0))n0−n1

n1!(n0 − n1)!(n− n1)!

∫ ∞

0

ρj(µ, t)e
−µµn−n1dµ, (62)
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where vj(n0) is the probability that the initial gene state is j (= I, A) and the initial number

of molecules is n0, and ρj(µ, t) is the probability density for µ under the condition that the

initial gene state is j (= I, A). For the model in Eq. (60), the computation of ρ(µ, t)

simplifies considerably for β = 0 since µ then depends only on the total duration τ of the

gene in the active state so that µ = ατ . In this case ρj(µ, t) = α−1ρ̃j(τ, t) where ρ̃j(τ, t) is

the conditional probability density for τ for the given value of t and j.

Let us first consider the contribution to ρ̃I(τ, t) from the path where the transitions occur

2m+ 1 times with an integer m(= 0, 1, 2, · · · ) so that the final state is active. If we denote

the dwell times in the inactive states as tI1, t
I
2 · · · tIm+1 and tA1 , t

A
2 · · · tAm+1, respectively, then

the contribution from a given sequence of tIi s and tAi s is:

e−kf t
I
1kfe

−kbt
A
1 kb × · · · × e−kf t

I
m+1kfe

−kbt
A
m+1 = km+1

f km
b e

−kf (t−τ)ekbτ (63)

where we used the fact that
∑m+1

i=1 tIi = t− τ and
∑m+1

i=1 tAi = τ to get the second expression.

Similarly, if there are 2m+ 2 (m = 0, 1, 2, · · · ) transitions so that the final state is inactive,

the corresponding contribution for a given sequence of tIi s and tAi s is

e−kf t
I
1kfe

−kbt
A
1 kb × · · · × e−kf t

I
m+1kfe

−kbt
A
m+1kbe

−kf t
I
m+2 = km+1

f km+1
b e−kf (t−τ)ekbτ . (64)

Finally, the probability that the gene does not make a transition during the time interval

[0, t] is e−kf t. Also, we have the conditional probability Prob(0 ≤ τ ≤ ∆t|no transition) = 1

for any ∆t. Therefore, the contribution to ρ̃I(τ, t) from the path with no transition is

e−kf tδ+(τ), (65)

where δ+(τ) is the analogue of the dirac delta distribution defined on the set of non-negative

numbers, defined by ∫ ∞

0

δ+(τ)f(τ)dτ = f(0). (66)

for any function f(τ). ρ̃I(τ, t) is then obtained by integrating the expressions in Eqs.(63),

(64), and (66) over possible values of tIi s and tAi s, and then summing over m, where the
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integration is decoupled and becomes multiple integrals of unity,

ρI(τ, t) = e−kf (t−τ)e−kbτ
∑
m≥0

km+1
f km

b

∫ τ

0

∫ τ−tA1

0

· · ·
∫ τ−

∑m−1
i=1 tAi

0

dtAm · · · dtA2 dtA1

×
∫ t−τ

0

∫ t−τ−tI1

0

· · ·
∫ t−τ−

∑m−1
i=1 tIi

0

dtIm · · · dtI2dtI1

+ e−kf (t−τ)e−kbτ
∑
m≥0

km+1
f km+1

b

∫ τ

0

∫ τ−tA1

0

· · ·
∫ τ−

∑m−1
i=1 tAi

0

dtAm · · · dtA2 dtA1

×
∫ t−τ

0

∫ t−τ−tI1

0

· · ·
∫ t−τ−

∑m
i=1 t

I
i

0

dtIm+1 · · · dtI2dtI1 + e−kf tδ+(τ)

= e−kf te(kf−kb)τ

(∑
m

km+1
f km

b

τm(t− τ)m

m!2
+
∑
m

km+1
f km+1

b

τm(t− τ)m+1

m!(m+ 1)!
+ δ+(τ)

)
(67)

ρA(τ, t) is obtained by switching kf ↔ kb and τ ↔ t− τ in ρI(τ, t),

ρA(τ, t) = e−kf te(kf−kb)τ

(∑
m

km
f k

m+1
b

τm(t− τ)m

m!2
+
∑
m

km+1
f km+1

b

τm+1(t− τ)m

m!(m+ 1)!
+ δ+(t− τ)

)
.

(68)
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Therefore, the probability distribution for the molecule number is

P (n, t) =
∑
n0

∑
j=I,A

vj(n0)

(n− n0)!

∫ ∞

0

ρI(µ, t)e
−µµn−n0dµ

=
∑
n0

1

(n− n0)!

∫ t

0

e−ατ (ατ)n−n0

×

[
vI(n0)e

−kf te(kf−kb)τ
(∑

m

km+1
f km

b

τm(t− τ)m

m!2
+
∑
m

km+1
f km+1

b

τm(t− τ)m+1

(m+ 1)!m!
+ δ+(τ)

)
+ vA(n0)e

−kf te(kf−kb)τ
(∑

m

km
f k

m+1
b

τm(t− τ)m

m!2
+
∑
m

km+1
f km+1

b

τm+1(t− τ)m

(m+ 1)!m!
+ δ+(t− τ)

)]
dτ

=
∑
n0

(αt)n−n0

(n− n0)!

[
vI(n0)e

−kf t

×
(∑

m

(kf t)
m+1(kbt)

m(n− n0 +m)!

(n− n0 + 2m+ 1)!m!
Φ(n− n0 +m+ 1, n− n0 + 2m+ 2; (kf − kb − α)t)

+
∑
m

(kf t)
m+1(kbt)

m+1(n− n0 +m)!

(n− n0 + 2m+ 2)!m!
Φ(n− n0 +m+ 1, n− n0 + 2m+ 3; (kf − kb − α)t)

)

+ vA(n0)e
−kf t

(∑
m

(kf )
m(kbt)

m+1(n− n0 +m)!

(n− n0 + 2m+ 1)!m!

× Φ(n− n0 +m+ 1, n− n0 + 2m+ 2; (kf − kb − α)t)

+
∑
m≥0

(kf t)
m+1(kbt)

m+1(n− n0 +m+ 1)!

(n− n0 + 2m+ 2)!(m+ 1)!
Φ(n− n0 +m+ 2, n− n0 + 2m+ 3; (kf − kb − α)t)

)
+ vA(n0)e

−(kb+α)t

]
+ vI(n)e

−kf t

=
∑

n0,n,p,q,r

vI(n0)e
−kf t(αt)n−n0+r(kf t)

p+1(kbt)
q(−1)q+r(p+ r + n− n0)!(q + r + n− n0 − 1)!

(n− n0)!(p+ q + r + n− n0 + 1)!p!q!r!(r + n− n0 − 1)!

+
∑

n0,n,p,q,r

vA(n0)e
−kf t(αt)n−n0+r(kf t)

p(kbt)
q(−1)q+r(p+ r + n− n0)!(q + r + n− n0 − 1)!

(n− n0)!(p+ q + r + n− n0)!p!q!r!(r + n− n0 − 1)!

