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the profound impact the gut microbiota on human health 
[1–10]. They assist in the digestion and fermentation of 
the food, enabling the extraction and synthesis of vital 
nutrients and energy from the food we consume [5, 6]. 
Beyond their role in nutrition, these microbial commu-
nities serve to protect against pathogens [7, 8], regulate 
immune function, and strengthen the bio-chemical barri-
ers of the gut and intestine [8].

Various bacterial species forming the microbiota inter-
act with each other for their survival. In particular, the 
network of causal relationships among microbiota is 
important as it provides insights into the complex and 
dynamic ecosystem of microorganisms that are critically 
important in the function of any biological community. 
These networks can help us understand how commensal 

Background
The human microbiota, particularly the gut microbiota, 
plays a crucial role in maintaining our health. This vast 
and dynamic assembly of microorganisms inhabits vari-
ous parts of our body, with the gut microbiota being one 
of the most influential due to its extensive interactions 
with human physiology. Many studies have shed light on 
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Abstract
Background  Understanding the complex dynamics of gut microbiota interactions is essential for unraveling their 
influence on human health. However, inferring causality from microbiome time-series data is challenging due to 
noise, sparsity, and high dimensionality. Constructing causal interaction networks can provide valuable insights into 
the regulatory mechanisms of the gut microbiome.

Results  In this study, we employed transfer entropy analysis to construct a causal interaction network among gut 
microbiota genera from time-series abundance data. Based on longitudinal microbiome data from two subjects, 
we found that the constructed gut microbiota regulatory networks exhibited a power-law degree distribution, 
intermediate modularity, and enrichment of feedback loops. Interestingly, the networks of the two subjects displayed 
differential enrichment of feedback loops, which may be associated with the differences in their recovery dynamics.

Conclusions  The transfer entropy-based network construction approach offers valuable insights into the gut 
microbiota ecosystem and enables the identification of key microbial hubs that play pivotal roles in shaping microbial 
balance. This method provides a deeper understanding of microbial regulatory interactions and their potential 
implications for host health.
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and pathogenic microbiota modulate host signaling and 
have broad cross-species consequences.

Early studies on microbiota interactions relied on ana-
lyzing correlations between them, which produce only 
undirected interaction networks [11–17]. More detailed 
information on the nature of interactions can only be 
obtained by analyzing the time series of bacterial abun-
dances, where directed graphs are obtained [18–21]. 
While significant progress has been made, the rigorous 
inference of causal relationships between bacterial spe-
cies using information theory remains an underexplored 
area. In this study, we address this gap by constructing a 
causal interaction network employing transfer entropy 
(TE) [22], an information-theoretic measure for deter-
mining causality between variables.

TE has been used for inferring causal relationships 
within dynamic systems, including the functional con-
nectivity of neurons [23–25] and transcriptional regula-
tion [26–28], by measuring the information transferred 
from one agent in the interacting network to another. It 
has also been applied beyond biology, such as in social 
systems [22], climate science, and finance—e.g., to reveal 
directional information flow among global stock indi-
ces [26–30]. TENET (Transfer Entropy-based causal 
gene NETwork) algorithm [26] is designed to construct 
gene regulatory networks (GRNs) from single-cell RNA 
sequencing data, demonstrating superior performance in 
identifying key regulatory transcription factors. Employ-
ing TENET, we built the causal interaction network of gut 
microbiota, by analyzing one-year time series of micro-
biota data from two individuals [31]. Although TENET 
was originally developed for scRNA-seq data, it can be 
applied to microbiome time-series. The core steps of the 
original TENET pipeline—including transfer entropy 
computation and non-parametric entropy estimation 
using kernel density estimation—were preserved as origi-
nally implemented. Compared to single-cell gene expres-
sion data, microbiome profiles are typically less sparse 
but compositional in nature. While TENET’s estimator 
offers some robustness, the indirect effect trimming step 
was used to remove potentially indirect or confounded 
edges.

The resulting microbiota causal network revealed: (1) 
a power-law degree distribution with a few super-hub 
nodes; (2) intermediate modular structure characterized 
by phylum; and (3) an enrichment of feedback loops. Key 
bacterial genera, such as Acrobacter and Clostridium, 
were pinpointed as central hubs or connectors in these 
networks, with associations to the hosts’ health outcomes 
or environmental interactions. These findings suggest 
that TE is a valuable tool for identifying critical regula-
tory genera within gut microbiota, which could be poten-
tial candidates of therapeutic targets.

