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Abstract

the regulatory mechanisms of the gut microbiome.

implications for host health.

Background Understanding the complex dynamics of gut microbiota interactions is essential for unraveling their
influence on human health. However, inferring causality from microbiome time-series data is challenging due to
noise, sparsity, and high dimensionality. Constructing causal interaction networks can provide valuable insights into

Results In this study, we employed transfer entropy analysis to construct a causal interaction network among gut
microbiota genera from time-series abundance data. Based on longitudinal microbiome data from two subjects,

we found that the constructed gut microbiota regulatory networks exhibited a power-law degree distribution,
intermediate modularity, and enrichment of feedback loops. Interestingly, the networks of the two subjects displayed
differential enrichment of feedback loops, which may be associated with the differences in their recovery dynamics.

Conclusions The transfer entropy-based network construction approach offers valuable insights into the gut
microbiota ecosystem and enables the identification of key microbial hubs that play pivotal roles in shaping microbial
balance. This method provides a deeper understanding of microbial regulatory interactions and their potential

Keywords Transfer entropy, Microbiota, Causal interaction network, Microbiome, Feedback loops

Background

The human microbiota, particularly the gut microbiota,
plays a crucial role in maintaining our health. This vast
and dynamic assembly of microorganisms inhabits vari-
ous parts of our body, with the gut microbiota being one
of the most influential due to its extensive interactions
with human physiology. Many studies have shed light on
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the profound impact the gut microbiota on human health
[1-10]. They assist in the digestion and fermentation of
the food, enabling the extraction and synthesis of vital
nutrients and energy from the food we consume [5, 6].
Beyond their role in nutrition, these microbial commu-
nities serve to protect against pathogens [7, 8], regulate
immune function, and strengthen the bio-chemical barri-
ers of the gut and intestine [8].

Various bacterial species forming the microbiota inter-
act with each other for their survival. In particular, the
network of causal relationships among microbiota is
important as it provides insights into the complex and
dynamic ecosystem of microorganisms that are critically
important in the function of any biological community.
These networks can help us understand how commensal
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and pathogenic microbiota modulate host signaling and
have broad cross-species consequences.

Early studies on microbiota interactions relied on ana-
lyzing correlations between them, which produce only
undirected interaction networks [11-17]. More detailed
information on the nature of interactions can only be
obtained by analyzing the time series of bacterial abun-
dances, where directed graphs are obtained [18-21].
While significant progress has been made, the rigorous
inference of causal relationships between bacterial spe-
cies using information theory remains an underexplored
area. In this study, we address this gap by constructing a
causal interaction network employing transfer entropy
(TE) [22], an information-theoretic measure for deter-
mining causality between variables.

TE has been used for inferring causal relationships
within dynamic systems, including the functional con-
nectivity of neurons [23-25] and transcriptional regula-
tion [26-28], by measuring the information transferred
from one agent in the interacting network to another. It
has also been applied beyond biology, such as in social
systems [22], climate science, and finance—e.g., to reveal
directional information flow among global stock indi-
ces [26-30]. TENET (Transfer Entropy-based causal
gene NETwork) algorithm [26] is designed to construct
gene regulatory networks (GRNs) from single-cell RNA
sequencing data, demonstrating superior performance in
identifying key regulatory transcription factors. Employ-
ing TENET, we built the causal interaction network of gut
microbiota, by analyzing one-year time series of micro-
biota data from two individuals [31]. Although TENET
was originally developed for scRNA-seq data, it can be
applied to microbiome time-series. The core steps of the
original TENET pipeline—including transfer entropy
computation and non-parametric entropy estimation
using kernel density estimation—were preserved as origi-
nally implemented. Compared to single-cell gene expres-
sion data, microbiome profiles are typically less sparse
but compositional in nature. While TENET’s estimator
offers some robustness, the indirect effect trimming step
was used to remove potentially indirect or confounded
edges.

