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We study the collapse transition of the lattice homopolymer on a square lattice by calculating the
exact partition function zeros. The exact partition function is obtained by enumerating the number
of possible conformations for each energy value, and the exact distributions of the partition function
zeros are found in the complex temperature plane by solving a polynomial equation. We observe that
the locus of zeros closes in on the positive real axis as the chain length increases, providing the
evidence for the onset of the collapse transition. By analyzing the scaling behavior of the first zero
with the polymer length, we estimate the transition temperature 7'y and the crossover exponent ¢.
© 2010 American Institute of Physics. [doi:10.1063/1.3486176]

I. INTRODUCTION

The hydrophobic interaction and the excluded volume
effect are two main interactions that determine the conforma-
tion of a polymer in a dilute solution, in space dimension d
<4."In the good solvent regime, the repulsive excluded vol-
ume effect is the dominating factor and the mean end-to-end
distance Ry of a polymer chain with N monomers asymptoti-
cally grows as (R%)~ N®(@?2)_the behavior of a self-avoiding
random walk. On the other hand, the poor solvent regime is
defined by the property that the attractive hydrophobic inter-
action between monomers dominates, where the scaling be-
havior is (R,Z\,)~N2/d. The situation is usually described by
the statement that the polymer adopts a swollen conforma-
tion in a good solvent and the collapsed one in a poor sol-
vent. The solvent where the repulsive and attractive interac-
tions cancel each other is called the theta solvent, with the
corresponding temperature being called the theta tempera-
ture, or the Flory temperature, 7 5.2 T, is the temperature
where the condition of the solvent changes from good to
poor or vice versa and the collapse transition occurs. The
collapse transition has been studied and the critical expo-
nents have been calculated using various theoretical and
computational methods,*** including lattice models.”* In
particular, the self-avoiding walk on a square lattice has been
extensively studied as a model for the polymer in two dimen-
sions, and its collapse transition has been studied using exact
enumeration'"'* and Monte Carlo samplings.9’10’15_24

Alternatively, phase transitions can be studied by calcu-
lating partition function zeros. The study of partition func-
tion zeros was initiated by the seminal paper of Yang and
Lee,” where the zeros in the complex fugacity plane were
studied to give a new insight on the phase transition. Subse-
quently the zeros in the complex temperature plane were
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studied by Fisher.”® With the recent advancement of compu-
tational power, the study of partition function zeros became
one the most popular methods for studying the phase transi-
tion and critical phenomena,27 and was used to study helix-
coil transition of polyalanine28 and folding transition of a
simple model protein.29 However, it was rarely used for the
study of lattice polymers, although some preliminary quali-
tative results on collapse transition were reported for both
homopolymers30 and heteropolymers.zg’31

The power of the partition function zeros method lies in
its sensitivity to the onset of a phase transition. When the
energy takes discrete values, the partition function Z is ex-
pressed as

Z=> n(E)ePE, (1)
E

with n(E) being the number of states with energy E. When Z
is a function of yEe'Bf with some interaction parameter €,
such as when E values are integer multiples of €, the parti-
tion function can be expressed in the form

Z(y) =A(y)H =y, (2)

where A(y) is a function which is analytic in the whole com-
plex plane and y;s are the complex roots of the equation
Z(y)=0, called the partition function zeros. Since Z is real,
y;’s form conjugate pairs except for the real-valued ones. By
taking log and derivatives, one obtains the specific heat,

2
cN<T>=%<1ny>2{E{L—(L) }
i LYY Y=Yy
2
+ (ydi) 1nA<y>] , 3)
y

where N is the size parameter of the system such as the
particle number. For a system with the phase transition at
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y=y,, the locus of the zeros close in toward the positive real
axis to intersect it at N=co, and the singularity of Cy(T)
appears in this limit. It is clear from Eq. (3) that the leading
behavior of such a singularity is due to the pair of partition
function zeros closest to the real axis, called the first zeros.
Therefore, by calculating the partition function zeros and ex-
amining the behavior of the first zeros as N— o, the critical
behavior can be much more accurately analyzed than exam-
ining the behavior of Cy(T) for real values of the tempera-
ture, which is plagued by the noise due to the subleading
terms containing zeros other than the first ones.

In this work, we calculate the exact partition function
zeros of the polymers on the square lattice up to the length
N=36, and make extrapolation of the first zero positions to
estimate the collapse transition temperature 7 and the cross-
over exponent ¢ (see the next section for the definition). The
fact that our calculation is exact, along with the sensitivity of
the partition function zeros method, allows us to estimate
these quantities with reasonably high accuracy.