+ vI(n)e
−kf t (69)

where Φ(α, γ; z) is the degenerate hypergeometric function, also called Kummer’s confluent

hypergeometric function, defined by

Φ(α, γ; z) ≡ 1 +
α

γ

z

1!
+

α(α + 1)

γ(γ + 1)

z2

2!
+

α(α + 1)(α + 2)

γ(γ + 1)(γ + 2)

z3

3!
+ · · · , (70)

and I used the fact that [41]∫ u

0

eγxxm(u− x)n =
m!n!

(m+ n+ 1)!
um+n+1Φ(m+ 1,m+ n+ 2; γu), (71)
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to perform the τ integral. The last expression is obtained by using the series representation

of the confluent hypergeometric function (Appendix H). The generating function for this

model has been obtained in ref. [39] for the special case of v(n) = δn,0. Although it is difficult

to derive the series representation in Eq.(69) starting from the generating function, one can

numerically check that it agrees with the generating function obtained from Eq.(69).

Note that for kf = kb = 0 and vI(n) = 0, the model reduces to the model only with the

molecule creation, so the system does not reach a stationary state. However, if kb > 0 and

kf = 0, the transcription gets turned off at some point and therefore the average molecule

number will not increase indefinitely, and the system will eventually reach a stationary state.

One can indirectly see this by computing the average number of molecules at a given time t,

assuming that the initial number of molecules was zero. If the transcription was turned off

at toff < t, then the conditional expectation value is ⟨n(t)⟩toff = αtoff . On the other hand, if

the transcription is turned off at toff > t, then we have ⟨n(t)⟩toff = αt. Since the probability

density ρoff(toff) for toff is the exponential distribution kbe
−kbtoff , we have

µ(t) =

∫ ∞

0

⟨n(t)⟩toffρoff(toff) =
∫ t

0

αkbtoffe
−kbtoffdtoff +

∫ ∞

t

αkbte
−kbtoffdtoff

=
α

kb
(−kbte

−kbt + 1− e−kbt) + αte−kbt =
α

kb
(1− e−kbt), (72)

whose form it the same as Eq.(25), with kb playing the role of the degradation rate constant

β. Also note, however, that the distribution here is not Poissonian. The analytic formula

Eq.(69) is shown in Figure 3 for initial distribution is (vA(n), vI(n)) = (δn,0, 0) and the

parameters (kf/α, kb/α) = (0.0, 0.1), for the time points αt = 3.0 and 7.0, where the values

of P (n, t) are connected with solid lines. The results for kb = 0.0 are also shown with dashed

lines, where the other parameters and the initial distribution are the same as those of the

solid lines. We see that the average number of molecules for kb = 0.1α is less than that for

kb = 0 as expected, and the distribution develops a second peak at n = 0. The Gillespie

simulation [35] results for kb = 0.1α are also shown with filled circles, which show almost

perfect agreement with the analytic formula.

As another check for the expression in Eq.(69), the results for αt = 3.0, 5.0, and 7.0, for

the initial distribution (vA(n), vI(n)) = (0.5δn,0, 0.5δn,0) and the parameters (kf/α, kb/α) =

(0.5, 0.1) are compared with the results of the Gillespie stochastic simulations [35] in Fig. 4.

Again the agreement is almost perfect, indicating the validity of the expression in Eq.(69).
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FIG. 3. The probability distribution of the molecule numbers for the model with stochastic rates for

αt = 3.0 and 7.0, obtained using the analytic formula Eq.(69) (solid lines). The initial distribution

is (vA(n), vI(n)) = (δn,0, 0), and the parameters are kf = 0 and kb = 0.1α. The filled circles are the

results of the stochastic simulations. The results of 106 independent simulations were averaged.

The distributions at the same time points with kb = 0, obtained using analytic formula Eq.(10),

are shown with dashed lines for comparison, for the same initial distribution and the parameters.

The dependence on the initial molecule numbers is omitted in the vertical label for notational

simplicity.

X. DISCUSSION

Poisson distributions appear ubiquitously in stochastic dynamics of gene expression, and

the Poisson noise is considered to be the most basic type of noise when analyzing various
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FIG. 4. The probability distribution of the molecule numbers for the model with stochastic rates

for αt = 3.0, 5.0 and 7.0, obtained using the analytic formula Eq.(69) (solid lines). The initial

distribution is (vA(n), vI(n)) = (0.5δn,0, 0.5δn,0), and the parameters are kf = 0.5α and kb =

0.1α. The symbols are the results of the stochastic simulations. The results of 106 independent

simulations were averaged. The dependence on the initial molecule numbers is omitted in the

vertical label for notational simplicity.

components of stochastic fluctuations. However, when gene products are allowed to get

degraded, it has not been clear whether the molecule number following a Poisson distribution

is equal to the number of certain independent events in time, and if this is the case, what

the corresponding events are. I answered this question in this work, by showing that the

number of molecules distributed according to the Poisson distribution is equal to the number
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of creations of the molecules that are destined to survive until the end of a given period,

which are indeed independent events in time that form an inhomogeneous Poisson process.

Using this viewpoint, I could derive the Poisson distribution not only for the Markovian

model with time-dependent rates but also for the model with time-delayed degradation

without performing the difficult task of solving the non-Markovian master equation. I could

also derive general time-dependent probability distribution in a multispecies monomolecular

reaction model that allows species with non-exponential distributions of lifetimes, of which

the stochastic gene dynamics with delayed degradation is a special case. By superposing

these distributions with different parameters, I also derived a novel series representation for

the molecule number distribution in the telegraph model without degradation.

The expansion in terms of the shifted Poisson distribution introduced in the current

work, where µ is fixed and the values of n0 vary, should be distinguished from the Poisson

representation [42] where the Poisson distributions with varying µ are used in the expansion.

For the model with stochastic rate, the expansion was performed with varying values of both

n0 and µ. The fact that I found a novel series solution Eq. (69) of the telegraph model,

which is almost impossible to obtain from the generating function, suggests the usefulness

of the current approach.

Of course, the molecule number follows the Poisson distribution only under the simplifying

assumption of independent creation events. In the case of the protein, the number of protein

molecules follows the Poisson distribution only if we approximate the transcription and the

translation as a one-step process. In reality, the mRNA molecule has a non-zero lifetime,

during which protein gets translated at a certain rate, leading to bursty translations [8–10].

The creations of protein molecules are not a Poisson process in such a model, since the

translation rate depends on the mRNA concentration.

Despite these limitations, general analytic solutions found in this work may be of value as

a basis for perturbations to obtain more realistic descriptions of the gene-regulatory network.