The resulting microbiota causal network revealed: (1)
a power-law degree distribution with a few super-hub
nodes; (2) intermediate modular structure characterized
by phylum; and (3) an enrichment of feedback loops. Key
bacterial genera, such as Acrobacter and Clostridium,
were pinpointed as central hubs or connectors in these
networks, with associations to the hosts’ health outcomes
or environmental interactions. These findings suggest
that TE is a valuable tool for identifying critical regula-
tory genera within gut microbiota, which could be poten-
tial candidates of therapeutic targets.
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Methods

Processing of time-series data

One year time-series of gut microbiota for two people
have been obtained in David et al. [31]. David et al. gen-
erated a sequencing data of V4 region of the 16 S ribo-
somal RNA gene subunit on DNA obtained from stool
samples collected daily from two subjects, subject A for
341 days and subject B for 192 days. The raw data result-
ing from this work are available in the European Nucleo-
tide Archive (ENA) (https://www.ebi.ac.uk/ena/browser/
view/PRJEB6518) maintained by the European Bioinform
atics Institute (EBI). Post-processed time-series data are
also available at MGnify database (https://www.ebi.ac.u
k/metagenomics/studies/MGYS00001278#analysis),  at
the level of 32 phyla and 879 operational taxonomy units
(OTUs). Specifically, we used the MGnify-processed data
generated using pipeline version 2.0, which we down-
loaded in March 2023. We used the time-series data for
the OTUs and grouped them according to genera, result-
ing in the time-series abundances of 667 genera (Supple-
mentary Table S1 and S2). While species-level resolution
can provide more specific biological insights, we chose to
aggregate OTUs at the genus level for two main reasons.
First, genus-level aggregation reduces noise and enhances
robustness in detecting temporal patterns and causal
relationships in sparse microbiome time-series data [32].
Second, species-level annotations for many OTUs in the
MGnify output vary in resolution, making genus-level
aggregation a pragmatic choice to ensure consistency and
reliability in downstream analysis. Additionally, phylum
names were standardized according to recent taxonomic
conventions [33].

Construction of gut microbiota regulatory network
TENET algorithm [26] computes transfer entropy for
a given pair of components in an interaction network,
when time-series for these components are given. The
transfer entropy is defined as [22]

TExy =H(Yy| Yic1.or) — H(Yy| i1z, Xi14-2) (1)

where X;_1.,—r and Y;_1.;._1 denote the time series for
the time-points ¢-L, t-L+ 1, ... t-1, and H(X) is the Shan-
non’s entropy:

H(X)= =) 2p(x)logp(z) )

with p (z) being the probability that X takes the value x.
The transfer entropy T'Ex_, y measures the uncertainty
on Y removed by gaining the information on the history
of X, and estimate the information flow from X to Y. For
estimating conditional entropy, TENET utilized a kernel
density estimator, a non-parametric approach to estimate
the probability density function of a random variable
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[26]. For simplicity, we will consider only the effect of the
immediate past of the current time-point and use L = 1.
We chose L = 1 since TENET results was almost similar
when L > 1 is applied in the original TENET study on sin-
gle cell RNAseq [26].

TENET [26] was downloaded from github.com/neo-
caleb/TENET and applied to the time-series microbiota
profiles at the genus level for each subject individually.
We then represented the microbiota regulatory network
as a directed binary graph, where a node represents a
genus, and there is a directed edge from a node A to a
node Bif TFE 4_, p is significantly large. To assess the sig-
nificance of a TE value, we computed a z-score based on
the assumption of normally distributed TE values. Edges
were retained in the network if their z-scores exceeded
a threshold corresponding to a nominal FDR-level cutoff
(6). While this procedure is inspired by the Benjamini-
Hochberg approach [34], we note that, according to the
original design of the TENET algorithm [26], the p-val-
ues are not derived from a null distribution. Instead,
z-scores are computed using the empirical distribution
of TE values observed across all variable pairs. Thus, 0
is used as a tunable stringency parameter rather than as
a formal false discovery control. Even if TE 4_, p is sig-
nificantly large, we did not draw a directed edge from A
to B if this is due to an indirect effect, where there is a
node C such that A affects C and C affects B, but there
is no direct causal effect of A on B. We assume such an
indirect influence of A on B when we found C such that
TFE 4o_, g is less than the minimum value of TF 4_, . and
TE., . In this case, we did not draw a directed edge
from A to B in the final graph. We repeated this trimming
process until no further eliminations are necessary.

To test the robustness of the properties of the directed
binary network with respect to the FDR threshold 6, we
used both 8 = 0.01 and 8 = 0.05. The constructed net-
works were visualized using Cytoscape 3.9.1 with “Edge-
weighted Force directed” and “Group Attributes” layouts
[35].

Correlation-based association network

We constructed an undirected association network by
calculating pairwise Spearman rank correlations between
genus-level abundance for each subject. The signed cor-
relation coefficient was used as the edge weight, and
edges were retained if the two-sided Spearman test
P-value was less than 0.05. Self-loops were excluded.