Methods
Processing of time-series data
One year time-series of gut microbiota for two people 
have been obtained in David et al. [31]. David et al. gen-
erated a sequencing data of V4 region of the 16 S ribo-
somal RNA gene subunit on DNA obtained from stool 
samples collected daily from two subjects, subject A for 
341 days and subject B for 192 days. The raw data result-
ing from this work are available in the European Nucleo-
tide Archive (ENA) (​h​t​t​p​​s​:​/​​/​w​w​w​​.​e​​b​i​.​​a​c​.​​u​k​/​e​​n​a​​/​b​r​​o​w​s​​e​r​/​
v​​i​e​​w​/​P​R​J​E​B​6​5​1​8) maintained by the European ​B​i​o​i​n​f​o​r​m​
a​t​i​c​s Institute (EBI). Post-processed time-series data are 
also available at MGnify database (​h​t​t​p​​s​:​/​​/​w​w​w​​.​e​​b​i​.​​a​c​.​​u​
k​/​m​​e​t​​a​g​e​​n​o​m​​i​c​s​/​​s​t​​u​d​i​​e​s​/​​M​G​Y​S​​0​0​​0​0​1​2​7​8​#​a​n​a​l​y​s​i​s), at 
the level of 32 phyla and 879 operational taxonomy units 
(OTUs). Specifically, we used the MGnify-processed data 
generated using pipeline version 2.0, which we down-
loaded in March 2023. We used the time-series data for 
the OTUs and grouped them according to genera, result-
ing in the time-series abundances of 667 genera (Supple-
mentary Table S1 and S2). While species-level resolution 
can provide more specific biological insights, we chose to 
aggregate OTUs at the genus level for two main reasons. 
First, genus-level aggregation reduces noise and enhances 
robustness in detecting temporal patterns and causal 
relationships in sparse microbiome time-series data [32]. 
Second, species-level annotations for many OTUs in the 
MGnify output vary in resolution, making genus-level 
aggregation a pragmatic choice to ensure consistency and 
reliability in downstream analysis. Additionally, phylum 
names were standardized according to recent taxonomic 
conventions [33].

Construction of gut microbiota regulatory network
TENET algorithm [26] computes transfer entropy for 
a given pair of components in an interaction network, 
when time-series for these components are given. The 
transfer entropy is defined as [22]

	 TEX→Y ≡ H (Yt| Yt−1:−L) − H (Yt| Yt−1:t−L, Xt−1:t−L)� (1)

where Xt−1:t−L and Yt−1:t−L denote the time series for 
the time-points t-L, t-L + 1, … t-1, and H(X) is the Shan-
non’s entropy:

	 H (X) ≡ −
∑

xp (x) logp (x) � (2)

with p (x) being the probability that X takes the value x. 
The transfer entropy TEX→ Y  measures the uncertainty 
on Y removed by gaining the information on the history 
of X, and estimate the information flow from X to Y. For 
estimating conditional entropy, TENET utilized a kernel 
density estimator, a non-parametric approach to estimate 
the probability density function of a random variable 

https://www.ebi.ac.uk/ena/browser/view/PRJEB6518
https://www.ebi.ac.uk/ena/browser/view/PRJEB6518
https://www.ebi.ac.uk/metagenomics/studies/MGYS00001278#analysis
https://www.ebi.ac.uk/metagenomics/studies/MGYS00001278#analysis
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[26]. For simplicity, we will consider only the effect of the 
immediate past of the current time-point and use L = 1. 
We chose L = 1 since TENET results was almost similar 
when L > 1 is applied in the original TENET study on sin-
gle cell RNAseq [26].

TENET [26] was downloaded from github.com/neo-
caleb/TENET and applied to the time-series microbiota 
profiles at the genus level for each subject individually. 
We then represented the microbiota regulatory network 
as a directed binary graph, where a node represents a 
genus, and there is a directed edge from a node A to a 
node B if TEA→ B  is significantly large. To assess the sig-
nificance of a TE value, we computed a z-score based on 
the assumption of normally distributed TE values. Edges 
were retained in the network if their z-scores exceeded 
a threshold corresponding to a nominal FDR-level cutoff 
(θ). While this procedure is inspired by the Benjamini-
Hochberg approach [34], we note that, according to the 
original design of the TENET algorithm [26], the p-val-
ues are not derived from a null distribution. Instead, 
z-scores are computed using the empirical distribution 
of TE values observed across all variable pairs. Thus, θ 
is used as a tunable stringency parameter rather than as 
a formal false discovery control. Even if TEA→ B  is sig-
nificantly large, we did not draw a directed edge from A 
to B if this is due to an indirect effect, where there is a 
node C such that A affects C and C affects B, but there 
is no direct causal effect of A on B. We assume such an 
indirect influence of A on B when we found C such that 
TEA→ B  is less than the minimum value of TEA→ c and 
TEc→ B . In this case, we did not draw a directed edge 
from A to B in the final graph. We repeated this trimming 
process until no further eliminations are necessary.

To test the robustness of the properties of the directed 
binary network with respect to the FDR threshold θ, we 
used both θ = 0.01 and θ = 0.05. The constructed net-
works were visualized using Cytoscape 3.9.1 with “Edge-
weighted Force directed” and “Group Attributes” layouts 
[35].