Since many non-Poisson processes can be approximated by models with stochastic rates

where we have a Poisson process for a given realization of the rate variable, the probability

distribution can be obtained as a weighted average of the distributions obtained for Poisson

processes. Even for models where one cannot perform analytic integration as was done

here in the case of the telegraph model, one may numerically solve the master equation

and then use the analytic solution for a given realization of the rate variable, so that the
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expectation values of various physical quantities are expressed as weighted averages over

numerical distributions of the stochastic rates. Similar analyses may be done for other

sophisticated models of gene regulatory networks by combining the analytic solutions found

in the current work with other analytic solutions and/or numerical computations.
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Appendix A: The Poisson distribution as the limit of the distribution for indepen-

dent trials

The number of successes in N independent trials, with the success probability at i-th

trial being pi, follows the probability distribution which is a generalization of the binomial

distribution,

P̃ binom(n; {p1, · · · , pN}) ≡
∑

{i1<i2···<in}

pi1pi2 · · · pin
∏

k/∈{i1,··· ,in}

(1− pk) (A1)

I want to show that the Poisson distribution can be obtained from this expression in the limit

of N → ∞ with µ =
∑N

j=1 pj fixed. One can derive the desired result using the generating

function F (z) ≡
∑

n P (n)zn. On one hand, the generating function F̃ (z; {p1, · · · , pN})binom
for the distribution P̃ binom(n; {p1, · · · , pN}) is

F̃ (z; {p1, · · · , pN})binom ≡
∑

znP̃ binom(n; {p1, · · · , pN})

=
N∑

n=0

zn
∑

{i1<i2···<in}

pi1pi2 · · · pin
∏

k/∈{i1,··· ,in}

(1− pk)

=
N∑

n=0

∑
{i1<i2···<in}

(zpi1)(zpi2) · · · (zpin)
∏

k/∈{i1,··· ,in}

(1− pk)

=
N∏
j=1

[zpj + (1− pj)] (A2)

On the other hand, the generating function FPoisson(z) for the Poisson distribution is

FPoisson(z;µ) =
∑
n

znµne−µ

n!
= eµ(z−1). (A3)
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Now, Eq.(A2) can be rewritten as

F̃ (z; {p1, · · · , pN})binom =
N∏
j=1

[1 + (z − 1)pj] =
N∏
j=1

[
e(z−1)pj +O(p2j)

]
= eµ(z−1) +O(1/N). (A4)

Therefore,

lim
N→∞

F̃ (z; {p1, · · · , pN})binom = FPoisson(z;µ), (A5)

from which we deduce

lim
N→∞

P̃ binom(n; {p1, · · · , pN}) = P Poisson(n;µ). (A6)

Since the binomial distribution is a special case of P̃ binom(n; {p1, · · · , pN}) with pj = p for

all j, it is easy to see that the Poisson distribution is obtained from the binomial distribution

by taking the limit of N → ∞ with µ = Np fixed.

Appendix B: The superposition of binomial distribution weighted by a Poisson

distribution is again a Poisson distribution

Consider a binomial distribution for n0 independent and identical trials with success

probability p at each trial, and suppose that n0 is itself stochastic, distributed with Poisson

distribution with the expectation value µ. Then the number n of success again follows a

Poisson distribution, with the expected number of events being µp [32]:∑
n0

PPoisson(n0;µ)Pbinom(n; {n0, p}) = PPoisson(n;µp). (B1)

The Poisson distribution at the left-hand side of Eq.(B1) can be considered to come from a

Poisson process where an event happens within a short time interval [t, t+dt] with probability

λ(t)dt so that µ =
∫ t

0
λ(t′)dt′. Now, whenever such an event happens, we also toss a coin

with head probability p and count the event only when the coin produces the head. It

is intuitively clear that the number of counted events in the time interval [0, t] follows the

Poisson distribution with the expected number µp, as given in the right-hand side of Eq.(B1).

Before formally proving Eq.(B1), I first prove the discrete version obtained by replacing the

Poisson distributions in Eq.(B1) with the binomial distributions,∑
n0

Pbinom(n0; {N, q})Pbinom(n; {n0, p}) = Pbinom(n; {N, qp}), (B2)
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which may be easier to grasp intuitively. This expression arises in the situation where we toss

two coins N times, the probability of the head for two coins at each trial being p and q, re-

spectively. The success of a given trial is defined as the event that both coins produce heads.

Then the number of successes follows the binomial distribution with the success probability

pq at each trial, which is the right-hand side of Eq.(B2). The left-hand side is its decomposi-

tion using conditional probability. We first compute the probability Pbinom(n0; {N, q}) that

the first coin produced heads n0 times. We then compute the probability Pbinom(n; {n0, p})

that among n0 trials with the first coin producing heads, n of them have the second coin

producing the heads. It is intuitively clear that the summation on the left-hand side is equal

to the right-hand side, but one can also explicitly show that

∑
n0

Pbinom(n0; {N, q})Pbinom(n; {n0, p})

=
∑
n0

N !

n0!(N − n0)!
qn0(1− q)N−n0 × n0!

n!(n0 − n)!
pn(1− p)n0−n

=
N !

(N − n)!n!
(pq)n

∑
n0

(N − n)!

(N − n0)!(n0 − n)!
qn0−n(1− p)n0−n(1− q)N−n0

=
N !

(N − n)!n!
(pq)n

∑
j

(N − n)!

(N − n− j)!j!
[q(1− p)]j(1− q)N−n−j

=
N !

(N − n)!n!
(pq)n [q(1− p) + 1− q]N−n =

N !

(N − n)!n!
(pq)n [1− pq]N−n

= Pbinom(n; {N, qp}), (B3)

proving Eq.(B2). It is straightforward to extend the proof to the inhomogeneous case where

p and q are different for each trial, and Eq.(B1) is then obtained in the limit of N → ∞

with µ =
∑N

i=1 qi fixed. However, one can also prove Eq.(B1) directly:

∑
n0

PPoisson(n0;µ)Pbinom(n; {n0, p})

=
∑
n0

e−µµn0

n0!
× n0!

n!(n0 − n)!
pn(1− p)n0−n =

e−µ

n!
(µp)n

∑
n0

µn0−n

(n0 − n)!
(1− p)n0−n

=
e−µ

n!
(µp)n

∑
j

[µ(1− p)]j

j!
=

e−µ

n!
(µp)neµ(1−p) =

e−µp

n!
(µp)n = PPoisson(n;µp). (B4)
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Appendix C: The time-dependent distribution of the Markovian model with

nonzero initial numbers of molecules (Eq.(27)) is the solution of the master equa-

tion (23).

To show that the distribution given by Eq.(27) is the solution of the master equation,

it is convenient to use the generating function F (z, t) ≡
∑

n P (n, t)zn. Then the master

equation (23) turns into

∂tF (z, t) = (z − 1)(α(t)− β(t)∂z)F (z, t). (C1)

The generating function for the distribution in Eq.(27) is

F (z, t) =
∑
n

zn
∑
n1

n0!

n1!(n0 − n1)!

e−µ(t)µ(t)n−n1

(n− n1)!
psurv(t|0)n1(1− psurv(t|0))n0−n1

=
∑
n1

zn1
n0!

n1!(n0 − n1)!
psurv(t|0)n1(1− psurv(t|0))n0−n1 ×

∑
n2

e−µ(t)µ(t)n2zn2

(n2)!