SPIEC-EASI network

We inferred a sparse association network using SPIEC-
EASI (Sparse InversE Covariance estimation for Eco-
logical Association and Statistical Inference) [36]. For
each subject, genus-level abundance tables were ana-
lyzed using the neighborhood-selection formulation to
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estimate a sparse precision matrix. Model selection used
stability selection, and the final undirected graph was
defined by the non-zero entries of the refitted precision
matrix.

Degree distribution

Many biological networks follow power-law degree dis-
tribution [37]. We constructed the degree distribution of
each network and fitted the distribution to the power-law
equation:

pr=CE™7 3)

where pj is the distribution or probability of degree k, C
is a normalization constant ensuring that the sum of all
probabilities p; over all k equal 1, and v is the degree
exponent.

Leiden clustering

We used Leiden algorithm for community detection of
network [38]. Although Leiden clustering algorithm is
mainly designed for undirected graphs, we chose Leiden
algorithm instead of algorithms for directed graphs, such
as directed Louvain algorithm, since Leiden algorithm is
more improved algorithm in detecting well-connected
communities [38]. We also performed directed cluster-
ing Louvain to check that the results are similar to those
obtained from the Leiden clustering. A general purpose
of community detection algorithms is identifying com-
munities within a network that are more densely con-
nected internally than with the rest of the network. These
algorithms aim to maximize modularity M:

2
M= g% o (le-akp) @

where L is the total number of links in the network, [.
is the number of links in community ¢, « is a resolution
parameter, and D, is the sum of the degrees of the nodes
in community c.

The Leiden algorithm begins by assigning each node to
its own community and iteratively refines the community
structure to improve modularity. After the initial par-
titioning, the algorithm ensures that nodes within each
community are well-connected. It then aggregates the
network into a higher-level graph, in which each com-
munity is represented as a single node. This process of
refinement and aggregation is repeated until no further
improvement in community quality can be achieved.
Leiden clustering was performed using clusterMaker2
[39] application embedded in Cytoscape with the follow-
ing options: resolution = 0.5, beta value = 0.01, number
of iterations = 2. The chosen resolution parameter influ-
ences the size and number of detected communities. We
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used 0.5 as a standard setting that balances granular-
ity and interpretability. The beta value adjusts the algo-
rithm’s sensitivity to network density, and the specified
number of iterations limits the algorithm’s refinement
process, ensuring computational efficiency while seeking
optimal community detection.

Hypergeometric test

After clustering the nodes in the interaction network
into several communities (see Results), we investigated
whether a certain phylum is enriched in a given cluster.
Let us denote the total number of nodes as N and the
number of nodes belonging to a given phylum, say phy-
lum A, as M, and also denote the number of nodes in a
cluster, say cluster i, as n. If we randomly select # nodes
from N nodes, the number of nodes that belong to the
phylum A, denoted as K, is a random variable. The prob-
ability distribution Pg (k) for for K is given by the hyper-
geometric distribution:

M\ (N - M
PK(k)ZPT‘(K:k):(k)(nk)

For the observed number & of nodes belonging to the
phylum A in the cluster i, we also compute the P-value

PvalueEPT(K > k) (6)

If the P-value is less than 0.05, we conclude there are sig-
nificantly large number of nodes belonging to the phylum
A than expected, and hence phylum A is enriched in the
cluster i.

Random rewiring of regulatory network

To measure the statistical significancy of the strength
of regulations between phyla, we randomized the net-
works while preserving the in- and out-degree of each
node. Self-loops were excluded, and multiple edges were
avoided by ensuring that new connections only formed
between previously unconnected nodes. For this, we used
“rewire” function implemented in a R package “igraph”
[40]. We generated empirical distributions of the number
of links between phyla by randomly rewired regulatory
networks 1,000 times. For the observed number [ of links
from phylum A to B, we calculate the z-score

Nl _ <Nlrandom>

O.lrandom (7)

Zscore -
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where N is the number of links from phylum A to B,
and (Ny*"dom) and o 7*"4°™ are the mean and standard

deviation of links in the randomly rewired networks.

Centrality measures
The out-degree and in-degree of a node i is defined as the
number of out-going edges and the number of in-coming
edges of the node i, respectively.

The betweenness centrality of a node i is defined as

N .
cr =3 4l ®)

d.
j<k Cak

where N, dj, and d;i (i) denote the number of nodes,
the number of shortest paths between node j and k and
the number of shortest paths between node j and k which
include node i in the path, respectively.

The closeness centrality of a node i is defined as

N
ck = Linti) 9)
Z o dan

where N and d;; denote the number of nodes and dis-
tance between node i and j, respectively.

