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Exact Partition Function Zeros of Two-Dimensional Lattice Polymers
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We study the zeros of the exact partition function of lattice polymers on two-dimensional square
lattices up to the chain length 28. We observe that the leading zeros tend to approach the real axis
as the chain length increases. The results suggest that the locus of zeros may intersect the real axis
in the limit of infinite chain length, which is the necessary condition for the existence of the collapse
transition.
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It is generally believed that a polymer in a poor sol-
vent undergoes the collapse transition to compact con-
formations at low temperature, due to the hydrophobic
interaction between monomers. Theoretical studies [1–
19] of the collapse transition using various models have
been performed, as well as experimental investigations
[20–30]. However, due to the finite chain length of a poly-
mer, there is no definite conclusion on whether a phase
transition really exists in the thermodynamic limit in a
rigorous sense, not to mention more subtle issues such
as the order of the phase transition if one exists. The
collapse of homopolymers is of interest not only in its
own right, but also because it is a precursor to under-
standing heteropolymer collapse, which is of interest in
protein folding [31].

One of the important tools for the theoretical study of
the polymer has been the use of exhaustive simulations
of self-avoiding chains on lattices [32–36]. This system is
a special case of the HP model of lattice heteropolymer,
which has been studied as a simple model of the protein
[37–45]. Although there have been some studies on the
collapse transition of HP model lattice polymers, much
of the work has been concentrated on Monte Carlo sim-
ulations [42,44,45], and studies using exact enumeration
have been restricted to relatively short chain lengths [32,
34,38]. Moreover, to the best of our knowledge, inves-
tigation of the properties of the partition function zeros
has never been attempted.

The zeros of the partition function in the complex tem-
perature plane, called Fisher zeros [46,47], are interesting
because they give crucial information on phase transi-
tions of the system. Fisher zeros have been the subject
of research for various physical systems [48–59]. Theo-
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ries on general properties of partition function zeros have
also been developed [60–63].

In this work, we investigate the exact partition func-
tion of homopolymers on two-dimensional square lattices
by exhaustively enumerating the conformations of self-
avoiding chains up to the chain length 28, which is much
larger than those reported in the literature. By solving
the polynomial equations resulting from the exact parti-
tion function, we obtain the positions of the Fisher zeros.
We observe that the locus of zeros tends to close in the
positive real axis as the chain length increases. In partic-
ular, the leading zeros seem to converge to the real axis,
suggesting the collapse transition in the thermodynamic
limit.

In our model, the conformations of a polymer chain
with N monomers are modelled as two-dimensional self-
avoiding chains of length N on the square lattice. The
bond length is unity, so the position of monomer i is given
by ri = (k, l), where integers k and l are the Cartesian
coordinates relative to an arbitrary origin. Chain con-
nectivity requires |ri − ri+1| = 1. Because of excluded
volume, there can be no more than one monomer on each
lattice site, ri 6= rj for i 6= j. Conformations are clas-
sified by the number t of inter-chain contacts, i.e., the
number of pairs of monomers (i, j), |i − j| > 1, which
are not adjacent in the chain sequence but are nearest
spatial neighbors on the lattice, satisfying |ri − rj| = 1.
The number of conformations with N monomers and t
contacts is denoted by Ω(t)(N)1. A conformation and
its rigid rotations, mirror images, and translations are
considered indistinguishable and counted only once in

1 It should be noted that there is a difference in our notation from
that of Ref. 32. Ω(t)(N) in our work corresponds to Ω(t)(N −1)
in that reference.
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Ω(t)(N). However, it is assumed that there is an intrin-
sic direction in the chain, so the conformations related by
the exchange of labels i↔ N − i+ 1 for all (i = 1, · · ·N)
are considered distinct. We note that since the rigid rota-
tions and reflections in two dimensions form an eight-fold
symmetry, the total number of conformations generated
by rotations and reflections from a given two-dimensional
conformation is eight. An exception is the straight chain,
which is, in fact, a one-dimensional conformation, and
is invariant with respect to reflection perpendicular to
the chain. Consequently, the total number of conforma-
tions generated by rotations and reflections is four in this
case. Therefore, the number of conformations with rigid
rotations and reflections considered distinct, denoted by
Q(t)(N), can easily by obtained by