Correlation-based association network
We constructed an undirected association network by 
calculating pairwise Spearman rank correlations between 
genus-level abundance for each subject. The signed cor-
relation coefficient was used as the edge weight, and 
edges were retained if the two-sided Spearman test 
P-value was less than 0.05. Self-loops were excluded.

SPIEC-EASI network
We inferred a sparse association network using SPIEC-
EASI (Sparse InversE Covariance estimation for Eco-
logical Association and Statistical Inference) [36]. For 
each subject, genus-level abundance tables were ana-
lyzed using the neighborhood-selection formulation to 

estimate a sparse precision matrix. Model selection used 
stability selection, and the final undirected graph was 
defined by the non-zero entries of the refitted precision 
matrix.

Degree distribution
Many biological networks follow power-law degree dis-
tribution [37]. We constructed the degree distribution of 
each network and fitted the distribution to the power-law 
equation:

	 pk = Ck−γ � (3)

where pk is the distribution or probability of degree k, C 
is a normalization constant ensuring that the sum of all 
probabilities pk over all k equal 1, and γ  is the degree 
exponent.

Leiden clustering
We used Leiden algorithm for community detection of 
network [38]. Although Leiden clustering algorithm is 
mainly designed for undirected graphs, we chose Leiden 
algorithm instead of algorithms for directed graphs, such 
as directed Louvain algorithm, since Leiden algorithm is 
more improved algorithm in detecting well-connected 
communities [38]. We also performed directed cluster-
ing Louvain to check that the results are similar to those 
obtained from the Leiden clustering. A general purpose 
of community detection algorithms is identifying com-
munities within a network that are more densely con-
nected internally than with the rest of the network. These 
algorithms aim to maximize modularity M:

	
M ≡ 1

2L

∑
c

(
lc − α

D2
c

2L

)
� (4)

where L is the total number of links in the network, lc 
is the number of links in community c, α  is a resolution 
parameter, and Dc is the sum of the degrees of the nodes 
in community c.

The Leiden algorithm begins by assigning each node to 
its own community and iteratively refines the community 
structure to improve modularity. After the initial par-
titioning, the algorithm ensures that nodes within each 
community are well-connected. It then aggregates the 
network into a higher-level graph, in which each com-
munity is represented as a single node. This process of 
refinement and aggregation is repeated until no further 
improvement in community quality can be achieved. 
Leiden clustering was performed using clusterMaker2 
[39] application embedded in Cytoscape with the follow-
ing options: resolution = 0.5, beta value = 0.01, number 
of iterations = 2. The chosen resolution parameter influ-
ences the size and number of detected communities. We 
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used 0.5 as a standard setting that balances granular-
ity and interpretability. The beta value adjusts the algo-
rithm’s sensitivity to network density, and the specified 
number of iterations limits the algorithm’s refinement 
process, ensuring computational efficiency while seeking 
optimal community detection.

Hypergeometric test
After clustering the nodes in the interaction network 
into several communities (see Results), we investigated 
whether a certain phylum is enriched in a given cluster. 
Let us denote the total number of nodes as N and the 
number of nodes belonging to a given phylum, say phy-
lum A, as M, and also denote the number of nodes in a 
cluster, say cluster i, as n. If we randomly select n nodes 
from N nodes, the number of nodes that belong to the 
phylum A, denoted as K, is a random variable. The prob-
ability distribution PK (k) for for K is given by the hyper-
geometric distribution:

	

PK (k) = Pr (K = k) =

(
M
k

)(
N − M
n − k

)
(

N
n

) � (5)

For the observed number k̂ of nodes belonging to the 
phylum A in the cluster i, we also compute the P-value

	 Pvalue≡P r(K ≥ k)� (6)

If the P-value is less than 0.05, we conclude there are sig-
nificantly large number of nodes belonging to the phylum 
A than expected, and hence phylum A is enriched in the 
cluster i.

Random rewiring of regulatory network
To measure the statistical significancy of the strength 
of regulations between phyla, we randomized the net-
works while preserving the in- and out-degree of each 
node. Self-loops were excluded, and multiple edges were 
avoided by ensuring that new connections only formed 
between previously unconnected nodes. For this, we used 
“rewire” function implemented in a R package “igraph” 
[40]. We generated empirical distributions of the number 
of links between phyla by randomly rewired regulatory 
networks 1,000 times. For the observed number l̂ of links 
from phylum A to B, we calculate the z-score

	
Zscore ≡

Nl −
⟨
Nrandom

l

⟩

σrandom
l

� (7)

where Nl is the number of links from phylum A to B, 
and 

⟨
Nrandom

l

⟩
 and σ random

l  are the mean and standard 
deviation of links in the randomly rewired networks.

Centrality measures
The out-degree and in-degree of a node i is defined as the 
number of out-going edges and the number of in-coming 
edges of the node i, respectively.