= [1 + psurv(t|0)(z − 1)]n0 eµ(t)(z−1) (C2)

On one hand, by substituting F (z) to the left-hand side of Eq.(C1), we get

∂tF (z, t) = n0(z − 1) [1 + psurv(t|0)]n0−1 ṗsurv(t|0)eµ(t)(z−1)

+ (z − 1) [1 + psurv(t|0)(z − 1)]n0 eµ(t)(z−1)µ̇(t). (C3)

On the other hand, by substituting F (z) to the right-hand side of Eq.(C1), we get

(z − 1)(α(t)− β(t)∂z)F (z, t) = α(t)(z − 1) [1 + psurv(t|0)(z − 1)]n0 eµ(t)(z−1)

− n0β(t)(z − 1) [1 + psurv(t|0)(z − 1)]n0−1 psurv(t|0)eµ(t)(z−1)

− β(t)(z − 1)µ(t) [1 + psurv(t|0)(z − 1)]n0 eµ(t)(z−1) (C4)

Since

ṗsurv(t|0) = −β(t)psurv(t|0),

µ̇(t) = α(t)− β(t)µ(t), (C5)

which can be easily checked by taking the time derivatives of psurv(t|0) and µ(t) in Eqs.

(21) and (22), we see that the expressions in Eq.(C3) and Eq.(C4) are equal. Therefore, the

distribution in Eq.(27) is the solution of the master equation (23).
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Appendix D: The Poisson distribution is the limit of the distribution for indepen-

dent trials, when there are multiple alternatives

The binomial distribution arises in independent and identical trials when there are only

two alternatives at each trial. When there are multiple alternatives, whose number is m,

then the numbers of outcomes (n1, · · ·nm−1) in the total N trials follow the multinomial

distribution

Pmult(n1, · · · , nm−1; {N, p1, · · · pm−1}) ≡
N !

n1!n2! · · ·nm!
pn1
1 pn2

2 · · · pnm
m (D1)

if the probability of k-the alternative happening at each trial is pk, where nm = N−
∑m−1

i=1 ni

and pm = 1−
∑m−1

i=1 pi. The corresponding generating function is:

Fmult(z1, z2 · · · zm−1) ≡
∑

n1,···nm−1

Pmult (n1, · · · , nm−1) z
n1
1 · · · znm−1

m−1

=
∑

n1,···nm−1

N !

n1!n2! · · ·nm!
pn1
1 pn2

2 · · · pnm
m zn1

1 · · · znm−1

m−1

= [pm + z1p1 + · · ·+ zm−1pm−1]
N (D2)

It is straightforward to write down the generating function for the inhomogeneous counter-

part,

F̃mult(z1, z2 · · · zm−1) =
N∏
j=1

[
p(j)m + z1p

(j)
1 + · · ·+ zm−1p

(j)
m−1

]
=

N∏
j=1

[
1 + (z1 − 1)p

(j)
1 + · · ·+ (zm−1 − 1)p

(j)
m−1

]
, (D3)

where p
(j)
k denotes the probability of the occurrence of k-th alternative happening at j-th

trial, with p
(j)
m ≡ 1−

∑m−1
k=1 p

(j)
k .

We now take the limit N → ∞, with µk =
∑

j p
(j)
k fixed for 1 ≤ k ≤ m− 1. We get

F̃mult(z1, z2 · · · zm−1) =
N∏
j=1

[
exp

(
(z1 − 1)p

(j)
1 + · · ·+ (zm−1 − 1)p

(j)
m−1

)
+O(1/N2)

]
= exp

(
(z1 − 1)

N∑
j=1

p
(j)
1 + · · ·+ (zm−1 − 1)

N∑
j=1

p
(j)
m−1

)
+O(1/N)

−−−→
N→∞

exp ((z1 − 1)µ1 + · · ·+ (zm−1 − 1)µm−1) , (D4)

which is nothing but the generating function for m − 1 independent Poisson distributions,

with expected number of occurrences of k-th alternative being µk.
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Note that for finite N , k events with k = 1, · · ·m−1 are exclusive events and are therefore

not independent. However, even if we assume they are independent, the probability of such

events occurring more than once becomes negligible in the limit N → ∞, because they

are rare events with probability being O(1/N). Therefore, the exclusive and independent

events become indistinguishable. Let us illustrate this point with the homogeneous case

with m = 3. The corresponding multinomial distribution describes the case where we toss

a three-faced coin, with two heads denoted as A and B. There are three possible outcomes

at each trial: The head A with probability p, the head B with probability q, or the tail with

probability 1− p− q. The probability distribution is given by the multinomial distribution,

P (nA, nB) =
N !

nA!nB!(N − nA − nB)!
pnAqnB(1− p− q)N−nA−nB , (D5)

which was already shown above to approach the Poisson distribution

P (nA, nB) =
e−µA−µB

nA!nB!
µnA
A µnB

B . (D6)

in the limit of N → ∞ with µA = Np and µB = Nq fixed. Now compare this with the case

where we toss two independent two-sided coins denoted as A and B at each trial, which

produce heads with probabilities p and q, respectively. In contrast to the previous model,

outcomes of head A and head B are independent, and the simultaneous heads of A and B

are now allowed so that there are four outcomes at each trial. The probability distribution

for nA and nB is now the product of binomial distributions,

P (nA, nB) =
N !

nA!(N − nA)!
pnA(1− p)N−nA

N !

nB!(N − nB)!
qnB(1− q)N−nB . (D7)

Since each binomial distribution approaches the Poisson distribution, we again get Eq.(D6)

in the limit of N → ∞ with µA and µB fixed. In this limit, the probability pq of both

coins producing heads, being O(1/N2), becomes negligible. Therefore, independent events

happening in the short time interval of size O(N−1) become effectively exclusive, or vice

versa, in the limit of N → ∞. This is the reason why multinomial distribution, or its

inhomogeneous counterpart, factorizes into independent Poisson distributions in this limit.
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Appendix E: The time-dependent distribution of the non-Markovian model with a

non-zero initial number of molecules (Eq.(41)) is the solution of the master equation

(31).

To show that the distribution given by Eq.(41) is the solution of the master equation, it

is convenient to use the generating function G(z, w, t) ≡
∑

nA

∑
nI
P (nA, nI , t)z

nAwnI . Then

the master equation (31) turns into [17]

∂tG(z, w, t) = [γ(1− z) + β(w − z)] ∂zG+ ζ(1− w)∂wG+ α(z − 1)G(z, w, t)

+ βe−ζτ (1− w)
∑
nA

[1 + Φ(z, w, τ)]nA−1 nAP (nA, t− τ)

× exp

[
α

∫ τ

0

dt′Φ(z, w, t′)

]
θ(t− τ), (E1)

where

Φ(z, w, t) ≡ (z − 1)pA(t) + (w − 1)pI(t) (E2)

with pA(t) and pI(t) given in Eq.(39). The last term in Eq.(E1) involving Φ(z, w, t) describes

the process where the active molecule that entered the degradation process at t − τ gets

degraded. Therefore, for the initial condition where nI = 0 at t = 0, this term is absent for

t < τ , implemented here by the step function θ(t− τ).
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From Eq.(41), we get the marginal probability distribution:

P (nA, t) =
∑
nI

∑
n′
A

∑
n′
I

n0!

n′
A!n

′
I !(n0 − n′

A − n′
I)!

pA(t)
n′
ApI(t)

n′
I

×(1− pA(t)− pI(t))
n0−n′

A−n′
I

×e−µA(t)−µI(t)µA(t)
nA−n′

AµI(t)
nI−n′

I

(nA − n′
A)!(nI − n′

I)!