Network motifs

Network motifs are defined as patterns of interconnec-
tions observed more frequently than in an ensemble of
randomized networks [41]. We searched for patterns
involving two-node and three-node motifs using Net-
Match [42] a Cytoscape plugin application.

The statistical significance of each motif was deter-
mined through z-scores, calculated by comparing the
observed frequency against a null model. This model
was generated by randomly shuffling the network’s edges
10,000 times, ensuring the degree distribution was main-
tained. To compare the z-scores of each motif between
subject A and subject B, we calculated the z-scores 100
times. This number reflects the maximum number of
repetitions supported by NetMatch, which also offered a
practical balance between capturing stochastic variability
and maintaining computational efficiency.

Results

Microbiota regulatory networks constructed by TENET
display power-law degree distribution

With the time-course data on gut microbiota abun-
dance, we calculated TE values for every pair of genera
(Supplementary Tables S3-S4). Based on the TE matrix,
we constructed gut microbiota regulatory networks for
two subjects using TENET with 6=0.01 (Supplemen-
tary Tables S5-S6). After trimming indirect edges, we
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measured the network density p = N./N,(N, —1),
where N, and N,, are the number of directed edges and
the nodes, respectively. Since the network density p is the
ratio of the actual number of directed edges to the maxi-
mum number of possible directed edges, 0 < p <1
We found p = 0.012 for subject A and p = 0.021 for
subject B, indicating sparsely connected structures. The
degree distribution of both networks followed a power-
law with degree exponents of v = 0.913 for subject A
and v = 1.115 for subject B (Fig. 1A and B), represent-
ing the existence of a few superhub nodes connected
with almost every other node, and a large number of
nodes with a small number of edges. This sparsity and
power-law degree distribution property persisted in the
networks constructed with 6 = 0.05 (Supplementary
Table S7-S8 and Fig. 1C and D). The goodness of fit of
the power-law distribution was confirmed by comparing
with exponential and log-normal positive distributions,
as well as by evaluating the Kolmogorov—Smirnov (KS)
statistics, which supported the plausibility of power-law
behavior across the networks (Supplementary Table S9).
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We then applied Leiden clustering algorithm to discern
if these networks exhibit a modular organization [38].
The visualization of the clustering outcomes for subjects
A and B is provided in Fig. 2A and B, respectively. The
modularity scores M were 0.288 for subject A and 0.35
for subject B, indicating intermediate modularity for both
networks (Supplementary Table S10) [43]. This modular-
ity was also found in the constructed network with 6 =
0.05 (M = 0.317 for subject A and M = 0.276 for subject
B).

Leiden clustering produced four and three clusters for
the subject A and B, respectively. These are differenti-
ated by the border colors of the nodes in Fig. 2A and B.
To associate each cluster with specific microbial phyla,
we color-coded the interior of each node according to the
phylum of the represented genus. We enumerated genera
within each phylum for every cluster, with the composi-
tional outcomes depicted in Fig. 2C and D for subjects A
and B, correspondingly. The color schemes for these fig-
ures are consistent with those in Fig. 2A and B. Across all
clusters for both subjects, two phyla - Bacillota and Pseu-
domonadota - were consistently present. Nevertheless,

C Network with 6 =0.05
= y = 0.965
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©
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Fig. 1 Gut microbiota regulatory networks display power-law degree distribution. (A-B) Degree distribution of gut microbiota regulatory networks for
subject A (A) and B (B) with 8=0.01. (C-D) Degree distribution of gut microbiota regulatory networks for subject A (C) and B (D) with 6=0.05
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Fig. 2 Gut microbiota regulatory networks exhibit modular structure. (A-B) Network representation of gut microbiota regulatory networks for subject A
(A) and B (B) with “Edge-weighted Force directed”layout. The node fill color and border color represent phylum and Leiden cluster, respectively. The node
size represents the out-degree. (C-D) The fractions of nodes belonging to distinct phyla for each Leiden cluster for subject A (C) and B (D). (E-F) The results
of the hypergeometric tests for the phylum compositions for several Leiden clusters in subject A (E) and B (F). The numbers in the intersection region
denote the observed (upper) and expected (lower, presented in parenthesis) number of nodes