The betweenness centrality of a node i is defined as

	
CB

i ≡
N∑

j<k

djk (i)
djk

� (8)

where N, djk and djk (i) denote the number of nodes, 
the number of shortest paths between node j and k and 
the number of shortest paths between node j and k which 
include node i in the path, respectively.

The closeness centrality of a node i is defined as

	
CB

i ≡
N∑

j<k

djk(i)

djk
� (9)

where N and dij  denote the number of nodes and dis-
tance between node i and j, respectively.

Network motifs
Network motifs are defined as patterns of interconnec-
tions observed more frequently than in an ensemble of 
randomized networks [41]. We searched for patterns 
involving two-node and three-node motifs using Net-
Match [42] a Cytoscape plugin application.

The statistical significance of each motif was deter-
mined through z-scores, calculated by comparing the 
observed frequency against a null model. This model 
was generated by randomly shuffling the network’s edges 
10,000 times, ensuring the degree distribution was main-
tained. To compare the z-scores of each motif between 
subject A and subject B, we calculated the z-scores 100 
times. This number reflects the maximum number of 
repetitions supported by NetMatch, which also offered a 
practical balance between capturing stochastic variability 
and maintaining computational efficiency.

Results
Microbiota regulatory networks constructed by TENET 
display power-law degree distribution
With the time-course data on gut microbiota abun-
dance, we calculated TE values for every pair of genera 
(Supplementary Tables S3-S4). Based on the TE matrix, 
we constructed gut microbiota regulatory networks for 
two subjects using TENET with θ = 0.01 (Supplemen-
tary Tables S5-S6). After trimming indirect edges, we 
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measured the network density ρ ≡ Ne/Nn(Nn − 1), 
where Ne and Nn are the number of directed edges and 
the nodes, respectively. Since the network density ρ  is the 
ratio of the actual number of directed edges to the maxi-
mum number of possible directed edges, 0 ≤ ρ ≤ 1 
We found ρ = 0.012 for subject A and ρ = 0.021 for 
subject B, indicating sparsely connected structures. The 
degree distribution of both networks followed a power-
law with degree exponents of γ = 0.913 for subject A 
and γ = 1.115 for subject B (Fig. 1A and B), represent-
ing the existence of a few superhub nodes connected 
with almost every other node, and a large number of 
nodes with a small number of edges. This sparsity and 
power-law degree distribution property persisted in the 
networks constructed with θ = 0.05 (Supplementary 
Table S7-S8 and Fig.  1C and D). The goodness of fit of 
the power-law distribution was confirmed by comparing 
with exponential and log-normal positive distributions, 
as well as by evaluating the Kolmogorov–Smirnov (KS) 
statistics, which supported the plausibility of power-law 
behavior across the networks (Supplementary Table S9).

We then applied Leiden clustering algorithm to discern 
if these networks exhibit a modular organization [38]. 
The visualization of the clustering outcomes for subjects 
A and B is provided in Fig. 2A and B, respectively. The 
modularity scores M were 0.288 for subject A and 0.35 
for subject B, indicating intermediate modularity for both 
networks (Supplementary Table S10) [43]. This modular-
ity was also found in the constructed network with θ = 
0.05 (M = 0.317 for subject A and M = 0.276 for subject 
B).

Leiden clustering produced four and three clusters for 
the subject A and B, respectively. These are differenti-
ated by the border colors of the nodes in Fig. 2A and B. 
To associate each cluster with specific microbial phyla, 
we color-coded the interior of each node according to the 
phylum of the represented genus. We enumerated genera 
within each phylum for every cluster, with the composi-
tional outcomes depicted in Fig. 2C and D for subjects A 
and B, correspondingly. The color schemes for these fig-
ures are consistent with those in Fig. 2A and B. Across all 
clusters for both subjects, two phyla - Bacillota and Pseu-
domonadota - were consistently present. Nevertheless, 

Fig. 1  Gut microbiota regulatory networks display power-law degree distribution. (A-B) Degree distribution of gut microbiota regulatory networks for 
subject A (A) and B (B) with θ = 0.01. (C-D) Degree distribution of gut microbiota regulatory networks for subject A (C) and B (D) with θ = 0.05
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the exact phylum compositions differed by cluster. 
Hypergeometric testing, results of which are shown in 
Fig.  2E and F, and Supplementary Table S11, identified 
phyla significantly overrepresented in certain clusters. 
For instance, Bacillota were notably prevalent in Leiden 
cluster 1 of subject A (p = 5.66E-5) and Leiden cluster 3 of 
subject B (p = 2.59E-2), Pseudomonadota were enriched 
in Leiden cluster 3 of subject A (p = 1.29E-5) and Leiden 
cluster 1 of subject B (p = 7.25E-3), and Actinobacteriota 
were enriched in Leiden cluster 3 of subject B (p = 2.65E-
2). Additionally, some phyla appeared exclusively within 
specific clusters. For example, Fusobacteriota were only 
found in Leiden cluster 3 of Subject A, Synergistota 
were only found in Leiden cluster 1 of subject A and 
Leiden cluster 2 of subject B, and Saccharibacteria were 
only found in Leiden cluster 1 of subject A and Leiden 
cluster 2 of subject B. Overall, these findings from our 
constructed networks reveal discernible communities 
characterized by unique phyla. The results from the Lou-
vain clustering were similar (Supplementary Table S12).