Q(0)(N) = 8Ω(0)(N)− 4

Q(t)(N) = 8Ω(t)(N) (t > 0). (1)

The quantities Ω(t)(N) for 4 ≤ N ≤ 16 are given in
Ref. 32, and Q(t)(N) for 17 ≤ N ≤ 20 are given in
Ref. 34. We enumerate non-redundant conformations
generated by self-avoiding random walks, and the results
for N ≤ 20 do indeed agree with those reported in the
references. The values of Ω(t)(N) for 21 ≤ N ≤ 28 are
the new results we obtained (Table 1).

The model Hamiltonian is simply

H = −J
∑
i<j

∆(ri, rj) (2)

where J > 0 is a constant parameter which can be ab-
sorbed into the inverse temperature when evaluating the
partition function, and ∆(ri, rj) = 1 if ri and rj are
nearest-neighbor sites with i and j not adjacent along
the chain, and zero otherwise. This model is a special
case of the HP model, where two types of monomers H
(hydrophobic) and P (polar) exist and different weights
are given depending on the types of monomers involved
in pairwise interaction. Since we use the same nega-
tive weight −J for all the monomers, our model is a ho-
mopolymer with only H type monomers present, which
attract each other with hydrophobic interaction.

Since the energy of a conformation depends only on
the total number of contacting pairs of monomers, the
partition function can easily be calculated from Ω(t)(N)
when we do not distinguish the conformations related by
rotations and reflections:

Z =
tmax∑
t=0

Ω(t)(N)zt (3)

where z ≡ eβJ . For a given chain length N , the maxi-
mum number of possible contacts is given by [32]

tmax = N − 2m for m2 < N ≤ m(m+ 1)
tmax = N − 2m− 1 for m(m+ 1) < N ≤ (m+ 1)2

(4)

Fig. 1. (a) The positions of the zeros of the partition func-
tion in the complex plane of z = eβJ , for several values of
chain length N . For each N , there are one or two additional
zeros lying on the negative real axis with <(z) < −2.0, which
are not shown here for the overall clarity of the figure. We
observe that the locus tends to close in the positive real axis
as the system size grows. (b) The imaginary part of the lead-
ing zeros plotted as a function of the inverse chain length.
The extrapolation of the data to 1/N = 0 is consistent with
the vanishing value of the imaginary part of the leading zero.

where m is a positive integer. Therefore, the partition
function Z is a polynomial of order tmax in z, and con-
sequently there are tmax zeros in the complex z plane.

At a finite system size, the partition function is ana-
lytic for real values of temperature, so there is no zero
lying on the positive real axis. However, if the system
exhibits a phase transition, we expect that the locus of
zeros will intersect the positive real axis at the transi-
tion point zc ≡ eJβc , in the limit of infinite chain length,
where βc is the inverse of the transition temperature.

Using the values of Ω(t)(N), we calculated the zeros of
the partition function Z for the chain length 4 ≤ N ≤ 28
by solving polynomial equations. The loci of zeros for
several values of the chain length are depicted in Figure
1(a). We observe that as the chain length grows, the
locus of zeros tends to approach the positive real axis
as expected. The real parts of the zeros are all nega-
tive for N ≤ 9, and we define the leading zero as the one
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Table 1. Number of conformations Ω(t)(N) on square lattices as a function of the chain length N and the number of contacts
t. Those for 4 ≤ N ≤ 20 are given in Refs. 32, 34.

t N = 21 N=22 N = 23 N = 24 N = 25 N = 26 N = 27 N = 28

0 8421787 19752218 46419252 108774694 255351250 597911624 1402287935 3281303693

1 18600478 45756483 112444948 275204606 673031750 1640168584 3994716336 9699476314