the exact phylum compositions differed by cluster.
Hypergeometric testing, results of which are shown in
Fig. 2E and F, and Supplementary Table S11, identified
phyla significantly overrepresented in certain clusters.
For instance, Bacillota were notably prevalent in Leiden
cluster 1 of subject A (p=5.66E-5) and Leiden cluster 3 of
subject B (p=2.59E-2), Pseudomonadota were enriched
in Leiden cluster 3 of subject A (p=1.29E-5) and Leiden
cluster 1 of subject B (p=7.25E-3), and Actinobacteriota
were enriched in Leiden cluster 3 of subject B (p =2.65E-
2). Additionally, some phyla appeared exclusively within
specific clusters. For example, Fusobacteriota were only
found in Leiden cluster 3 of Subject A, Symergistota
were only found in Leiden cluster 1 of subject A and
Leiden cluster 2 of subject B, and Saccharibacteria were
only found in Leiden cluster 1 of subject A and Leiden
cluster 2 of subject B. Overall, these findings from our
constructed networks reveal discernible communities
characterized by unique phyla. The results from the Lou-
vain clustering were similar (Supplementary Table S12).

Random rewiring of the network revealed significant
regulatory strengths between phyla

To assess the strength of regulation between phyla, we
changed the layout of the networks using Cytoscape

by grouping genera with same phylum (Fig. 3A and B).
Random rewiring of the networks was performed 1,000
times while preserving the degree distribution, provid-
ing z-values of the regulations between phyla (Fig. 3C
and D). In both subjects, regulations within Bacillota
and Pseudomonadota were significantly enriched, while
regulations between these two phyla were significantly
depleted. Interestingly, the regulations from Fusobacte-
riota to Pseudomonadota were enriched in the network
of subject A (Fig. 3C), whereas the regulations within
Actinobacteriota and the regulations from Mycoplas-
matota to Bacteriodetes were enriched in the network of
subject B (Fig. 3D). These results were consistently found
in the constructed network with 6 = 0.05 (Supplemen-
tary Fig. 1). This suggests that Fusobacteriota, Actino-
bacteriota, and Mycoplasmatota may play a differential
role in the regulation of gut microbiota between the two
subjects.

TENET identified key regulatory genera associated with
personal experiences

In many network biology studies, there is a common
hypothesis that certain key players, or ‘hub nodes’ play
a critical role in maintaining the connections and flow
within these networks [44—46]. In some studies, other
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Fig. 3 Random rewiring analysis of gut microbiota regulatory networks reveals significant regulatory relationships between phyla. A-B Network repre-
sentation of gut microbiota regulatory networks for subject A (A) and B (B) with layout of grouping by phyla. The node fill color and border color represent
phylum and Leiden cluster, respectively. The node size represents the out-degree. C-D Heatmaps of the z-scores of the number of regulations between
phyla for subject A (C) and B (D). The networks were obtained with 6=0.01. Statistical significance is indicated by asterisks for unadjusted p-values
(P<0.05 (%), P<0.01 (**),and P<0.001 (***)) and by black boxes indicating FDR<0.05

measures of the importance of these hubs, such as their
role as connectors or how centrally located they are in
the network (i.e. betweenness or closeness), might be
better at pinpointing critical proteins or genes [47-49].
To investigate this idea in the microbiota regulatory
networks, we calculated four centrality measures: out-
degree, in-degree, betweenness, and closeness (Fig. 4).
The centrality analysis revealed subject-specific key
regulatory genera. In subject A, the genera Mogibac-
terium, belonging to the family Mogibacteriaceae, and
Arcobacter, belonging to the family Campylobacteraceae,
were consistently identified as key players across all four
measurement methods (Fig. 4A). However, in subject B,
the genus Clostridium, belonging to the family Rumi-
nococcaceae, ranked first by out-degree, in-degree, and
betweenness centrality, but not by closeness centrality
(Fig. 4B). Instead, two different genera Dysgonomonas,

belonging to the family Porphyromonadaceae, and Pep-
tococcus, belonging to the family Peptococcaceae, were
top ranked in closeness. This indicates that Dysgonomo-
nas and Peptococcus play a bridge role between modules
instead of being a local hub. These key regulatory genera
were also found in the regulatory networks constructed
with 6 = 0.05 (Supplementary Fig. 2).

As a comparative analysis, we additionally constructed
microbial association networks using eLSA, a time-
series-aware algorithm [16]. Specifically, we applied
eLSA to each subject’s time-series data using robust
Z normalization and 100 permutations optimized for
delayed interaction detection, with edges filtered at q <
0.01 and indirect edges removed using the same trim-
ming strategy as in TENET. Arcobacter, identified as a
hub genus by TENET, also ranked highest in in-degree
centrality within the eLSA-derived network. However,
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The networks were obtained with 6=0.01

Mogibacterium, another top TENET-inferred hub, did
not appear in the top 10 based on any centrality mea-
sure in eLSA. Instead, a broader set of microbial genera
emerged as central nodes, reflecting method-specific sen-
sitivity in identifying regulatory hubs. TENET facilitated
the discovery of interpretable hubs, such as Clostridium
in Subject B, highlighting plausible microbial drivers that
may play a role in post-infection dynamics (Supplemen-
tary Fig. 3). To test the significance of these results, we
applied a fully randomized procedure—jointly shuffling
temporal order and taxon identities—and reconstructed
networks with TENET. We compared shuffled and origi-
nal networks in terms of node/edge overlap and hub met-
rics; in both subjects, the overall structure of the original
TENET-inferred networks was not preserved under this
randomization (Supplementary Fig. 4).