Random rewiring of the network revealed significant 
regulatory strengths between phyla
To assess the strength of regulation between phyla, we 
changed the layout of the networks using Cytoscape 

by grouping genera with same phylum (Fig.  3A and B). 
Random rewiring of the networks was performed 1,000 
times while preserving the degree distribution, provid-
ing z-values of the regulations between phyla (Fig.  3C 
and D). In both subjects, regulations within Bacillota 
and Pseudomonadota were significantly enriched, while 
regulations between these two phyla were significantly 
depleted. Interestingly, the regulations from Fusobacte-
riota to Pseudomonadota were enriched in the network 
of subject A (Fig.  3C), whereas the regulations within 
Actinobacteriota and the regulations from Mycoplas-
matota to Bacteriodetes were enriched in the network of 
subject B (Fig. 3D). These results were consistently found 
in the constructed network with θ = 0.05 (Supplemen-
tary Fig.  1). This suggests that Fusobacteriota, Actino-
bacteriota, and Mycoplasmatota may play a differential 
role in the regulation of gut microbiota between the two 
subjects.

TENET identified key regulatory genera associated with 
personal experiences
In many network biology studies, there is a common 
hypothesis that certain key players, or ‘hub nodes’ play 
a critical role in maintaining the connections and flow 
within these networks [44–46]. In some studies, other 

Fig. 2  Gut microbiota regulatory networks exhibit modular structure. (A-B) Network representation of gut microbiota regulatory networks for subject A 
(A) and B (B) with “Edge-weighted Force directed” layout. The node fill color and border color represent phylum and Leiden cluster, respectively. The node 
size represents the out-degree. (C-D) The fractions of nodes belonging to distinct phyla for each Leiden cluster for subject A (C) and B (D). (E-F) The results 
of the hypergeometric tests for the phylum compositions for several Leiden clusters in subject A (E) and B (F). The numbers in the intersection region 
denote the observed (upper) and expected (lower, presented in parenthesis) number of nodes
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measures of the importance of these hubs, such as their 
role as connectors or how centrally located they are in 
the network (i.e. betweenness or closeness), might be 
better at pinpointing critical proteins or genes [47–49]. 
To investigate this idea in the microbiota regulatory 
networks, we calculated four centrality measures: out-
degree, in-degree, betweenness, and closeness (Fig. 4). 
The centrality analysis revealed subject-specific key 
regulatory genera. In subject A, the genera Mogibac-
terium, belonging to the family Mogibacteriaceae, and 
Arcobacter, belonging to the family Campylobacteraceae, 
were consistently identified as key players across all four 
measurement methods (Fig. 4A). However, in subject B, 
the genus Clostridium, belonging to the family Rumi-
nococcaceae, ranked first by out-degree, in-degree, and 
betweenness centrality, but not by closeness centrality 
(Fig. 4B). Instead, two different genera Dysgonomonas, 

belonging to the family Porphyromonadaceae, and Pep-
tococcus, belonging to the family Peptococcaceae, were 
top ranked in closeness. This indicates that Dysgonomo-
nas and Peptococcus play a bridge role between modules 
instead of being a local hub. These key regulatory genera 
were also found in the regulatory networks constructed 
with θ = 0.05 (Supplementary Fig. 2).

As a comparative analysis, we additionally constructed 
microbial association networks using eLSA, a time-
series-aware algorithm [16]. Specifically, we applied 
eLSA to each subject’s time-series data using robust 
Z normalization and 100 permutations optimized for 
delayed interaction detection, with edges filtered at q < 
0.01 and indirect edges removed using the same trim-
ming strategy as in TENET. Arcobacter, identified as a 
hub genus by TENET, also ranked highest in in-degree 
centrality within the eLSA-derived network. However, 

Fig. 3  Random rewiring analysis of gut microbiota regulatory networks reveals significant regulatory relationships between phyla. A-B Network repre-
sentation of gut microbiota regulatory networks for subject A (A) and B (B) with layout of grouping by phyla. The node fill color and border color represent 
phylum and Leiden cluster, respectively. The node size represents the out-degree. C-D Heatmaps of the z-scores of the number of regulations between 
phyla for subject A (C) and B (D). The networks were obtained with θ = 0.01. Statistical significance is indicated by asterisks for unadjusted p-values 
(P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***)) and by black boxes indicating FDR < 0.05
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Mogibacterium, another top TENET-inferred hub, did 
not appear in the top 10 based on any centrality mea-
sure in eLSA. Instead, a broader set of microbial genera 
emerged as central nodes, reflecting method-specific sen-
sitivity in identifying regulatory hubs. TENET facilitated 
the discovery of interpretable hubs, such as Clostridium 
in Subject B, highlighting plausible microbial drivers that 
may play a role in post-infection dynamics (Supplemen-
tary Fig. 3). To test the significance of these results, we 
applied a fully randomized procedure—jointly shuffling 
temporal order and taxon identities—and reconstructed 
networks with TENET. We compared shuffled and origi-
nal networks in terms of node/edge overlap and hub met-
rics; in both subjects, the overall structure of the original 
TENET-inferred networks was not preserved under this 
randomization (Supplementary Fig. 4).