=
∑
n′
A

∑
n′
I

n0!

n′
A!n

′
I !(n0 − n′

A − n′
I)!

pA(t)
n′
ApI(t)

n′
I

×(1− pA(t)− pI(t))
n0−n′

A−n′
I

×e−µA(t)−µI(t)µA(t)
nA−n′

A

(nA − n′
A)!

∑
nI

µI(t)
nI

nI !

=
∑
n′
A

∑
n′
I

n0!

n′
A!n

′
I !(n0 − n′

A − n′
I)!

pA(t)
n′
ApI(t)

n′
I

×(1− pA(t)− pI(t))
n0−n′

A−n′
I
e−µA(t)µA(t)

nA−n′
A

(nA − n′
A)!

=
∑
n′
A

n0!

n′
A!(n0 − n′

A)!
pA(t)

n′
A(1− pA(t))

n0−n′
A
e−µA(t)µA(t)

nA−n′
A

(nA − n′
A)!

=
∑
n′
A

Pbinom(n
′
A; {n0, pA(t)})PPoisson(nA − n′

A;µA(t)), (E3)

and the generating function for t ≥ 0:

G(z, w, t) =
∑
nA

∑
nI

∑
n′
A

∑
n′
I

znAwnIn0!

n′
A!n

′
I !(n0 − n′

A − n′
I)!

pA(t)
n′
ApI(t)

n′
I

×(1− pA(t)− pI(t))
n0−n′

A−n′
I

×e−µA(t)−µI(t)µA(t)
nA−n′

AµI(t)
nI−n′

I

(nA − n′
A)!(nI − n′

I)!

=
∑
n′
A

∑
n′
I

zn
′
Awn′

In0!

n′
A!n

′
I !(n0 − n′

A − n′
I)!

pA(t)
n′
ApI(t)

n′
I

×(1− pA(t)− pI(t))
n0−n′

A−n′
I

×
∑
n′′
A

∑
n′′
I

zn
′′
Awn′′

I
e−µA(t)−µI(t)µA(t)

n′′
AµI(t)

n′′
I

(n′′
A)!(n

′′
I )!

= [1 + pA(t)(z − 1) + pI(t)(w − 1)]n0 eµA(t)(z−1)+µI(t)(w−1)

= [1 + Φ(z, w, t)]n0 eµA(t)(z−1)+µI(t)(w−1). (E4)

First, we compute the summation in the last term at the right-hand side of Eq.(E1) by
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substituting the expressions for P (nA, t) and G(z, w, t):

∑
nA

[1 + Φ(z, w, τ)]nA−1 nAP (nA, t− τ)

=
∑
nA

[1 + Φ(z, w, τ)]nA−1 nA

∑
n′
A

Pbinom(n
′
A; {n0, pA(t− τ)})PPoisson(nA − n′

A;µA(t− τ))

=
∑
n′
A

∑
nA

[1 + Φ(z, w, τ)]nA−1 nAPbinom(n
′
A; {n0, pA(t− τ)})PPoisson(nA − n′

A;µA(t− τ))

=
∑
n′
A

∑
nA

[1 + Φ(z, w, τ)]nA+n′
A−1 (nA + n′

A)Pbinom(n
′
A; {n0, pA(t− τ)})PPoisson(nA;µA(t− τ))

=
∑
n′
A

[1 + Φ(z, w, τ)]n
′
A
n0!pA(t− τ)n

′
A

n′
A!(n0 − n′

A)!
(1− pA(t− τ))n0−n′

A

×
∑
nA

[1 + Φ(z, w, τ)]nA−1 e−µA(t−τ)µA(t− τ)nA

(nA − 1)!

+
∑
n′
A

[1 + Φ(z, w, τ)]n
′
A−1 n0!pA(t− τ)n

′
A

(n′
A − 1)!(n0 − n′

A)!
(1− pA(t− τ))n0−n′

A

×
∑
nA

[1 + Φ(z, w, τ)]nA e−µA(t−τ)µA(t− τ)nA

nA!

= [1 + Φ(z, w, τ)pA(t− τ)]n0 µA(t− τ) exp [µA(t− τ)Φ(z, w, τ)]

+ n0pA(t− τ) [1 + Φ(z, w, τ)pA(t− τ)]n0−1 exp [µA(t− τ)Φ(z, w, τ)]

= [1 + Φ(z, w, t)]n0 µA(t− τ) exp [µA(t− τ)Φ(z, w, τ)]

+ n0pA(t− τ) [1 + Φ(z, w, t)]n0−1 exp [µA(t− τ)Φ(z, w, τ)] (E5)

where to get the last line, we used the fact that

pA(τ)pA(t− τ) = pA(t), pI(τ)pA(t− τ) = pI(t) (E6)

so that

Φ(z, w, τ)pA(t− τ) = (z − 1)pA(τ)pA(t− τ) + (w − 1)pI(τ)pA(t− τ)

= (z − 1)pA(t) + (w − 1)pI(t) = Φ(t). (E7)
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Therefore, the right-hand side of Eq.(31) becomes

[γ(1− z) + β(w − z)] ∂zG+ ζ(1− w)∂wG+ α(z − 1)G(z, w, t)

+ βe−ζτ (1− w)
∑
nA

[1 + Φ(z, w, τ)]nA−1 nAP (nA, t− τ) exp

[
α

∫ τ

0

dt′Φ(z, w, t′)

]
θ(t− τ)

= n0 [1 + Φ(z, w, t)]n0−1 [(−a(z − 1) + β(w − 1)) pA(t)− ζ(w − 1)pI(t)] e
µA(t)(z−1)+µI(t)(w−1)

+ [1 + Φ(z, w, t)]n0 [(−a(z − 1) + β(w − 1))µA(t)− ζ(w − 1)µI(t) + α(z − 1)] eµA(t)(z−1)+µI(t)(w−1)

− βe−ζτ (w − 1)µA(t− τ) [1 + Φ(z, w, t)]n0 exp

[
µA(t− τ)Φ(z, w, τ) + α

∫ τ

0

dt′Φ(z, w, t′)

]
θ(t− τ)

− βe−ζτ (w − 1)n0pA(t− τ) [1 + Φ(z, w, t)]n0−1 exp

[
µA(t− τ)Φ(z, w, τ) + α

∫ τ

0

dt′Φ(z, w, t′)

]
θ(t− τ)