Il. THE SCALING BEHAVIOR AND THE CRITICAL
EXPONENT

The collapse transition is described by the scaling behav-
ior of Ry near the critical temperature,6

(RY) ~ N*"f(1N?), (4)

where 7= (T-T,)/ Ty is the reduced temperature and f(x) is a
function with the property

f0)=1,

xH (x — o)

Jx) = (5)

xh- (-x_) _00)7

with u. being exponents that reproduce the scaling behavior
of R,z\, in the good and poor solvent regime,

_6/(d+2)-2v
My = b >
2/d-2v
= 6
M ) (6)

In most of the studies on lattice models, the transition tem-
perature and the critical exponents were usually obtained by
examining the behavior of (R} as a function of N and T and
fitting to Eq. (4), but they could also be obtained from the
scaling behavior of the specific heat,'™*

CM(T) ~ N*%g(7N?), (7)
with
Atx™* (x — )

(x=0) (8)

ATx® (x — —).

g(x) = const

The crossover exponent ¢ measures how rapidly the system
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undergoes the transition as the temperature approaches the
critical temperature 7. As will be shown later, it is directly
related to the exponent that measures how rapidly the first
zeros approach the positive real axis as N— .

lll. THE MODEL

A conformation of a polymer chain with N monomers is
modeled as a two-dimensional self-avoiding chain of length
N on a square lattice. The position of the monomer i/ is given
by r;=(k,l), where integers k and [ are the Cartesian coordi-
nates relative to an arbitrary origin. Chain connectivity re-
quires |r;—r;|=1, i.e., bond length is unity. Due to the ex-
cluded volume, there can be no more than one monomer on
each lattice site, r;#r; for i # j. The attractive hydrophobic
interaction is incorporated by assigning the energy —e<<0 for
each nonbonded contact between monomers. The resulting
Hamiltonian is

H=- 62 A(ri’rj)’ 9)

i<j
where
L (fi=j>1

0 (otherwise).

and |I‘l-—l‘j|= 1)

A(r,r) = (10)

Since the energy of the system is E=—€K, where K is the
number of monomer-monomer contacts, the partition func-
tion is expressed as a polynomial,

Kmax(N)

Z= X QuK)E, (11)
K=0

where y=exp(Be), Qn(K) is the number of polymer confor-
mations with contact number K, and K, (N) is the maxi-
mum number of possible contacts, when polymer length is
N2
Kmax(N)
N-2m for m>* <N=m(m+1)
N-2m-1 for m(m+1)<N<(m+1)?,
(12)

where m is a positive integer. Therefore the partition function
zeros can be obtained by enumerating the number of confor-
mations ,(K) for each contact number K. The speed of
enumeration can be increased by calculating the reduced
number of conformations wy(K), where conformations re-
lated by rigid rotations, reflections, and translations are re-
garded as equivalent and counted only once. However, it is
assumed that there is an intrinsic direction in the chain so the
conformations related by the exchange of labels i —N—i+1
for all (i=1,---,N) are considered distinct. We note that
since the rigid rotations and reflections in two dimensions
form an eightfold symmetry, the total number of conforma-
tions generated by rotations and reflections from a given
two-dimensional conformation is eight. An exception is the
straight chain, a one-dimensional conformation invariant
with respect to reflection perpendicular to the chain. Conse-
quently, the total number of conformations generated by ro-
tations and reflections is four in this case. Therefore, the
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FIG. 1. Positions of the partition function zeros in the complex temperature
(y=e”¢) plane for N=30 (circles), 32 (squares), 34 (diamonds), and 36 (tri-
angles). The first zeros are the ones closest to the positive real axis.

number of conformations with rigid rotations and reflections
considered distinct, denoted by Q,(K), can be easily ob-
tained by

Qp(0) = 8wy(0) — 4,

(13)
Qu(K) =8wy(K) (K> 0).

Using a parallel algorithm that classifies each conformation
according to the size of box it spans,33 we could calculate
wy(K) up to N=36. The same quantities were calculated up
to N=28 in earlier works,”** which agree with the current
results.

IV. PARTITION FUNCTION ZEROS

The partition function zeros were obtained by solving
the polynomial equation

Kmax(N)

Z= 2> QuK)y¥ =0, (14)
K=0

using MATHEMATICA. We observe that the partition func-
tion zeros fall on a simple locus, more or less independent of
the polymer length N (Fig. 1).