To further benchmark network inference approaches, 
we explored two additional network inference algorithm, 
correlation network and SpiecEasi [36]. We calculated 
the degree of the resulting networks, as both algorithms 
yield undirected graphs. For Subject A, the top 10 genera 
by degree did not include pathogens highlighted in the 
original study. In contrast, in the correlation network of 
Subject B, the genus Edwardsiella, particularly Edwardsi-
ella tarda, was identified due to its known association 
with food- and waterborne infection [50] (Supplemen-
tary Fig. 5).

To evaluate the impact of data compositionality, we 
transformed genus-level abundances using both cen-
tered log-ratio (CLR) and log-normalization. We then 
reconstructed the TENET networks and calculated four 
centrality measures (outdegree, indegree, betweenness 
centrality, and closeness centrality) for both Subject 

A and Subject B (Supplementary Fig.  6). Interestingly, 
after normalization, the key taxa previously identified 
as network hubs—including those highly relevant to the 
study’s clinical context—no longer ranked among the top 
10 central genera. This finding suggests that these stan-
dard transformations, while statistically valid, may mask 
the specific biological signals that TENET is designed to 
identify from abundance data.

We further assessed robustness by removing time 
points associated with major perturbation events. For 
Subject A, exclusion of the travel period had minimal 
impact, with Mogibacterium and Arcobacter still rank-
ing highly by outdegree. Similarly, in Subject B, removal 
of the food poisoning interval did not alter the centrality 
of Clostridium, which remained the top-ranked genus by 
outdegree, while Dysgonomonas and Peptococcus contin-
ued to fall outside the top 10 (Supplementary Fig. 7). To 
examine whether this robustness holds under more gen-
eralized data loss, we next evaluated centrality stability 
following random removal of 10%, 20%, and 30% of time 
points, preserving temporal order. In Subject A, Mogi-
bacterium and Arcobacter remained highly ranked by 
outdegree up to 30% removal. In Subject B, Clostridium 
was stable with 30% removed (Supplementary Figs. 8–9).

In addition, we tested the impact of a longer time lag 
by setting the lag parameter to L = 2 instead of L = 1. For 
Subject A, while the set of nodes remained unchanged, 
modest structural differences were observed in the 
resulting network. Specifically, 11 edges present in the 
L = 1 network disappeared in the L = 2 network, one edge 
(from Mogibacterium to Desulfovibrio) reversed its direc-
tion, and 14 new edges emerged. Among the lost con-
nections, two outgoing edges from Mogibacterium and 

Fig. 4  Centrality analysis of gut microbiota regulatory networks reveals candidates of key regulatory genera for regulating gut microbiota. A-B Four cen-
trality measures (outdegree, indegree, betweenness centrality, and closeness centrality) of subject A (A) and B (B). The color for bar represents phylum. 
The networks were obtained with θ = 0.01
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one from Arcobacter were removed. In contrast, for Sub-
ject B, no changes were observed in either the node set 
or edge structure between the L = 1 and L = 2 networks 
(Supplementary Fig. 10).

For the centrality analysis results, Subject A experi-
enced traveler’s diarrhea (TD) while traveling to South-
east Asia. Acrobacter, one of the key regulatory genera, 
displayed peak abundance right after the traveling period 
(Fig. 5A) [51–57]. 

Subject B experienced food poisoning, which was con-
sistent with an increase in sequencing reads of Entero-
bacteriaceae Salmonella during the infection period. 
However, the network for Subject B indicates that Clos-
tridium, part of the Bacillota phylum, displayed the 
highest out-degree and in-degree, the second highest 

betweenness centrality, and the fifth highest closeness 
centrality. Notably, Salmonella did not appear in the 
list of top 10 key genera based on these centralities. We 
corroborated a significant increase in the abundance of 
Clostridium after infection (Fig. 5B) [31]. Phyla that were 
significantly enriched in specific Leiden clusters showed 
consistent temporal abundance patterns across the time 
series (Supplementary Fig. 11).