To further benchmark network inference approaches,
we explored two additional network inference algorithm,
correlation network and SpiecEasi [36]. We calculated
the degree of the resulting networks, as both algorithms
yield undirected graphs. For Subject A, the top 10 genera
by degree did not include pathogens highlighted in the
original study. In contrast, in the correlation network of
Subject B, the genus Edwardsiella, particularly Edwardsi-
ella tarda, was identified due to its known association
with food- and waterborne infection [50] (Supplemen-
tary Fig. 5).

To evaluate the impact of data compositionality, we
transformed genus-level abundances using both cen-
tered log-ratio (CLR) and log-normalization. We then
reconstructed the TENET networks and calculated four
centrality measures (outdegree, indegree, betweenness
centrality, and closeness centrality) for both Subject

A and Subject B (Supplementary Fig. 6). Interestingly,
after normalization, the key taxa previously identified
as network hubs—including those highly relevant to the
study’s clinical context—no longer ranked among the top
10 central genera. This finding suggests that these stan-
dard transformations, while statistically valid, may mask
the specific biological signals that TENET is designed to
identify from abundance data.

We further assessed robustness by removing time
points associated with major perturbation events. For
Subject A, exclusion of the travel period had minimal
impact, with Mogibacterium and Arcobacter still rank-
ing highly by outdegree. Similarly, in Subject B, removal
of the food poisoning interval did not alter the centrality
of Clostridium, which remained the top-ranked genus by
outdegree, while Dysgonomonas and Peptococcus contin-
ued to fall outside the top 10 (Supplementary Fig. 7). To
examine whether this robustness holds under more gen-
eralized data loss, we next evaluated centrality stability
following random removal of 10%, 20%, and 30% of time
points, preserving temporal order. In Subject A, Mogi-
bacterium and Arcobacter remained highly ranked by
outdegree up to 30% removal. In Subject B, Clostridium
was stable with 30% removed (Supplementary Figs. 8-9).

In addition, we tested the impact of a longer time lag
by setting the lag parameter to L =2 instead of L=1. For
Subject A, while the set of nodes remained unchanged,
modest structural differences were observed in the
resulting network. Specifically, 11 edges present in the
L=1 network disappeared in the L =2 network, one edge
(from Mogibacterium to Desulfovibrio) reversed its direc-
tion, and 14 new edges emerged. Among the lost con-
nections, two outgoing edges from Mogibacterium and
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one from Arcobacter were removed. In contrast, for Sub-
ject B, no changes were observed in either the node set
or edge structure between the L=1 and L=2 networks
(Supplementary Fig. 10).

For the centrality analysis results, Subject A experi-
enced traveler’s diarrhea (TD) while traveling to South-
east Asia. Acrobacter, one of the key regulatory genera,
displayed peak abundance right after the traveling period
(Fig. 5A) [51-57].

Subject B experienced food poisoning, which was con-
sistent with an increase in sequencing reads of Entero-
bacteriaceae Salmonella during the infection period.
However, the network for Subject B indicates that Clos-
tridium, part of the Bacillota phylum, displayed the
highest out-degree and in-degree, the second highest

A 25
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betweenness centrality, and the fifth highest closeness
centrality. Notably, Salmonella did not appear in the
list of top 10 key genera based on these centralities. We
corroborated a significant increase in the abundance of
Clostridium after infection (Fig. 5B) [31]. Phyla that were
significantly enriched in specific Leiden clusters showed
consistent temporal abundance patterns across the time
series (Supplementary Fig. 11).