= n0 [1 + Φ(z, w, t)]n0−1 [(−a(z − 1) + β(w − 1)) pA(t)− ζ(w − 1)pI(t)] e
µA(t)(z−1)+µI(t)(w−1)

+ [1 + Φ(z, w, t)]n0 [(−a(z − 1) + β(w − 1))µA(t)− ζ(w − 1)µI(t) + α(z − 1)] eµA(t)(z−1)+µI(t)(w−1)

− βe−ζτ (w − 1)µA(t− τ) [1 + Φ(z, w, t)]n0 eµA(t)(z−1)+µI(t)(w−1)θ(t− τ)

− βe−ζτ (w − 1)θ(t− τ)n0pA(t− τ) [1 + Φ(z, w, t)]n0−1 eµA(t)(z−1)+µI(t)(w−1)θ(t− τ) (E8)

where to get the last line, I used the fact that

µA(t− τ)pA(τ) = µA(t)− µA(τ), µA(t− τ)pI(τ) = µI(t)− µI(τ), (E9)

and

α

∫ τ

0

Φ(t′)dt′ = (z − 1)µA(τ) + (w − 1)µI(τ), (E10)

so that

exp

[
µA(t− τ)Φ(z, w, τ) + α

∫ τ

0

dt′Φ(z, w, t′)

]
= eµA(t)(z−1)+µI(t)(w−1). (E11)

Next, substituting the expression for G(z, w, t) in Eq.(E4) to the left-hand side of Eq.(E1),

we get

∂tG(z, w, t) = n0 [1 + Φ(z, w, t)]n0−1

× [(z − 1)ṗA(t) + (w − 1)ṗI(t)] e
µA(t)(z−1)+µI(t)(w−1)

+ [1 + Φ(z, w, t)]n0 eµA(t)(z−1)+µI(t)(w−1)

× [(z − 1)µ̇A(t) + (w − 1)µ̇I(t)] (E12)
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Since

ṗA(t) = −apA(t),

ṗI(t) = βpA(t)− ζpI(t)− βe−ζτpA(t− τ)θ(t− τ),

µ̇A(t) = α− a µA(t),

µ̇I(t) = −ζµI(t) + β
[
µA(t)− e−ζτµ(t− τ)θ(t− τ)

]
, (E13)

we see that the expressions in Eq.(E8) and Eq.(E12) are equal. Therefore, the distribution

in Eq.(41) is the solution of the master equation (31).

Appendix F: Detailed derivation of dynamics equations for p
(surv)
ij (t|t′, τ )(Eq.(48))

and µi(t)(Eq.(50)) in a general monomolecular reaction network

To obtain p
(surv)
ij (t|t′, τ ), consider its change ∆p

(surv)
ij (t|t′, τ ) after a short time interval of

size ∆t. Let us first define the ℓ× ℓ matrix B(t) by the components

Bji(t) = cij(t) (i ̸= j)

Bii(t) = −
ℓ∑

j=0

cij(t) = −βi(t)−
ℓ∑

j=1

cij(t). (F1)

Some molecules of other species that was created at t′ will transform toXi during the interval

[t, t+∆t], which will contribute positively to ∆p
(surv)
ij (t|t′, τ ), which is written as

∆p
(1)(surv)
ij (t|t′, τ ) =

∑
k ̸=i,k≥1

ckip
(surv)
kj (t|t′, τ )∆t =

∑
k ̸=i

Bikp
(surv)
kj (t|t′, τ )∆t. (F2)

Similarly, there is a negative contribution from the Xi molecules that transform to other

species or disintegrate during the interval [t, t+∆t], written as

∆p
(2)(surv)
ij (t|t′, τ ) = −

∑
k ̸=i,k≥0

cikp
(surv)
ij (t|t′, τ )∆t = Biip

(surv)
ij (t|t′, τ )∆t. (F3)

For a molecule with a finite upper bound on its lifetime, we have an additional contribution

if t − τi > t′: If the molecule was converted from other species to Xi during the short

interval [t− τi, t− τi +∆t] and has been surviving as species i up to t without transforming

to other species, then it must get degraded at t. Therefore, the corresponding contribution

∆p
(3)(surv)
ij (t|t′, τ ) is given by the negative of the product of the probability p

(surv)
kj (t− τi|t′, τ )

that a molecule created as Xj at t′ surviving until t − τi as some Xk (k ̸= i), probability
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cki(t− τi)∆t that it will transform to Xi during the short period [t− τi, t− τi+∆t], and the

conditional probability p̃
(survive)
i (t|t− τi) that will survive as Xi until t without transforming

to other species,

∆p
(3)(surv)
ij (t|t′, τ ) = −∆t

∑
k ̸=i

p̃
(survive)
i (t|t− τi)cki(t− τi)p

(surv)
kj (t− τi|t′, τ )

= −∆t
∑
k ̸=i

p̃
(survive)
i (t|t− τi)Bik(t− τi)p

(surv)
kj (t− τi|t′, τ ), (F4)

where p
(surv)
kj (t′′|t′, τ ) ≡ 0 for t′′ < t′. p̃

(survive)
i (t|t − τi) is obtained by noting that for

a molecule of Xi that was present at t′′ ∈ [t′, t], the conditional probability that it will

neither disintegrate nor transform to other species during the short period [t′′ + ∆t′′] ⊂

[t′, t], assuming that it does not run out of its lifetime, is given by (1−
∑ℓ

k=0 cik(t
′′)∆t′′) +

O((∆t′′)2) = (1 +Bii(t
′′)∆t′′) +O ((∆t′′)2). p̃

(survive)
i (t|t− τi) is the product of such factors,

and by setting t− τ = N∆t′′ and taking the limit of N → ∞, we get

p̃
(survive)
i (t|t− τi) = lim

N→∞
T

N∏
k=1

(1 +Bii (t− τi + k∆t′′)∆t′′) .

= Texp

(∫ t

t−τi

Bii(u)du

)
(F5)

where T in the front of the matrix indicates a time-ordered product, indicating that the

matrices are multiplied from right to left in chronological order. Substituting Eq.(F5) into

Eq.(F4), we get

∆p
(3)(surv)
ij (t|t′, τ ) = −Texp

(∫ t

t−τi

Bii(u)du

)∑
k ̸=i

Bik(t− τi)p
(surv)
kj (t− τi|t′, τ )∆t (F6)

Finally, the molecule of Xi could have been created at t − τi and survived up to t without

transforming to other species, if t − τi = t′. The contribution from the degradation of this

molecule is derived using the same logic as in the case of ∆p
(3)(surv)
ij (t|t′, τ ),

∆p
(4)(surv)
ij (t|t′, τ ) = −Texp

(∫ t

t−τi

Bii(u)du

)
δ(t− τ − t′)δij∆t (F7)
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Therefore, by summing Eqs.(F2), (F3), (F6), (F7), dividing by ∆t and taking the limit of

∆t → 0, we get

ṗ
(surv)
ij (t|t′, τ ) =

∑
k

Bik(t)p
(surv)
kj (t|t′, τ )