Differential enrichment of feedback loops in two subject’s 
networks
In the original longitudinal microbiome study, the 
authors proposed that the microbiota of the two sub-
jects demonstrated different recovery dynamics [31]. The 
microbiota community from subject A showed reversible 

Fig. 5  Time-course abundance of key regulatory microbiota. A-B Time course abundance of Acrobacter in subject A (A) and Clostridium in subject B (B)
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dynamics after traveling abroad, whereas that from sub-
ject B showed irreversible changes after an enteric infec-
tion. To further investigate the differential recovery 
dynamics, we searched for network motifs, including a 
two-node feedback loop and thirteen possible three-node 
motifs, based on the relevance between feedback loops 
and steady-state dynamics [58, 59]. The results showed 
differential enrichment of feedback loops between the 
two subjects (Fig. 6). Both the two-node feed-back loop 
and three three-node motifs associated with the two-
node feedback loops (M11, M12, and M13) were sig-
nificantly enriched in both networks. However, the 
significance levels of these four motifs were much higher 
in subject B’s network (z-score and p-value = 8.03 and 
4.44E-16 for two-node feedback loop, 8.28 and 1.11E-16 
for M11, 6.3 and 1.49E-10 for M12, and 11.1 and 6.27E-
29 for M13) than in subject A’s network (z-score and 
p-value = 4.45 and 4.29E-6 for two-node feedback loop, 
3.63 and 1.42E-4 for M11, 3.56 and 1.85E-4 for M12, and 
3.4 and 3.37E-4 for M13). On the other hand, motif M9 
representing cascade was only observed in Subject B’s 
network, with a z-score of −8.43 and a p-value of 1.48E-
16. Consistent results were also obtained from the con-
structed networks with θ = 0.05 (Supplementary Fig. 12). 
These differential enrichment and depletion of motifs 
between two subjects’ networks, was consistent when we 
repeated motif analysis 100 times (Supplementary Fig. 
13). This finding suggests that feedback loops may be a 
critical factor in the differential recovery dynamics.

Discussion
In this paper, we employed TENET to construct regula-
tory networks using longitudinal gut microbiota data 
from two subjects. TENET, known for its efficacy in iden-
tifying key regulatory factors in gene expression regula-
tion from pseudotime-ordered single cell RNAseq data 

[26], was adapted for the analysis of time-course microbi-
ota data. TENET was originally designed for constructing 
gene regulatory networks in single-cell data, its applica-
tion was justified here because microbiota abundance 
data basically share the same data type format; read 
count. A challenge of this application lies in the difficulty 
of obtaining publicly accessible, high-quality data suitable 
for the application of transfer entropy. Despite of this 
challenge, this approach not only enabled us to measure 
the regulatory strength between phyla but also facilitated 
the identification of key regulatory genera, such as Arco-
bacter and Mogibacterium in subject A, and Clostridium, 
Dysgonomonas, and Peptococcus in subject B. Notably, 
the top key regulatory genera were found to be associated 
with distinct experiences of each subject. For example, 
subject A exhibited Acrobacter as a key genus, linked to 
his or her experience of traveler’s diarrhea. Acrobacter 
is a microbial genus belonging to the Pseudomonadota 
phylum and is associated with TD, which is frequently 
encountered in Southeast Asia [51–53]. Specifically, A. 
butzleri, one of the Acrobacter species has been exten-
sively studied and demonstrated to have considerable 
importance for TD [54–57]. Meanwhile, subject B expe-
rienced food poisoning with an increase in sequencing 
reads of Enterobacteriaceae Salmonella. Although Sal-
monella did not appear as a key genus, our network anal-
ysis identified Clostridium (part of the Bacillota phylum) 
as a key regulatory genus. This is consistent with find-
ings from the original study, which noted a significant 
increase in a Bacillota-dominated OTU cluster, including 
Clostridium, following the infection. The sustained ele-
vated abundance of this cluster implies a loss of compo-
sitional stability in subject B’s microbiota, suggesting that 
Clostridium may play a regulatory role in counteracting 
the external infection [31].

Fig. 6  The enrichment of feedback loops in gut microbiota regulatory network. The significance of network motifs of two-node and three-node were 
obtained by random shuffling 10,000 times from the networks for subject A and subject B with θ = 0.01. Motif significance was assessed via z-scores, with 
FDR correction applied
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Many studies have been discovered that Bacillota, a 
category of intestinal microorganisms, have a substan-
tial impact on modulating the body’s immune system 
[60]. During digestion, Bacillota release glycoconjugates, 
which stimulate the production of the cytokine IL-34, 
leading to an enhancement of the immune response. 
Despite their presence throughout the body, immune bal-
ance is maintained through a feedback control mecha-
nism. Smaller glycoconjugates are effectively managed 
by albumin, preventing excessive immune responses. 
Our study, through its observations of microbial com-
munity structures, suggests that certain Bacillota genera 
may play a role in hist systemic immunity. Clostridium, 
predominantly classified within the Bacillota phylum, 
encompasses a variety of strains that are commonly 
found in diverse environments, including soil, sewage, 
the digestive tracts, and water. While some species within 
the Clostridium genus serve useful functions, others 
have the potential to produce toxins or cause infections, 
posing potential risks to the health of both humans and 
animals [61, 62]. The original study of this time-course 
microbiota data suggested that Subject A’s gut micro-
biota reverted to its pre-travel state, whereas Subject B’s 
gut microbiota did not return to its pre-infection state 
and switched to a new stable state. The centrality of Clos-
tridium in Subject B’s microbial network suggests its 
potential role in establishing a new steady state following 
Salmonella infection. Certain Clostridium species, such 
as Clostridium butyricum, have been shown to modu-
late host immunity by inducing IL-10-producing mac-
rophages, thereby contributing to intestinal homeostasis 
[63]. Moreover, insights from network-based modeling 
indicate that central taxa like Clostridium can play piv-
otal roles in regulating community dynamics and facili-
tating transitions to alternative stable states in response 
to ecological perturbations [64].