Differential enrichment of feedback loops in two subject’s
networks

In the original longitudinal microbiome study, the
authors proposed that the microbiota of the two sub-
jects demonstrated different recovery dynamics [31]. The
microbiota community from subject A showed reversible

Campylobacteraceae Acrobacter abundance in Subject A
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Fig. 5 Time-course abundance of key regulatory microbiota. A-B Time course abundance of Acrobacter in subject A (A) and Clostridium in subject B (B)
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dynamics after traveling abroad, whereas that from sub-
ject B showed irreversible changes after an enteric infec-
tion. To further investigate the differential recovery
dynamics, we searched for network motifs, including a
two-node feedback loop and thirteen possible three-node
motifs, based on the relevance between feedback loops
and steady-state dynamics [58, 59]. The results showed
differential enrichment of feedback loops between the
two subjects (Fig. 6). Both the two-node feed-back loop
and three three-node motifs associated with the two-
node feedback loops (M11, M12, and M13) were sig-
nificantly enriched in both networks. However, the
significance levels of these four motifs were much higher
in subject B’s network (z-score and p-value = 8.03 and
4.44E-16 for two-node feedback loop, 8.28 and 1.11E-16
for M11, 6.3 and 1.49E-10 for M12, and 11.1 and 6.27E-
29 for M13) than in subject A’s network (z-score and
p-value = 4.45 and 4.29E-6 for two-node feedback loop,
3.63 and 1.42E-4 for M11, 3.56 and 1.85E-4 for M12, and
3.4 and 3.37E-4 for M13). On the other hand, motif M9
representing cascade was only observed in Subject B’s
network, with a z-score of -8.43 and a p-value of 1.48E-
16. Consistent results were also obtained from the con-
structed networks with 6 = 0.05 (Supplementary Fig. 12).
These differential enrichment and depletion of motifs
between two subjects’ networks, was consistent when we
repeated motif analysis 100 times (Supplementary Fig.
13). This finding suggests that feedback loops may be a
critical factor in the differential recovery dynamics.

Discussion

In this paper, we employed TENET to construct regula-
tory networks using longitudinal gut microbiota data
from two subjects. TENET, known for its efficacy in iden-
tifying key regulatory factors in gene expression regula-
tion from pseudotime-ordered single cell RNAseq data

[26], was adapted for the analysis of time-course microbi-
ota data. TENET was originally designed for constructing
gene regulatory networks in single-cell data, its applica-
tion was justified here because microbiota abundance
data basically share the same data type format; read
count. A challenge of this application lies in the difficulty
of obtaining publicly accessible, high-quality data suitable
for the application of transfer entropy. Despite of this
challenge, this approach not only enabled us to measure
the regulatory strength between phyla but also facilitated
the identification of key regulatory genera, such as Arco-
bacter and Mogibacterium in subject A, and Clostridium,
Dysgonomonas, and Peptococcus in subject B. Notably,
the top key regulatory genera were found to be associated
with distinct experiences of each subject. For example,
subject A exhibited Acrobacter as a key genus, linked to
his or her experience of traveler’s diarrhea. Acrobacter
is a microbial genus belonging to the Pseudomonadota
phylum and is associated with TD, which is frequently
encountered in Southeast Asia [51-53]. Specifically, A.
butzleri, one of the Acrobacter species has been exten-
sively studied and demonstrated to have considerable
importance for TD [54—57]. Meanwhile, subject B expe-
rienced food poisoning with an increase in sequencing
reads of Enterobacteriaceae Salmonella. Although Sal-
monella did not appear as a key genus, our network anal-
ysis identified Clostridium (part of the Bacillota phylum)
as a key regulatory genus. This is consistent with find-
ings from the original study, which noted a significant
increase in a Bacillota-dominated OTU cluster, including
Clostridium, following the infection. The sustained ele-
vated abundance of this cluster implies a loss of compo-
sitional stability in subject B’s microbiota, suggesting that
Clostridium may play a regulatory role in counteracting
the external infection [31].
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Many studies have been discovered that Bacillota, a
category of intestinal microorganisms, have a substan-
tial impact on modulating the body’s immune system
[60]. During digestion, Bacillota release glycoconjugates,
which stimulate the production of the cytokine IL-34,
leading to an enhancement of the immune response.
Despite their presence throughout the body, immune bal-
ance is maintained through a feedback control mecha-
nism. Smaller glycoconjugates are effectively managed
by albumin, preventing excessive immune responses.
Our study, through its observations of microbial com-
munity structures, suggests that certain Bacillota genera
may play a role in hist systemic immunity. Clostridium,
predominantly classified within the Bacillota phylum,
encompasses a variety of strains that are commonly
found in diverse environments, including soil, sewage,
the digestive tracts, and water. While some species within
the Clostridium genus serve useful functions, others
have the potential to produce toxins or cause infections,
posing potential risks to the health of both humans and
animals [61, 62]. The original study of this time-course
microbiota data suggested that Subject A’s gut micro-
biota reverted to its pre-travel state, whereas Subject B’s
gut microbiota did not return to its pre-infection state
and switched to a new stable state. The centrality of Clos-
tridium in Subject B’s microbial network suggests its
potential role in establishing a new steady state following
Salmonella infection. Certain Clostridium species, such
as Clostridium butyricum, have been shown to modu-
late host immunity by inducing IL-10-producing mac-
rophages, thereby contributing to intestinal homeostasis
[63]. Moreover, insights from network-based modeling
indicate that central taxa like Clostridium can play piv-
otal roles in regulating community dynamics and facili-
tating transitions to alternative stable states in response
to ecological perturbations [64].