Although there is a relatively large gap between the posi-
tive real axis and the first zeros by visual inspection (Fig. 1),
the first zeros approach the positive real axis (Fig. 2), and the
transition temperature and the crossover exponent can be cal-
culated from their behavior in the N — o0 limit. However, an
oscillatory behavior is observed due to the fact that there are
classes of conformations whose numbers depend crucially on
the parity of N. For example, there is only one hairpin con-
formation when N is even, but there are two possible confor-
mations for odd N (Fig. 3). Therefore N’s for each parity are
used separately when N— ¢ limit is taken so that the large
error due to the oscillatory behavior is eliminated.

The crossover exponent ¢ can be obtained from exam-
ining how fast the first zeros approach the positive real axis
as N increases.”* From the scaling relation Eq. (7), we see
that the partition function scales as
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FIG. 2. Positions of the first zeros in the first quadrant of the complex
temperature (y=eP€) plane for even lengths N=10,12,14, ..., 36 (circles)
and for odd lengths N=11,13,15,...,35 (squares) from left to right. The
first zeros approach the positive real axis as N increases.

In Zy(7) ~ N¥2%g(7N?) (15)
and the equation for the first zero in the first quadrant

Z(r)=0 (16)
is invariant with changing N only if

T ~N?, (17)

which is related to the corresponding complex temperature ¢,
as

= %9. (18)
In terms of ¢;, Eq. (17) is re-expressed as

t; ~ T+ const X N~¢ (19)
which is asymptotically equivalent to

y; ~ v, + const X N~¢ (20)

in the large N limit, where y,=e"t and y.=e“’%. From the
imaginary part of Eq. (20),

Im[y,(N)] ~ N, (21)

the finite-size approximation of the crossover exponent is
obtained,

(@) (b)

A
4
N

FIG. 3. The hairpin as an example of the class of conformations whose
number depends crucially on the parity of N. There is only one conformation
for even N (a), whereas there are two possible conformations for odd N (b).
Note that there is an intrinsic direction in a chain, indicated by an arrow. The
dashed lines indicate the intermonomer contacts.
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FIG. 4. The finite size approximations of the crossover exponent, ¢(N), are
shown as a function of 1/N for even N with N=20 (open circles), and the
value of ¢ at infinite size obtained by the BST extrapolation is indicated by
a solid circle with an error bar.

In{Im[y; (N +2)}/Im[y,(N)]}
In{(N +2)/N}

B(N) =- (22)

The expression Eq. (22) reduces to the exact value of ¢ in
the N— oo limit, which is estimated by using the Bulirsch—
Stoer (BST) extrapolation.”>’ For given m data points cor-
responding to distinct values of N, the BST extrapolation is
performed by constructing a rational function of (1/N)® that
passes through all of these points, under the assumption that
the leading finite-size correction is of order O((1/N)®).
Then, the extrapolated value is obtained by evaluating the
function at 1/N=0. The estimated error is defined as®® *
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FIG. 5. Values of the real part of the first zeros are shown as a function of
1/N for even N with N=20 (open circles), and the value for N— % obtained
by the BST extrapolation is indicated by a solid circle with an error bar.

2|¢—1 - d)—m > (23)

where ¢_; is the value of ¢ at 1/N=0 extrapolated from the
data with the eliminated ith point. The estimated error is the
measure for the robustness of the extrapolated value with
respect to perturbations in the data points, but it has no sta-
tistically rigorous confidence level associated with it. The
estimated error can be further reduced by removing unreli-
able data obtained from N <20, and the final result is

$=0.422(12) (24)

obtained from the data for even N with 20=N=36. In the
absence of additional information, we assumed that the lead-

TABLE 1. The critical temperature 7, and the crossover exponent ¢ obtained in the current work, displayed in
the first line, are compared with those in literature. 7' is displayed only for the model of the current work. The
results that agree with ours within the estimated errors are indicated by boldface letters.

Method Lattice Ninax Tyl € )
Exact partition function zeros Square 36 1.30(17) 0.422(12)
Field theory® N/A N/A e %(:0.64)
Renormalization group” N/A N/A %(%0.86)
Monte Carlo® Square 160 1.31(6) e
Monte Carlo® Square 200 1.55(15) 0.6(1)
Transfer matrix® Square N/A 1.42(4) 0.48(7)
Series expansion’ Triangular 16 0.64(5)
Coulomb gas method® Hexagonal N/A %(::0.43)
Monte Carlo and renormalization grouph Square 40 1.54(7) 0.52(7)
Monte Carlo' Hexagonal 300 e 0.5(1)
Scanning simulation’ Square 240 1.52(1) 0.530(4)
Recursive enrichment method® Square 2048 1.504(5) 0.435(6)
The pruned-enriched Rosenbluth method' Square 256 1.4993(23)
Interacting growth walk™ Square 2000 0.419(3)
Monte Carlo" Square 1600 1.50 0.545(4)
Monte Carlo® Square 300 1.505(18)
Monte Carlo? Square! 20 e 0.436(7)

“Reference 7.
"Reference 8.
“Reference 9.
dReference 10.
“References 11 and 12.
'Reference 13.
€Reference 14.
%‘Reference 15.
'Reference 16.