To compare the structural difference between two sub-
jects’ networks, we investigated three global network 
measures including degree distribution, modularity, and 
motif enrichment. We found that the degree exponent 
and modularity were comparable in the two networks. 
However, the enrichment of the two-node feedback loops 
and three-node motif coupled with two-node feedback 
loops were more enriched in the network for subject B 
than the network for subject (A) On the other hand, cas-
cade motif was depleted only in the network for subject 
(B) Feedback loops and coupled feedback loops have 
been suggested to evolve to support multiple steady 
states or hysteresis [58, 65]. These structures may also be 
related to resilience or functional redundancy in micro-
bial networks, where feedback interactions are thought 
to support stability and recovery following disturbance 
[66, 67]. Consistent with this, the original study reported 
that Subject A’s gut microbiota reverted to its pre-travel 

state, whereas Subject B’s gut microbiota did not return 
to its pre-infection state but instead transitioned to a new 
stable state. Thus, subject B’s network topology, enriched 
with feedback motifs and lacking cascade motifs, may 
reflect a shift toward a new equilibrium, while Subject A’s 
network, may favorable reversible dynamics. These con-
trasting motif enrichment between two subjects under-
scores their potential critical impact on varying recovery 
dynamics.

Motif studies span both biomolecular and ecologi-
cal networks, including trophic modules in microbial 
communities [41]. By identifying recurring interaction 
patterns, motif analysis highlights how species-level 
interactions underpin community robustness and adapt-
ability to environmental changes [37]. In our study, 
motifs involving taxa such as Faecalibacterium, Clos-
tridium, and Roseburia—well-known for their roles in 
short-chain fatty acid metabolism—suggest underlying 
trophic or syntrophic relationships [68, 69]. Additionally, 
feedback interactions between Bacillota and facultative 
anaerobic Pseudomonadota may reflect syntrophic oxy-
gen-scavenging processes that promote anaerobic stabil-
ity [70]. These insights suggest that motif-level analyses 
in longitudinal microbiome studies can inform predic-
tions of community resilience and state transitions.

The random rewiring of the microbiota regulatory 
networks of gut microbiota highlights the significant 
directional relationships between phyla. In both sub-
jects, regulations within Firmicutes or Proteobacteria are 
markedly enriched, while regulations between these two 
phyla are significantly reduced. This suggests that micro-
biota preferentially regulate taxa within the same phylum 
rather than across different phyla. Such within-phylum 
regulatory preference may stem from underlying func-
tional coherence and evolutionary relatedness, as closely 
related microbes are more likely to share compatible sig-
naling systems, metabolic pathways, and ecological roles 
[71, 72]. This phylo-functional alignment may, in turn, 
promote more efficient regulatory coordination and help 
explain the modular network structures observed in our 
study, where regulatory interactions are largely confined 
within phylogenetic boundaries [71, 72].

Our findings are based on only two individuals and 
thus limits the generalizability of the results. Future stud-
ies should apply TENET to larger longitudinal cohorts 
encompassing diverse lifestyles, dietary interventions, 
and perturbations to verify whether the regulatory 
principles identified here—subject-specific hub taxa, 
preferential within-phylum control, and feedback-loop-
enriched topology—hold across populations. Integrating 
additional multi-omics layers, such as metabolomics or 
host transcriptomics, will help clarify how microbial net-
work dynamics influence host responses.
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In conclusion, this study leveraged TENET to construct 
regulatory networks of longitudinal gut microbiota data. 
The adapted approach allowed precise measurement of 
regulatory strength between phyla and identification of 
key regulatory genera linked to subject-specific experi-
ences. Despite the small sample size, our findings provide 
insights into the roles of Bacillota, especially Clostrid-
ium, in modulating immunity and demonstrate TENET’s 
promise for analyzing large-scale time-series micro-
biota datasets. Multiomics data including metabolomics 
or host transcriptomic data may further elucidate how 
microbial network dynamics influence host responses.
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