2 23517452 60431603 154608247 393755587 999333185 2526164978 6367872760 15995302728

3 21628048 57959791 154158232 407885572 1072782954 2808636641 7317574830 18987719929

4 16574559 46117659 127031251 347920091 945260569 2555187024 6861628501 18343927787

5 10948158 31659735 90321508 255975474 717661856 2001375177 5533056628 15223373459

6 6456064 19421102 57228910 167929055 485676817 1396686571 3971125472 11237454069

7 3381622 10656029 32726474 99584556 296862008 881852813 2580279898 7512575526

8 1637105 5396353 17011724 54002538 166850648 511995996 1540198043 4618983588

9 684708 2446760 8171310 27015060 85910838 274214999 851735068 2632323506

10 259353 993476 3514924 12394518 41204322 136549589 436636946 1398796860

11 91586 378317 1331552 5146120 17970134 62915928 208783232 693567093

12 11226 119644 487154 1923545 7022209 26682016 92279718 321343949

13 11584 109998 679418 2528252 10126804 37030110 138013816

14 4577 131896 761832 3598561 13482884 53972071

15 3997 89960 1001309 4430448 19198892

16 1081 100750 926875 6144833

17 52594 1163103

18 45238

Total 112212146 301100754 805570061 2158326727 5768299665 15435169364 41214098278 110164686454

closest to the positive real axis for N ≥ 10. Since the dis-
tribution of zeros is symmetric with respect to the real
axis, due to the fact that the coefficients of the poly-
nomial are all real, it is sufficient to consider only the
zeros with positive values of the imaginary parts, with-
out loss of generality. The imaginary parts of the leading
zeros are plotted against the inverse of the chain length
in Figure 1(b). The infinite chain length corresponds
to 1/N = 0. The numerical extrapolation [64] results
in the value 0.3 ± 0.4 for 1/N = 0, consistent with the
value zero within the uncertainty. The results suggest
that the locus of zeros intersects the positive real axis
in the thermodynamic limit, and there is a phase tran-
sition. However, the results are not conclusive, due to
a rather large uncertainty. Further studies for longer
chain lengths seem necessary for a definite conclusion on
whether a true phase transition exists.

When we consider all the conformations generated by
rigid rotations and reflections, Ω(t)(N) in Eq. (3) should
be replaced by Q(t)(N). Denoting the resulting partition
function as Z ′, we see from Eq. (1) that the partition
function Z ′ is obtained from Z by replacing Ω(0)(N) by
Ω(0)(N) − 0.5, up to an overall constant factor which
is irrelevant. Since Ω(t)(N)s are numbers much larger
than unity, we expect that the positions of zeros of Z ′
are almost the same as those of Z, which is corroborated
by explicit calculations. In fact, the plots of the zero
positions are exactly the same as Figure 1, within the
resolution of the figure.

In this work, we obtained the exact partition func-
tion of two-dimensional lattice polymers of various chain
lengths by using exhaustive enumerations. This provided
us with the positions of zeros. Although it is rather pre-
mature to draw a definite conclusion from the results, one
can observe that the locus of zeros closes in toward the
positive real axis as the chain length grows, which sug-
gests the existence of a phase transition. It would be in-
teresting to extend the calculation to much longer chains,
so that a more definite conclusion can be drawn on the is-
sue of the phase transition. Extensive parallel computa-
tions would be necessary for such an endeavor. It would
also be interesting to investigate the partition function
zeros of heteropolymers. We expect that in the case of a
protein, heteropolymers specially designed so that there
is a unique ground state which has much lower energy
that the average energy of the other conformations, there
should be another locus intersecting the positive real axis
in the limit of infinite chain length, corresponding to the
folding transition to the ground state. Of course, defining
the thermodynamic limit for a heteropolymer is a non-
trivial task, in contrast to the homopolymer we studied.
All these points are left for future investigations.
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