− Texp

(∫ t

t−τi

Bii(u)du

)∑
k ̸=i

Bik(t− τi)p
(surv)
kj (t− τi|t′, τ )

− Texp

(∫ t

t−τi

Bii(u)du

)
δijδ(t− τi − t′) (F8)

Eq.(50) is then obtained by taking the derivative of Eq.(47),

µ̇i(t|τ ) =
∑
j

p
(surv)
ij (t|t, τ )αj(t) +

∑
j

∫ t

0

ṗ
(surv)
ij (t|t′, τ )αj(t

′)dt′

= αi(t) +
∑
j,k

Bik(t)

∫ t

0

p
(surv)
kj (t|t′, τ )αj(t

′)dt′

− Texp

(∫ t

t−τi

Bii(u)du

)∑
k ̸=i

∑
j

∫ t

0

Bik(t− τi)p
(surv)
kj (t− τi|t′, τ )αj(t

′)dt′

− Texp

(∫ t

t−τi

Bii(u)du

)∑
j

δijαj(t− τi)

= αi(t) +
∑
k

Bik(t)µk(t|τ )

− Texp

(∫ t

t−τi

Bii(u)du

)∑
k ̸=i

Bik(t− τi)µk(t− τi|τ )

− Texp

(∫ t

t−τi

Bii(u)du

)
αi(t− τi). (F9)

where αi(t
′′) = µi(t

′′) ≡ 0 for t′′ < 0.

Appendix G: Monomolecular reaction without finite upper bounds on molecule

lifetimes

Here I explicitly show that the convolution of the multinomial distribution with Poisson

distributions, derived in ref. [29], is a special case of the solution Eq.(52). This is the model

in (44), where m = ℓ in Eq.(52). Eqs.(48) and (50) also reduce to

ṗ(surv)(t|0) = B(t)p(surv)(t|0), µ̇(t) = B(t)µ(t) +α(t), (G1)

with their initial conditions being

p(surv)(0|0) = I, µ(0) = 0, (G2)
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where p(surv)(t|0) and B(t) are the matrices formed by the components p
(surv)
ij (t|0) and Bij(t),

respectively, and µ(t) and α(t) are the column vectors formed by the components µi and αi,

respectively. The τi-dependence is omitted in the notation because they are now all fixed to

∞. Eqs.(52) along with Eqs.(G1) and (G2) are the results presented in ref. [29].

In fact, the solution of Eq.(G1) with the initial condition Eq.(G2) can be expressed in

integral forms,

p(surv)(t|t′) = T exp

∫ t

t′
B(s)ds, (G3)

and

µ(t) =

∫ t

0

[
Texp

∫ t

t′
B(s)ds

]
α(t′)dt′. (G4)

Eq.(G4) is the matrix generalization of Eq.(22). The integral in Eq.(G4) can be explicitly

done for the case of constant rates:

µ(t) =

∫ t

0

e(t−t′)Bαdt′ = (etB − I)B−1α, (G5)

which is a matrix generalization of Eq.(25), where I is the identity matrix. When all the

eigenvalues of the matrix B have negative real parts, we get

µ(∞) = −B−1α, (G6)

which is the matrix generalization of Eq.(26).

Appendix H: The derivation of the series representation (Eq.(69)) of the general

time-dependent distribution of the telegraph model.

Let us first consider the case where the gene is initially inactive, and the initial number

of RNA molecules is zero. Using the series representation of the confluent hypergeometric

function,

Φ(a, b; z) =
∑
ℓ

(a+ ℓ− 1)!(b− 1)!

(b+ ℓ− 1)!(a− 1)!
zℓ, (H1)
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the expression in Eq.(69) for vI(n0) = δn0,0 and vA(n0) = 0 becomes

P (n, t) =
∑
m

[
e−kf t(αt)n(kf t)

m+1(kbt)
m(n+m)!

n!(n+ 2m+ 1)!m!
Φ(n+m+ 1, n+ 2m+ 2; (kf − kb − α)t)

+
e−kf t(αt)n(kf t)

m+1(kbt)
m+1(n+m)!

n!(n+ 2m+ 2)!m!
Φ(n+m+ 1, n+ 2m+ 3; (kf − kb − α)

]
+ δn,0e

−kf t

=
∑
ℓ,m

[
e−kf t(αt)n(kf t)

m+1(kbt)
mXXXXX(n+m)!((((((((

(n+ 2m+ 1)!(n+m+ ℓ)!

n!((((((((
(n+ 2m+ 1)!m!(n+ 2m+ ℓ+ 1)!

XXXXX(n+m)!ℓ!
((kf − kb − α)t)ℓ

+
e−kf t(αt)n(kf t)

m+1(kbt)
m+1XXXXX(n+m)!((((((((

(n+ 2m+ 2)!(n+m+ ℓ)!

n!((((((((
(n+ 2m+ 2)!m!(n+ 2m+ 2 + ℓ)!

XXXXX(n+m)!ℓ!
((kf − kb − α)t)ℓ

]
+ δn,0e

−kf t

=
∑

m,ℓ1,ℓ2,ℓ3

[
e−kf t(αt)n+ℓ3(kf t)

m+ℓ1+1(kbt)
m+ℓ2(n+m+ ℓ1 + ℓ2 + ℓ3)!(−1)ℓ2+ℓ3

n!m!(n+ 2m+ ℓ1 + ℓ2 + ℓ3 + 1)!ℓ1!ℓ2!ℓ3!

+
e−kf t(αt)n+ℓ3(kf t)

m+ℓ1+1(kbt)
m+ℓ2(n+m+ ℓ1 + ℓ2 + ℓ3 − 1)!(−1)ℓ2+ℓ3−1

n!m!(n+ 2m+ ℓ1 + ℓ2 + ℓ3 + 1)!ℓ1!(ℓ2 − 1)!ℓ3!

]
+ δn,0e

−kf t

=
∑

m,ℓ1,ℓ2,ℓ3

e−kf t(αt)n+ℓ3(kf t)
m+ℓ1+1(kbt)

m+ℓ2(n+m+ ℓ1 + ℓ2 + ℓ3 − 1)!(−1)ℓ2+ℓ3

n!m!(n+ 2m+ ℓ1 + ℓ2 + ℓ3 + 1)!ℓ1!ℓ2!ℓ3!

× (n+m+ ℓ1 + ��ℓ2 + ℓ3 − ��ℓ2) + δn,0e
−kf t

=
∑

m,ℓ1,ℓ2,ℓ3

e−kf t(αt)n+ℓ3(kf t)
ℓ1+1(kbt)

ℓ2(ℓ1 + ℓ2 + ℓ3 + n−m− 1)!(−1)ℓ2+ℓ3−m(ℓ1 + ℓ3 + n)

n!m!(ℓ1 + ℓ2 + ℓ3 + n+ 1)!(ℓ1 −m)!(ℓ2 −m)!ℓ3!