To compare the structural difference between two sub-
jects’ networks, we investigated three global network
measures including degree distribution, modularity, and
motif enrichment. We found that the degree exponent
and modularity were comparable in the two networks.
However, the enrichment of the two-node feedback loops
and three-node motif coupled with two-node feedback
loops were more enriched in the network for subject B
than the network for subject (A) On the other hand, cas-
cade motif was depleted only in the network for subject
(B) Feedback loops and coupled feedback loops have
been suggested to evolve to support multiple steady
states or hysteresis [58, 65]. These structures may also be
related to resilience or functional redundancy in micro-
bial networks, where feedback interactions are thought
to support stability and recovery following disturbance
[66, 67]. Consistent with this, the original study reported
that Subject A’s gut microbiota reverted to its pre-travel
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state, whereas Subject B’s gut microbiota did not return
to its pre-infection state but instead transitioned to a new
stable state. Thus, subject B’s network topology, enriched
with feedback motifs and lacking cascade motifs, may
reflect a shift toward a new equilibrium, while Subject A’s
network, may favorable reversible dynamics. These con-
trasting motif enrichment between two subjects under-
scores their potential critical impact on varying recovery
dynamics.

Motif studies span both biomolecular and ecologi-
cal networks, including trophic modules in microbial
communities [41]. By identifying recurring interaction
patterns, motif analysis highlights how species-level
interactions underpin community robustness and adapt-
ability to environmental changes [37]. In our study,
motifs involving taxa such as Faecalibacterium, Clos-
tridium, and Roseburia—well-known for their roles in
short-chain fatty acid metabolism—suggest underlying
trophic or syntrophic relationships [68, 69]. Additionally,
feedback interactions between Bacillota and facultative
anaerobic Pseudomonadota may reflect syntrophic oxy-
gen-scavenging processes that promote anaerobic stabil-
ity [70]. These insights suggest that motif-level analyses
in longitudinal microbiome studies can inform predic-
tions of community resilience and state transitions.

The random rewiring of the microbiota regulatory
networks of gut microbiota highlights the significant
directional relationships between phyla. In both sub-
jects, regulations within Firmicutes or Proteobacteria are
markedly enriched, while regulations between these two
phyla are significantly reduced. This suggests that micro-
biota preferentially regulate taxa within the same phylum
rather than across different phyla. Such within-phylum
regulatory preference may stem from underlying func-
tional coherence and evolutionary relatedness, as closely
related microbes are more likely to share compatible sig-
naling systems, metabolic pathways, and ecological roles
[71, 72]. This phylo-functional alignment may, in turn,
promote more efficient regulatory coordination and help
explain the modular network structures observed in our
study, where regulatory interactions are largely confined
within phylogenetic boundaries [71, 72].

Our findings are based on only two individuals and
thus limits the generalizability of the results. Future stud-
ies should apply TENET to larger longitudinal cohorts
encompassing diverse lifestyles, dietary interventions,
and perturbations to verify whether the regulatory
principles identified here—subject-specific hub taxa,
preferential within-phylum control, and feedback-loop-
enriched topology—hold across populations. Integrating
additional multi-omics layers, such as metabolomics or
host transcriptomics, will help clarify how microbial net-
work dynamics influence host responses.



Park et al. BMC Genomics (2026) 27:28

In conclusion, this study leveraged TENET to construct
regulatory networks of longitudinal gut microbiota data.
The adapted approach allowed precise measurement of
regulatory strength between phyla and identification of
key regulatory genera linked to subject-specific experi-
ences. Despite the small sample size, our findings provide
insights into the roles of Bacillota, especially Clostrid-
ium, in modulating immunity and demonstrate TENET’s
promise for analyzing large-scale time-series micro-
biota datasets. Multiomics data including metabolomics
or host transcriptomic data may further elucidate how
microbial network dynamics influence host responses.
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