IReference 17.
Reference 18.
'Reference 19.
"Reference 20.
"Reference 21.
°Reference 22.
PReference 23.
9A model with explicit solvent molecules. Different
from the model studied in this work.
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ing finite size correction to ¢ is of order O(N~') when per-
forming the BST procedure, but extrapolated value of ¢ does
not seem to depend much on this assumption (data not
shown).

Once the value of ¢ is determined, the transition tem-
perature T,y can be obtained by estimating the point on the
positive real axis where the first zeros approach in the limit
of N—, applying the BST extrapolation procedure to the
real part of Eq. (20),

Re[y,(N)] -y, ~N?. (25)

The resulting value of y. is 2.16(18), equivalent to Ty/€
=1.30(17), where again, the data for even N with 20=N
=36 were used.

The finite value approximations of ¢ and y. are dis-
played in Figs. 4 and 5 as functions of 1/N, along with their
extrapolated values at 1/N=0. The extrapolated value of y,
in Fig. 5 is larger than obtained by drawing a straight line
through the data points because we assumed the leading be-
havior of y—y, being proportional to (1/N)%#*2. There is no
change of the extrapolated value of T, under the current pre-
cision when we use the conjectured exact value of the cross-
over exponent ¢=3/7 (Ref. 14) instead of ¢=0.422. The
values obtained in the current study are compared with those
from the earlier works in Table I. Since T/ € is not a univer-
sal quantity, it is displayed only for the square lattice poly-
mer with nearest neighbor interaction. The maximum sizes
of the polymer studied, N, are displayed wherever appli-
cable. The results of the current study are given in the first
line of Table I. Although there are variations in the results
reported earlier, we find that many of them are consistent
with ours. Those that agree with our results within the esti-
mated errors are indicated by boldface letters. In particular, it
should be noted that the value of ¢ obtained in the current
work agrees quite well with the exact value 3/7 obtained by
analytic calculation on the polymers on the hexagonal
lattice,14 which is believed to be in the same universality
class as those on the square lattice.'®20%%23

V. DISCUSSION

We studied the zeros of the exact partition function of
lattice polymers on square lattices up to chain length 36 by
exhaustively enumerating the number of all possible confor-
mations. We observed that the first zeros tend to approach the
positive real axis as the chain length increases, and estimated
the critical temperature 7'y and the crossover exponent ¢ by
the BST extrapolation.

In contrast to Monte Carlo approaches where the calcu-
lation can be done for polymer lengths up to several hun-
dreds or thousands, the chain length studied in the current
study is much shorter, but the exactness of our data allows us
to use powerful extrapolation methods, leading to a reason-
ably accurate estimation of the transition temperature and the
crossover exponent. Furthermore, by studying the complex
zeros of the partition function zeros, instead of examining
the scaling behavior of real-valued quantities such as radius
of gyration or specific heat, much more accurate analysis of
the phase transition could be performed.

J. Chem. Phys. 133, 114106 (2010)

It is of immediate interest to perform the exact enumera-
tion of polymer conformations up to sizes where the ap-
proach of the first zeros toward the positive real axis is more
visible. An exact enumeration has been performed using a
transfer matrix for length up to 72 at infinite temperature,41
and it would be interesting to see whether it can be general-
ized to count the number of conformations for each energy
without introducing too much extra computational costs in
order to calculate the partition function zeros. One could also
combine Monte Carlo methods with the partition function
zeros to increase the polymer size, at the cost of introducing
sampling error. There are indications that the locations of the
first zeros are robust with respect to the sampling errors, a
point that needs further investigation.42

As a final remark, the partition function zeros method
may be applied to study the transition behavior of

heteropolyrners,zg’31 related to the very important and inter-

esting topic of protein folding. In contrast to homopolymers,
the definition of large N limit is not so clear for a heteropoly-
mer so the finite size scaling argument such as the one used
in the current study cannot be applied directly. Various meth-
ods to extract information relevant to the collapse and the
folding transition, from the complex partition function zeros,
will have to be explored.
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