+ δn,0e
−kf t, (H2)

where the shift of the summation indices ℓ1 → ℓ1 −m and ℓ2 → ℓ2 −m was performed to

get the final expression. We then use the useful identity 3

∑
m

(−1)m(p+ q + r −m)!

m!(p−m)!(q −m)!
=

(p+ r)!(q + r)!

p!q!r!
(H3)

to perform the summation over m in Eq.(H2), to obtain

P (n, t) =
∑

ℓ1,ℓ2,ℓ3

e−kf t(αt)n+ℓ3(kf t)
ℓ1+1(kbt)

ℓ2(−1)ℓ2+ℓ3(ℓ2 + ℓ3 + n− 1)!(ℓ1 + ℓ3 + n)!

n!(ℓ1 + ℓ2 + ℓ3 + n+ 1)!ℓ1!ℓ2!(ℓ3 + n− 1)!ℓ3!
+δn,0e

−kf t

(H4)

The expression for arbitrary value of n0 is obtained from Eq.(H4) by making the shift

n → n− n0.

3 This identity can be checked using MATHEMATICA and be proved using mathematical induction.
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Similarly, for vI(n0) = 0 and vA(n0) = δn0,0, the expression in Eq.(69) becomes

P (n, t) =
∑
m

e−kf t(αt)n(kf t)
m(kbt)

m+1(n+m)!

n!(n+ 2m+ 1)!m!
Φ(n+m+ 1, n+ 2m+ 2; (kf − kb − α)t)

+
∑
m≥0

e−kf t(αt)n(kf t)
m+1(kbt)

m+1(n+m+ 1)!

n!(n+ 2m+ 2)!(m+ 1)!
Φ(n+m+ 2, n+ 2m+ 3; (kf − kb − α)

]

+
(αt)ne−(kb+α)t

n!

=
∑
ℓ,m

e−kf t(αt)n(kf t)
m(kbt)

m+1XXXXX(n+m)!((((((((
(n+ 2m+ 1)!(n+m+ ℓ)!

n!((((((((
(n+ 2m+ 1)!m!(n+ 2m+ ℓ+ 1)!

XXXXX(n+m)!ℓ!
((kf − kb − α)t)ℓ

+
∑
ℓ,m≥0

e−kf t(αt)n(kf t)
m+1(kbt)

m+1hhhhhhh(n+m+ 1)!((((((((
(n+ 2m+ 2)!(n+m+ ℓ+ 1)!

n!((((((((
(n+ 2m+ 2)!(m+ 1)!(n+ 2m+ 2 + ℓ)!

hhhhhhh(n+m+ 1)!ℓ!
((kf − kb − α)t)ℓ

+
(αt)ne−(kb+α)t

n!

=
∑

m,ℓ1,ℓ2,ℓ3

e−kf t(αt)n+ℓ3(kf t)
m+ℓ1(kbt)

m+ℓ2+1(n+m+ ℓ1 + ℓ2 + ℓ3)!(−1)ℓ2+ℓ3

n!m!(n+ 2m+ ℓ1 + ℓ2 + ℓ3 + 1)!ℓ1!ℓ2!ℓ3!

+
∑

m≥0,ℓ1,ℓ2,ℓ3

e−kf t(αt)n+ℓ3(kf t)
m+ℓ1(kbt)

m+ℓ2+1(n+m+ ℓ1 + ℓ2 + ℓ3)!(−1)ℓ2+ℓ3

n!(m+ 1)!(n+ 2m+ ℓ1 + ℓ2 + ℓ3 + 1)!(ℓ1 − 1)!ℓ2!ℓ3!

+
(αt)ne−(kb+α)t

n!

=
∑

m≥0,ℓ1,ℓ2,ℓ3

e−kf t(αt)n+ℓ3(kf t)
m+ℓ1(kbt)

m+ℓ2+1(n+m+ ℓ1 + ℓ2 + ℓ3)!(−1)ℓ2+ℓ3

n!(m+ 1)!(n+ 2m+ ℓ1 + ℓ2 + ℓ3 + 1)!ℓ1!ℓ2!ℓ3!
× (m+ 1 + ℓ1)

+
(αt)ne−(kb+α)t

n!

=
∑

m≥0,ℓ1,ℓ2,ℓ3

e−kf t(αt)n+ℓ3(kf t)
ℓ1(kbt)

ℓ2+1(ℓ1 + ℓ2 + ℓ3 + n−m)!(−1)ℓ2+ℓ3−m(ℓ1 + 1)

n!(m+ 1)!(ℓ1 + ℓ2 + ℓ3 + n+ 1)!(ℓ1 −m)!(ℓ2 −m)!ℓ3!

+
(αt)ne−(kb+α)t

n!

=
∑

m,ℓ1,ℓ2,ℓ3

e−kf t(αt)n+ℓ3(kf t)
ℓ1(kbt)

ℓ2+1(ℓ1 + ℓ2 + ℓ3 + n−m+ 1)!(−1)ℓ2+ℓ3−m+1(ℓ1 + 1)

n!m!(ℓ1 + ℓ2 + ℓ3 + n+ 1)!(ℓ1 −m+ 1)!(ℓ2 −m+ 1)!ℓ3!

−
∑

ℓ1,ℓ2,ℓ3

e−kf t(αt)n+ℓ3(kf t)
ℓ1(kbt)

ℓ2+1

((((((((((((
(ℓ1 + ℓ2 + ℓ3 + n+ 1)!(−1)ℓ2+ℓ3+1XXXXX(ℓ1 + 1)

n!
((((((((((((
(ℓ1 + ℓ2 + ℓ3 + n+ 1)!XXXXX(ℓ1 + 1)ℓ1!(ℓ2 + 1)!ℓ3!

+
(αt)ne−(kb+α)t

n!

=
∑

ℓ1,ℓ2,ℓ3

e−kf t(αt)n+ℓ3(kf t)
ℓ1(kbt)

ℓ2+1(−1)ℓ2+ℓ3+1(n+ ℓ1 + ℓ3)!(n+ ℓ2 + ℓ3)!

n!(n+ ℓ1 + ℓ2 + ℓ3 + 1)!(n+ ℓ3 − 1)!ℓ1!(ℓ2 + 1)!ℓ3!
+

(αt)ne−αt

n!

=
∑

ℓ1,ℓ2,ℓ3

e−kf t(αt)n+ℓ3(kf t)
ℓ1(kbt)

ℓ2(−1)ℓ2+ℓ3(n+ ℓ1 + ℓ3)!(n+ ℓ2 + ℓ3 − 1)!

n!(n+ ℓ1 + ℓ2 + ℓ3)!(n+ ℓ3 − 1)!ℓ1!ℓ2!ℓ3!
, (H5)
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where I used the identity Eq.(H3) again to perform the m summation in Eq.(H5). Again,

the expression for an arbitrary value of n0 is obtained from Eq.(H5) by making the shift

n → n−n0. The final expression in the Eq.(69) is obtained by taking the linear combination

of Eq.(H4) and (H5) with vI(n0) and vA(n0) after making the shift of n → n− n0.
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